Kurs

C 64

Effektives Pro-
grammieren in
Assembler

Es gibt viele Moglichkeiten, ein Basic-
Programm schneller und komfortabler zu
gestalten. Aber auch fiir die Assembler-
programmierung gibt es einige Tricks und
Kniffe, die wir lhnen in diesem praxis-
nahen Kurs verraten wollen.

Computer herausholen will, kommt an Maschinen-
sprache nicht vorbei. Die Grundlagen zur Maschi-
nenprogrammierung wurden bereits im Kurs »Assembler ist
keine Alchimie«, den Sie in diesem Sonderheft finden,
geschaffen. Das Thema dieses Artikels ist es nun, die Még-
lichkeiten von Maschinensprache optimal zu nutzen. Sie
erfahren, wie man
a) Programme beschleunigen und
b) Speicherplatz sparen kann.
Dazu werden lhnen eine Vielzahl von Programmiertechni-
ken, Tips und Tricks vermittelt, die lhnen die Programmierung
erleichern.

1. Beschleunigungen des Betriebs-
systems (in Assembiler)

wer das Optimum an Geschwindigkeit aus seinem

Der C 64 muB viele Aufgaben gleichzeitig erledigen: Bearbei-
ten des Hauptprogramms, Ablauf der Systeminterrupts und
Senden des Video-Signals (an den Monitor/Fernseher). Alle
diese Funktionen erfordern

- viele Zugriffe auf den Datenbus des Prozessors

- und dadurch Ausfihrungszeit.

Unser Grundproblem ist nun, wie wir den Computer dazu
bewegen, diese Aufgaben nicht (oder nur teilweise) auszu-
fahren.

a) Eingriffe in den Systeminterrupt

Eine detaillierte Beschreibung des Systeminterrupts finden
Sieim bereits erwahnten Kurs »Assembleristkeine Alchimie«.
Hier moéchte ich nur zusammenfassen, wasim normalen Inter-
rupt des Betriebssystems geschieht: 60 mal in der Sekunde
wird das Hauptprogramm verlassen und die Routine ab
$EA31 angesprungen. Ist diese abgearbeitet, wird wieder
ins Hauptprogramm zurtickgesprungen. Wéahrend dieser
Unterbrechung (»interrupt) tut sich einiges: '

- die RUN/STOP-Taste wird Gberprift
- die Tastatur und der Datasettenmotor werden abgefragt

- das Cursorblinken wird erledigt
- dieinterne Uhr (TI$) wird gestellt.

Uberlegen wir uns, welche Funktionen verzichtbar sind:
Die RUN/STOP-Taste bewirkt nur in Basic-Programmen einen
Abbruch, in Assembler miBte sie zum Beispiel Gber »JSR
$FFE1« zusatzlich abgefragt werden. Die interne Uhr findet
von Maschinensprache aus praktisch keine Verwendung.
Kurz und gut, ein Maschinenprogramm kann auf beide Funk-
tionen verzichten. Dies wird durch ein

LDA #$34
STA $0314

74

erreicht. Weil der Computer dadurch entlastet wird, lauft das
Hauptprogramm etwas schneller ab.
Die Normaleinstellung erhalt man mit
LDA #$31
STA $0314

Beschleunigungsmethode 1:

Trick: Verklrzung der Interrupt-Routine
Nebenwirkungen: Abfrage der STOP-Taste und interne
Uhr entfallen

Koénnen Sie zwischenzeitlich auf die ganze Interrupt-Routine
verzichten, genigt ein einziger Befehl:

SEI (»set interrupt«)
Er verhindert grundsatzlich das Auftreten von Interrupts.

- Die Normaleinstellung bewirkt:

CLI (»clear interrupt«)

Beschleunigungsmethode 2:
Trick: Interrupt total abschalten
Nebenwirkungen: Abfrage von Tastatur, STOP-Taste und

Datasette, sowie Cursor und interne Uhr entfallen.

Es gibt aber noch eine Mdglichkeit, im Zusammenhang mit
dem Systeminterrupt: Von der Adresse $DCO05, die als Zahler
dient, hangt die Anzahl der Interrupts (in der Regel 60 Aufrufe
pro Sekunde) in einer bestimmten Zeit ab. Diese Adresse
kann durch Schreibzugriff gedndert werden. Schreibt man in
$DCO5 einen niedrigen Wert (im Extremfall 0), so werden
sehr viele Interrupts ausgelést. Dies macht sich in der
Geschwindigkeit der Interrupt-Routine bemerkbar. Cursor
und Tastaturabfrage werden sehr schnell, dieinterne Uhr geht
vor, und so weiter. Verwendet man eine eigene, eventuell zeit-
kritische Interrupt-Routine, kann sie auf diese Weise
beschleunigt werden.

Dieser Geschwindigkeitszuwachs geht allerdings auf
Kosten des Hauptprogramms, das stark verlangsamt wird.
Bei wenigen Interrupts (groBe Zahl in $DCO05) wird es
beschleunigt. Die entsprechenden Assemblerbefehle lau-
ten:

LDA #$FF
STA $DCO5
um eine starke Beschleunigung zu bewirken.
Die Normaleinstellung wird durch
LDA #$3A
STA $DCO05
erreicht.

Beschleunigungsmethode 3:

Trick: Anzahl der Interruptaufrufe pro Sekunde dndern
Nebenwirkungen: Bei zu wenigen Aufrufen hinken Uhr,
Cursor und Tastaturabfrage nach; bei zu vielen werden
sie zu schnell.

b) VIC-Register Nummer 17

IstIhnen schon bei Hypra-Load, beim Arbeiten mit der Data-
sette und einigen Kopierprogrammen aufgefallen, daB
manchmal der Bildschirm abgeschaltet wird (&hnlich wie im
FAST-Mode des C 128)? Dies kann man mit einem Vorhang
vergleichen, der zwischenzeitlich den Bildschirm verdeckt.
Der Bildschirm kann zwar nach wie vor (hinter dem Vorhang)
geandert werden (PRINT-Anweisungen werden also ausge-
fuhrt), aber sichtbar wird die Wirkung erst, wenn der Vorhang
entfernt wird.

C 64

Kurs

Verantwortlich fur das Ein-/Ausschalten des Bildschirms ist
das VIC-Register Nummer 17:
Bit 4 gesetzt: Bildschirm wird angezeigt
Bit 4 geléscht: Bildschirm wird abgeschaltet
und nimmt Rahmenfarbe an.
Da wir die theoretischen Grundlagen haben, brauchen wir
nur noch unser Wissen in Befehle umzusetzen:
Bildschirm abschalten:

LDA $DO11 ($DO11 ist VIC-Register # 17)
AND #$EF ($EF = %11101111)
STA $DO11 t

Bit 4
In diesem Zustand arbeiten manche Kopierprogramme um
zirka 15% schneller. Programme, die nicht auf externe Geréte
wie die Floppy zugreifen, laufen zirka 5% schneller ab.
Bildschirm wieder einschalten:
LDA $DO1M1
ORA #%$10 ($10 = %00010000)
STA $DO11 t
Bit 4
Dies ist der Normalzustand.

Beschleunigungsmethode 4:

Trick: Bildschirm abschalten

Nebenwirkungen: Der Bildschirminhalt ist nicht zu
sehen, geht aber auch nicht verloren.

c) Hinweise zum bisher Gesagten

Alle bis zu dieser Stelle genannten Tricks beziehen sich auf
die Beschleunigung von Programmen. Sie lassen sich leicht
nachtréglich einfigen, weil am Programmalgorithmus keine
Anderungen erforderlich sind.

Sie kénnen das Abschalten des Bildschirms mit dem
Abschalten oder Einschriénken des Interrupts verknipfen,
um die Geschwindigkeit noch weiter zu erhdhen. Wenn Sie
den Interrupt ganz abschalten (SEl), bringt es keinen zusétzli-
chen Gewinn, ihn einzuschrénken oder die Zahl der Aufrufe
zu &ndern.

Beachten Sie bitte, daB alle beschriebenen Tricks durch
RUN/STOP-RESTORE, einem Reset oder den Assemblerbe-
fehl BRK riickgangig gemacht werden.

2. Systembeschleunigungen in Basic

Hier erfahren Sie, wie sich die Systembeschleunigungen von
Basic aus verwerten lassen. Die Nebenwirkungen bleiben
allerdings diegleichen, wie unter 1. genannt.
a) Interrupt einschrinken
POKE 788,52 verkiirzt die Interrupt-Routine um das Abfra-
gen der RUN/STOP-Taste und das Stellen von TI$.
POKE 788,49 Normalzustand
In Basic ist das Ausfallen von RUN/STOP und TI$ wesent-
lich stérender als in Maschinensprache. Uberpriifen Sie
daher Ihre Programme auf Verwendung von TI$ und fiigen Sie
den POKE erstnach (!) der Fertigstellung des Programms ein.
b) Interrupt abschalten
POKE 56334,PEEK (56334) AND 254
schaltet den Interrupt ab,
POKE 56334,PEEK (56334) OR 1
schaltet ihn wieder ein. Dies geschieht dadurch, daB der
Timer ab- beziehungsweise wieder eingeschaltet wird.
c) Anzahl der Interrupt-Aufrufe dndern
POKE 56325,0: Extrem viele Interruptaufrufe
POKE 56325,255: Extrem wenige (daraus folgt:
Interrupt langsam, Basic-Programm schnell)
d) Bildschirm abschalten
POKE 53265,PEEK(53265) AND 239

TR

schaltet den Bildschirm ab.
POKE 53265,PEEK(53265) OR 16
schaltet ihn wieder ein.

An dieser Stelle sei noch einmal auf Punkt 1c hingewiesen,
damit keine (vermeidbaren) Probleme auftreten.

Anhandvon Listing 1 wollen wir uns nun mitder Anwendung
der Systembeschleunigungen befassen. Dieses kleine Bei-
spielprogramm, an dem Sie nach Herzenslust experimentie-
ren kénnen, versucht, mit Hilfe von TI$ die Arbeitsdauer der
Schleife (Zeile 150) zu messen.

Wahrend des Ablaufs dieser Schleife, die kontinuierlich die
Rahmenfarbe &ndert, sollten Sie keine Taste driicken, um die
MeBwerte nicht zu verfélschen.

Wenn Sie dies beachten, erhalten Sie folgende Werte:
1. Normalzustand: 000003
2. Verkurzter Interrupt: 000000
An der gemessenen Zeit kdnnen Sie erkennen, daB TI$
abgeschaltet wurde.
3. Haufige Interrupts: 000010
Aufgrund vieler Interrupt-Anforderungen wurde die Uhr
TI$ sehr oft erhoht.
4. Seltene Interrupts: 000001
Da die IRQ-Routine nur selten durchlaufen wurde, ist TI$
kaum weitergezahlt worden.
5. Bildschirm abgeschaltet: 000002
Nur bei diesem Punkt (und nattrlich auch bei »1«) hat TI$ volle
Aussagekraft bezlglich der Ablaufzeit. An dieser Zeit kbnnen
wir erkennen, daB durch das Abschalten des Bildschirms tat-
sédchlich gegenuber »1« ein Zeitgewinn anfallt.

Bei den Punkten »3«und »4«wurde der Cursor eingeschal-
tet. Bei »3« (hdufige Interrupts) ist er sehr schnell, bei »4«
dagegen sehr langsam.

An Punkt »5« kdnnen Sie erkennen, daB bei abgeschalte-
tem Bildschirm der Hintergrund immer die Rahmenfarbe
($D020) annimmt, ohne daB wir die entsprechende Farbe ins
Register $D021 »POKEN«.

98 GOTO 200 <026>
10@ REM > UP — SCHLEIFE << <138>
110 : <86
12@ PRINT" <TASTE>";:WAIT 198,1:POKE 198,0@

:FOR I=1 TO 7:PRINT CHR$(20);:NEXT <2213
138 : £106>
140 FOR I=1 TO 1@@:NEXT <122>
150 TIi+="000000":FOR I = @ TO 255:POKE 532

88,1 AND 1S:NEXT:PRINT TI$:RETURN <205

160 : <136>
17@ REM >> UFP — CURSORBLINKEN AUS << <206>
180 : <1356>
198 POKE 207,0:FOKE 204,1:PRINT" ":RETURN <1B86>
200 REM €222>
21®@ REM ——- HAUFTPROGRAMM —— <@45>
220 REM <242%
230 : <206

242 FRINT CHR$(147)"DEMO FUER SYSTEMBESCHL
EUNIGUNGEN (BASIC)";
25@ PRINT™

<@61>

268 PRINT" {2DOWN}1) NORMALZUSTAND"; : GOSUB

1080 <033
27@ : <248>
280 PRINT" {DOWN}2) VERKUERZTER INTERRUPT";

:POKE 788,52:6G0SUB 10@:POKE 788,49 <@84>
290 : <0123
3@@ PRINT" {DOWN}3) HAEUFIGE INTERRUPTS";:P
OKE 56325,20:POKE 204,0:60SUB 10@:G0SsU
B 170

<127

<@18>
3 : <@32>
I2@ PRINT"4) SELTENE{2SPACEINTERRUPTS";:FP

OKE 56325,150:POKE 204,0: GOSUBR 100: GOS

UB 170 <113>
33@ SYS 44931:REM NORMALZUSTAND EIN 253>
340 : <@62>
75@ PRINT"S) BILDSCHIRM ABGESCHALTET ";:PO

KE S3265,FEEK(S3265) AND 239:G0SUB 14@ <1@7>
360 POKE S53265,PEEK(53265) OR 16:FRINT"{DO

WN2}*x ENDE %% <@b6>
8 64 er

Listing 1. Systembeschleunigungen in Basic

75

Kurs

C 64

3. Optimierung der Bildschirmausgabe

Ohne die Bildschirmausgabe kommt kein Programm aus, aber
oft kostet sie unnétig viel Rechenzeit. Der Grund ist hier nicht
beim Betriebssystem zu suchen, sondern bei umstandlicher
Programmierung. Diese wiederum ist auf mangelndes Know-
how zurtickzufihren, welches wir nun &ndern wollen.

Inder Regel wird zur Ausgabe eines Zeichens diesesinden
Akku geladen und die Routine BASOUT ($FFD2) aufgerufen.
Veranschaulichen wir uns einmal die Arbeitsweise von
BASOUT: Das Betriebssystem prift beijedem Zeichen, ob es
sich um einen Buchstaben oder ein Steuerzeichen, zum Bei-
spiel »Bildschirm l6schen« handelt. Buchstaben werden in
den Bildschirmcode umgewandelt und ins Bildschirm-RAM
ab $0400 geschrieben.

Fur Steuerzeichen existieren jeweils Unterroutinen die zum
Beispiel eine Leerzeile einfigen, den Bildschirm Iéschen
oder ahnliches.)

Diese aufwendige Uberprifung verlangsamt die Bild-
schirmausgabe erheblich. BASOUT I&aBt sich zwar gering-
fligig beschleunigen, indem man statt bei $FFD2 (Kernelein-
sprung) bei $E7 16 einsteigt, aber es geht noch schneller:

a) Bildschirm I6schen
Langsam:
LDA #$93 $93 = 147 = Code fiir »Bildschirm
I6scheng, entspricht PRINT CHR$(147)
JSR $FFD2 (oder $E176)

Schnell:

JSR $E544 (Routine fur »Bildschirm I6schenc)
b) Cursor in Home-Position (linke obere Ecke)
Langsam:

LDA #$13; $13 = Code fir »Cursor Home«

JSR $FFD2 (oder $E176)

Schnell:
JSR $E566 (Routine fir »Cursor Homex)
c) Cursor-Positionierung
Langsam:
Senden von Steuerzeichen (CRSR DOWN, UP und so weiter)
Uber BASOUT.
Schnell:
LDX # Zeile
LDY #Spalte
JSR $E50C (Cursorposition setzen)

d) Textausgabe

Unkomfortable Lésung:

Senden von Zeichen (Buchstaben, Grafikzeichen) Uber
BASOUT.

Eine solche Schleife finden Sie in Listing 2, Zeilen 148 -
220und 320 - 330. Nach dem Start durch »SYS 49152« gibt
Listing 2 zweimal hintereinander den Text »DAS IST DER
TEXT« aus. Das erste Mal wird der Text Uber eine BASOUT-
Schleife gedriickt, beim zweiten Mal nimmt das Programm die
Komfortable Lésung:

Ab der Adresse >TEXT« muB der Text (in ASCII-Darstellung)
stehen, in dem keine Anflihrungszeichen vorkommen dirfen.
Am Ende des Textes muB $00 als Endmarkierung zu finden
sein. Die Ausgabe erfolgt dann Gber

LDA # <(TEXT) Low-Byte der Adresse
LDY # >(TEXT) High-Byte
JSR $AB1E

Die Routine $AB1E wird fortan als »STROUT« (STRing-
OUTput = String-Ausgabe) bezeichnet. STROUT ist zwar
etwas langsamer als BASOUT; dafir erlaubt die komfortable
Parameteribergabe eine wesentlich bequemere Program-
mierung, wie Sie am zweiten Teil von Listing 2 (Zeilen 260 -
300, 320 - 330) sehen kénnen. Mit nur drei Befehlen wird
der Text ausgegeben!

Beschleunigungsmethode 5.
Zusammenfassung der bisherigen Alternativen
zu BASOUT:

CLEAR HOME: JSR $E544
CURSOR HOME: JSR $E566
Cursorpositionierung: LDX # Zeile

LDY # Spalte

JSR $E50C
Textausgabe: Text ab TEXT ablegen

(wie Listing 2, Zeile 320 - 330)
LDA # < (TEXT)
LDY # >(TEXT)
JSR $AB1E
Alle diese Verfahren sind nicht nur schnell, sondern auch
speicherplatzsparend.

Eine Anwendung von (fast) allen Routinen aus der
Beschleunigungsmethode 5 zeigt Listing 3.

120 -.LI 1,3,8
118 -3

128 —; TEXTAUSGABE (UEBER BASOUT)
138 —;

148 -.BA $CO@@ ; START: SYS 49152
150 —;

168 -.BL BASOUT = $FFD2

170 —;

188 - LDX #@

198 -SCHLEIFE
200
210
220
230
240
25@
260
27a
280
29a
00
31@ -
328 -TEXT

IZ@ -.BY @ ;

LDA TEXT,X
INX

JSR BASOUT
BNE SCHLEIFE

5 ZEICHEN LESEN

3 UND AUSGEBEN
s SCHON ENDMARKIERUNG?

TEXTAUSGABE (UEBER STROUT)
H

.GL STROUT = $AB1E
LDA #<(TEXT)

LDY #>(TEXT)
JMP STROUT

3 LOW-BYTE IN AKKU
5 HIGH-BYTE IN Y
s TEXTAUSGABE UND ENDE

.TX "DAS IST DER TEXT!'!"
ENDMARKIERUNG DES TEXTES

Listing 2. Die unkomfortable Losung,
einen Text auszugeben

SEARCHING FOR $%

108
11@
120
132
140
152

.LI 1,3,8
; TEXTAUSGABE (UEBER STROUT)

H
-BA $CAB@ ; START: SYS 49152

H
160 .6GL STROUT $AB1E

17@ -.6L CURSOR = $ES@C

188 -.GL CLRSCR = $ES44 ; BILDSCHIRM LOESCHEN
198 —;

2080 -.GL ZEILE = 12

21@ -.GL SPALTE = 1@

2280 -

238 - JSR CLRSCR 3 = PRINT CHR$(147)
248 - LDX #ZEILE ; ZEILE IN X

258 - LDY #SPALTE ; SPALTE IN Y

260 - JSR CURSOR ; CURSOR SETZEN
278 - LDA #<(TEXT) 3 LOW-BYTE IN AKKU
288 - LDY #>(TEXT) 3 HIGH-BYTE IN Y
290 - JMP STROUT ;s TEXTAUSGABE & ENDE
300 —;

310 -TEXT .TX "DAS IST DER TEXT!"

328 -.BY @ ; ENDMARKIERUNG FUER STROUT

Listing 3. Die komfortable Losung
einen Text auszugeben

76

C64

Kurs

Der Bildschirm wird geléscht und in Zeile 12 ab Spalte 10
ein Text ausgegeben. Auch in diesem Programm sollten Sie
zur Ubung etwas experimentieren!

e) Kopieren des Textes in den Bildschirmspeicher

Dies ist die schnellste Methode: Der Text wird in den Bild-
schirmspeicher kopiert. Die lange Umwandlung entféllt véllig,
da der Text als fertiger Bildschirmcode im Speicher abgelegt
wird. Wenn einige Kopfzeilen (zum Beispiel mit Copyright-
Vermerken) an verschiedenen Stellen ausgegeben werden
sollen, ist es ratsam, ein kleines Unterprogramm zu erstellen.
Dieses schreibt dann die Kopfzeilen direkt in den Bildschirm-
speicher, ohne die aktuelle Cursor-Position zu beeinflussen.

Eines missen Sie aber unbedingt beachten: Die Farbge-
bung ist nur durch Andern des Farb-RAMs mdglich.

Eine Tabelle der Bildschirmcodes finden Sie tbrigens im
Anhang des C 64-Handbuchs und am SchluB dieser Aus-
gabe.

Beschaftigen wir uns nun mit Listing 4:

Dieses Programm entspricht in der Wirkung Listing 3, gibt
den Text jedoch nicht Uber die Betriebssystem-Routinen
CURSOR und STROUT aus, sondern schreibt ihn direkt in
den Bildschirm.

In den Zeilen 310 - 320 steht der Bildschirmcode des
Textes.

Zuriuck zur Routine STROUT: Diese Routine arbeitet, da sie
sich auf die BASOUT-Routine stutzt, auch mit Peripheriegera-
ten wie Floppy und Drucker, wenn diese tiber dem CMD-
Befehl als Ausgabegerate definiert wurden. In »Assembler ist
keine Alchimie« wurde gezeigt, wie man mit der BASOUT-
Routine die Drucker-Ausgabe betreibt. Dort wurden alle wich-
tigen Routinen bis ins Detail beschrieben.

Listing 5 gibt einen Text zuerst auf dem Drucker und dann
auf dem Bildschirm aus. Daran soll auBer dem Druckerbetrieb
auch gezeigt werden, wie man die Parameteriibergabe an
STROUT als Makro (Zeilen 230 - 270) definiert und sich
somit einen bequemen Ausgabe-Befehl schafft.

4. Unterprogramme
L]

Ohne die Unterprogramm-Befehle JSR und RTS kommt fast
kein Maschinenprogramm aus. Es ist allerdings ziemlich
unbekannt, daB beide Befehle das Programm stark verlangsa-
men. Grund genug fur uns, JSR und RTS ndher zu betrachten:

Trifft der Prozessor auf JSR, schiebt er den aktuellen Pro-
grammzéhler plus 2 (= Rucksprungadresse - 1) auf den
Stack und springt dann zu der Adresse, die hinter JSR steht.
Triffter auf RTS, holt er die Adresse vom Stapel zurtiick, erhéht
sie um 1 und verwendet sie wieder als Programmzahler.

Bemerkenswert ist, daB die Zugriffe auf den Stapel sich in
keiner Weise von den Zugriffen Uber die Befehle PHA und
PLA unterscheiden. Daher muB3 jedesmal der Stapelzeiger
neu errechnet werden. Diese vielen Operationen sind schuld
daran, daB JSR und RTS so langsam sind.

Da wir das Problem erkannt haben, kénnen wir damit begin-
nen, unser Wissen anzuwenden.

a) Unterprogrammverschachtelung

Stellen wir uns folgendes Beispiel vor: ein Hauptprogramm
ruft das Unterprogramm 1 auf. Dieses ruft an seinem Ende
das Unterprogramm 2 auf, um dann mit RTS ins Hauptpro-
gramm zurickzukehren.

Alles ziemlich schwierig, oder?

Deshalb gehen wir mit Hilfe einer Grafik vor: In Bild 1 sehen
Sie ein FluBdiagramm nach obigem Aufbau. In der Beschrif-
tung soll »Code« nicht »Kennwort« bedeuten, sondern heiBt
einfach »Befehisnummer«.

Wie an den Pfeilen zu erkennen ist, werden zwei RTS-
Befehle hintereinander abgearbeitet (von Unterprogramm 2
nach Unterprogramm 1 und von dort zum Hauptprogramm).

100 -.LI 1,3,0
110 -3

’
128 —-; TEXT IN VIDED-RAM SCHREIBEN
138 —;
148 -.BA $CO@@ ; START: SYS 49152
15@ -3 .
188 -.BL CLRSCR = $ES544 ; BILDSCHIRM LOESCHEN
190 —;

200 -.GL ZEILE = 12
218 -.GL SPALTE = 1@
228 -—;

23@ -.GL VIDEORAM = 1024 ; BILDSCHIRMSPEICHER
240 -.GL ADRESSE = VIDEORAM + (4@#ZEILE) + SPALTE

258 -3

255 - JSR CLRSCR 3 = PRINT CHR$(147)
268 - LDX #@

278 -SCHLEIFE LDA TEXT,X 3 BILDSCHIRMCODE LESEN
280 - BEQ ENDE 5 =@, DANN ENDE

290 - STA ADRESSE,X 3 IN BILDSCHIRMSPEICHER
295 - INX

296 - JMP SCHLEIFE ; NAECHSTES ZEICHEN
300 -ENDE RTS

305 —;

318 -TEXT .BY 4,1,19," *,9,19,2@8," "

311 -.BY 4,5,18," ",20,5,24,20,"!"

320 -.BY @ ; ENDMARKIERUNG DES TEXTES

Listing 4. Die schnellste Losung, einen Text auszugeben

120 -.LI 1,3,
110 -3
1280 —; DRUCKER-AUSGABE MIT
13@ —; DER STROUT-ROUTINE
148 -3

1S5@ -.GL STROUT $AB1E

16@ -.GL SETNAM = $FFBD ; DIE BEDEUTUNG
178 -—-.GL SETLFS = $FFBA ; DIESER ROUTINEN
188 -.GL OPEN = $FFC@ ; ENTNEHMEN SIE
190 -.6GL CHKOUT = $FFC9 ; BITTE DEM KURS
20@ -.GL CLRCHN = $FFCC ; "ASSEMBLER IST
210 -.GL CLOSE = $FFC3 ; KEINE ALCHIMIE"

220 -
23@ -.MA PRINT (ADRESSE)

240 - LDA #< (ADRESSE)
258 - LDY #>(ADRESSE)

268 - JSR STROUT

278 -.RT

280 -3

298 -.BA $CO@@ ; START: SYS 49152

30 -—;

318 - LDA #0 ;3 KEINEN

320 - JSR SETNAM 3 FILENAMEN

338 —;

340 - LDA #4 3 LOG. FILENUMMER =4
350 - TAX s GERAETEADRESSE 4
368 - LDY #0 ;3 SEKUNDAERADRESSE @
37@ - JSR SETLFS ;s PARAMETER SETZEN
3s@ -

398 - JSR OPEN 3 FILE OEFFNEN

400 -—;

418 - LDX #4 s FILENUMMER 4

428 - JSR CHKOUT 3 AUSGABE AUF DRUCKER LENKEN
438 -3

448 —...PRINT (TEXT) ;3 TEXT AUSGEBEN

458 —;

460 - JSR CLRCHN 3 WIEDER BILDSCHIRMAUSGABE
478 -3

480 -.-PRINT (TEXT) ;3 JETZT AUF BILDSCHIRM

490 H

500
s1@
520
530 -
548 -TEXT .TX "DIESER TEXT WIRD AUF"
55@ -.TX " DEN DRUCKER AUSGEGEBEN '"

568 -.BY 13,13,13,8 ; 3 * CAR.RETURN

LDA #4 5 LOG. FILENUMMER 4
JMP CLOSE 3 FILE SCHLIESSEN
;5 & PROGRAMM BEENDEN

[

Listing 5. So gibt man Text auf dem Drucker aus

Glauptprogramm) (Unterprogramm 1) Unterprogramm a
| | [

Code von Unter-

Code des Haupt- Code von Unter-

programms programm 1 programm 2

] I I
Unter- Unter- RTS
programm 1 programm 2
]
Rest des Haupt-
programms RTS
Bild 1. Der Algorithmus zur Ver-

schachtelung von Unterprogrammen

Kurs

C 64

Dies ist immer ein Indiz dafir, daB das Programm noch opti-
miert werden kann.

Eine »Ubersetzung« von Bild 1 in Assembiler ist Listing 6:
Wenn Sie dieses liber »SYS 49152« starten, ist aus den aus-
gegebenen Texten ersichtlich, welcher Programmteil wann
abgearbeitet wird.

Sobald Sie die Struktur von Bild 1 beziehungsweise Listing
6 verstanden haben, kdnnen wir uns mit der optimierten Form
befassen, die in Bild 2 beziehungsweise Listing 7 zu finden
ist.

Hier wird das ehemalige Unterprogramm 2 ans Ende von
Unterprogramm 1 gehangt (wobei es ebenfalls Gber JMP
UP2 angesprungen werden konnte). Auf diese Weise muB es
nicht tber JSR aufgerufen werden, was auch einen RTS-
Befehl tberflissig macht.

Trotz dieser Anderung kann das Unterprogramm 2 auch
weiterhin als Unterprogramm aufgerufen werden, da bei JSR
UP2 die CPU auf einen RTS-Befehl trifft (Bild 2).

In Listing 7 muB noch der JMP-Befehl in Zeile 480 erlautert
werden:

Dort muB nicht JSR STROUT:RTS stehen, weil am Ende der
STROUT-Routine im ROM ohnehin ein RTS steht. Deshalb
benétigt unser Programm keinen eigenen RTS-Befehl zur
Ruckkehr ins Hauptprogramm.

Die folgende Regel gilt fur Aufrufe von Betriebssystem-
routinen:

(Hauptprogramm ’ CUnterprogramm 1)
1]

Code des Haupt-
" programms

Code von Unter-
programm 1

1 ———-

Code des friheren
“ Unterprogramm 1 Unterprogramms 2

I |

restlicher Code | RTS
des Hauptprogramms
zeln aufgerufen wer-

den soll (also: ohne

Bild 2. Der optimierte Algorithmus |das der Code von
zur Verschachtelung Unten;[%g{amrg 1
von Unterprogrammen ausgefurt wird)

Einsprungpunkt, wenn
Unterprogramm 2 ein-

I e e e —_—— =~

JSR
RTS

$XXXX entspricht JMP $XXXX

Voraussetzung ist, daB im Unterprogramm ab $XXXX keine
Stapelmanipulation erfolgt, wie sie gleich beschrieben wird.
Das geschilderte Verfahren zur Unterprogrammverschachte-

188 -.LI 1,3,0

118 -.BA $COBO ; START: SYS 49152

128 -3

173@ -3 UNTERPROGRAMMVERSCHACHTELUNG

14@ -3 (OPTIMIERTE ASSEMBLERVERSION)

15@ -3

168 -.6GL STROUT = $ABIE

170 -3

18@ -—-.MA PRINT (ADRESSE)

198 - LDA #< (ADRESSE)

200 - LDY #>(ADRESSE)

210 - JSR STROUT

228 -.RT

230 -3

248 -3 ——————mm—— e HAUPTPROGRAMM

25@ -3

260 —...PRINT (TEXT1)

270 —;

288 - JSR UP1

290 - + AUFRUF VON UNTERPROGRAMM 1

3ea -3

I1@ -—...PRINT (TEXT2)

320 —;

358 - JMP $A474 3 WARMSTART

340 —;

IS0 -3

360 -3 e UNTERPROGRAMM 1

78 -3

8@ -—-UPt NOP ;s BELIEBIGER CODE
390 -—...PRINT (TEXT3)

420 -3

410 -3

428 —;

4780 —; ——————————————— CODE VON UNTERPROGRAMM 2
440 -3

450 -UP2 NOP ; BELIEBIGER CODE
4468 - LDA #<(TEXT4) 3 LOW-BYTE

47@ -~ LDY #>(TEXT4) 3 HIGH-BYTE

488 - JMFP STROUT 3 TEXTAUSGABE

49@ —; UND RUECKSPRUNG VOM UNTERPROGRAMM,

S@0@ -3 WEIL AM ENDE DER STROUT—ROUTINE

518 -—-; EIN RTS-BEFEHL STEHT.

10000

102183

1@028—-; ——————————————— TEXTE

100303

10042-TEXT1 .TX "HIER IST DAS HAUPTPROGRAMM. "
1005@0-.BY 13,13 3 1 LEERZEILE

1006@-.BY @ ; ENDMARKIERUNG

1007083

10@880-TEXT2 .TX "HIER IST WIEDER DAS HAUPTPROGRAMM. "
18090-.BY 13,13,0

10100-;

1011@0-TEXT3 .TX "HIER IST DAS UNTERPROGRAMM 1."
18120-.BY 13,13,0

10130—;

10140-TEXT4 .TX "HIER IST DAS UNTERPROGRAMM 2."
iP1Se-.ByY 13,13,0

Listing 6. Die umstandliche Methode,
Unterroutinen aufzurufen

128 -.LI 1,3,@

118 -.BA $COO@ ; START: SYS 49152

128 —;

13@ -; UNTERPROGRAMMVERSCHACHTELUNG IN ASSEMBLER
140 -3

15@ -.6L STROUT = $AB1E

168 -3

170 -.MA PRINT (ADRESSE)

i8@ - LDA #< (ADRESSE)

190 - LDY #>(ADRESSE)

200 - JSR STROUT

21@ -.RT

220 -3

238 -3 ——————————————— HAUPTPROGRAMM

240 -3

25@ -—...PRINT (TEXT1)

268 —;

270 - JSR UP1

280 -3 T AUFRUF VON UNTERPROGRAMM 1
298 -3

300 -—...PRINT (TEXT2)

318 -3

328 - JMP $A474 3 WARMSTART

338 -3

348 -—;

3/ -3 ——————————————— UNTERPROGRAMM 1

360 -3

365 -UP1 NOP s BELIEBIGER CODE
370 —...PRINT (TEXTX)

380 -3

390 - JSR UP2

40 -3 + AUFRUF VON UNTERPROGRAMM 2
4106 -3

420 - RTS ;s UP1 VERLASSEN
438 —;

440 —;

458 ~; - ————m——————— UNTERPROGRAMM 2

468 -3

465 -—-UP2 NOF ;3 BELIEBIGER CODE
47@ —...PRINT (TEXT4)

480 —;

498 - RTS 3 UP2 VERLASSEN
See —;

100003

10010-; ——————————————— TEXTE

10020-;

10030-TEXT1 .TX "HIER IST DAS HAUPTPROGRAMM."

10040-.BY 13,13 ; 1 LEERZEILE

100S0—.BY @ ; ENDMARKIERUNG

10060—;

1087@-TEXT2 .TX "HIER IST WIEDER DAS HAUPTPROGRAMM."
10080-.BY 13,13,@

100903

10108-TEXT3 .TX "HIER IST DAS UNTERPROGRAMM 1."
10118-.BY 13,13,0

18120-;

18138-TEXT4 .TX "HIER IST DAS UNTERPROGRAMM 2."
10140-.BY 13,13,0

Listing 7. Die optimierte Methode,
Unterroutinen aufzurufen

78

c64 Kurs
lung und die entsprechenden Regeln kénnen Sie dann auf
jede (!) Programmiersprache tibertragen.
b) Stapelmanipulation QSR ($0014) simulieren)
Wenn Sie »Exbasic Level ll« kennen, wissen Sie sicher den
Befehl »DISPOSE RETURN« zu schatzen. Er dient dazu, ein .
Unterprogramm ohne RETURN abzuschlieBen. Dadurch LDA# > (Ricksprungadresse-1) | ¢ High-Byte 'ggé gemn _
kann dieses zum Beispiel iber GOTO verlassen werden. PHA adrasea "9
In Assembiler ist dies auch méglich. Die Befehlseingabe 'l;m# <(Rtcksprungadresse-1) auf dem
PLA Low-Byte | Stapel ab
PLA
entspricht in der Wirkung »DISPOSE RETURN«. I indirekter Sorun
Da die Rucksprungadresse auf den Stapel abgelegt wird JMP ($0014) g (im Boispiel nach
und dort 2 Byte in Anspruch nimmt, kann sie GUber PLA:PLA : $C000)

wieder vom Stapel geholt werden. Ein Unterprogramm ist
nach PLA:PLA eigentlich kein Unterprogramm mehr, sondern
Bestandteil des aufrufenden Programms. PLA:PLA findet vor
allem in der Fehlerbehandlung Anwendung. An einem spéte-
ren Listing werden wir dies noch sehen. Nach PLA:PLA kann
ein Unterprogramm Uber JMP verlassen werden. Dies
machen wir uns zunutze, um den Riicksprung an eine belie-
bige Adresse zu simulieren. Dies ist sonst nicht moglich, da
bei RTS immer hinter den Befehl gesprungen wird, der das
Unterprogramm aufgerufen hat.

Ein RTS an eine beliebige Adresse miiBte »RTS XXXX« hei-
Ben, doch diesen Befehl gibt es beim 6510 nicht. So wird er
aber simuliert:

PLA ; holt Ricksprungadresse
PLA ; vom Stapel und
JMP $XXXX ; springt nach $XXXX

So sieht ein Makro dazu aus:

-MA RTS(RUECKSPRUNGADRESSE)
- PLA

- PLA

- JMP RUECKSPRUNGADRESSE
-RT

Und noch ein Mangel der Unterprogrammbefehle soll
beseitigt werden: Obwohl es JMP (indirekt) gibt, kennt der
6510 keinen Befehl wie JSR (indirekt); (iber Stapelmanipula-
tion ist dies dennoch moglich (siehe dazu auch im 64%r, Aus-
gabe 1/86: Assembler-Bedienung leicht gemacht).

Nehmen wir an, im Vektor $14/$15 steht die Adresse
$C000. Nun soll uber den $14/$15-Vektor ein Unterpro-
gramm aufgerufen werden (also das ab $C000). Bild 3 zeigt,
was im einzelnen geschehen muB.

Die Rucksprungadresse steht zwar in Bild 3 direkt hinter
dem JMP ($0014)-Befehl, kann aber auch anderswo im Pro-
gramm stehen.

Folgendes Makro ermdglicht die Simulation von JSR
(indirekt):

- MA JSRIND (VEKTOR, RUECKSPRUNGADRESSE)
- LDA # >(RUECKSPRUNGADRESSE-1)

- PHA

- LDA # <(RUECKSPRUNGADRESSE-1)

- PHA

- JMP (VEKTOR)

- RT

Diese Simulation von JSR ($XXXX) verwendet auch der
SYS-Befehl (disassemblieren Sie von $E12A bis $E155 und
betrachten Sie dazu Bild 3).

Zuerst holt er die Zahl nach SYS in die Adressen $14/$15,
dann legt er die Rucksprungadresse ($E147) -1 auf dem
Stack ab. Nun holt er die Register P, A, X, Y aus den Adressen
$030F, $030C, $030D, $030E. Es folgt ein indirekter
Sprung tber $0014/$0015.

Nach dem Ricksprung werden die Register wieder im
Speicher dort abgelegt, woher sie genommen wurden und
ein Sprung ins Basic wird durchgefiihrt.

Spéter werden wir noch eine weitere Méglichkeit fir JSR

> Ricksprung-
adresse

—»-| (unmittelbar
hinter 1)

(weiteres Programm)

(Programm ab $C000)

|

beliebiger
Unterprogrammcode
"—(RTS)— = — holt die Rucksprung-
adresse vom Stapel und

verzweigt dorthin

Bild 3. Der Algorithmus, um einen JSR (indirekt)-
Befehl zu simulieren

(ind) kennenlernen, die aber nicht auf Stapelmanipulation
beruht.
c) Vergleich zwischen Unterprogramm und Makro
beziiglich Geschwindigkeit

Wenn Sie den Hypra-Ass (oder einen anderen Makro-
Assembler) besitzen, haben Sie die Méglichkeit, Befehlsfol-
gen als Makros zu definieren. Makros sind deswegen so
beliebt, weil sie den gréBten Vorteil von Unterprogrammen
bieten, namlich Ubersichtlichkeit. Da Makros aber wie »nor-
male« Befehle im Speicher stehen, entfillt der Aufruf tber
JSR und RTS. Dies ist der Grund, weshalb Makros etwas
schneller (wenige Taktzyklen) als Unterprogramme sind. Das
Problem, wann Makros und wann Unterprogramme vorteilhaft
sind, wird spéater noch aufgegriffen.

5. Tabelllen
L

Im allgemeinen Sprachgebrauch werden Tabellen als »geord-
nete Zusammenstellungen von Daten« verstanden. Diese
Funktion haben sie auch in Computerprogrammen, wo man
sie daran erkennt, daB Tabellen keinen Befehlscharakter
haben.

SMON-Benutzer kdnnen mit »F T« ein Programm nach Tabel-
len durchsuchen lassen; dann sucht SMON im Programm
nach Bytes, die nicht zu Maschinensprachebefehlen ge-
héren.

Wozu werden nun Tabellen verwendet?

In der Regel dienen Tabellen einem Computerprogramm als
»elektronischer Rechenschieber«. So wie das Kopfrechnen
durch einen Rechenschieber ersetzt werden kann, weil man
nur in einer geordneten Zusammenstellung von Ergebnissen
das richtige suchen muB, kann ein Programm aus seinen
Tabellen denselben Nutzen ziehen: die Berechnungen entfal-
len, die Programmierung wird einfacher.

79

Kurs

C 64

Aus den weniger erforderlichen Berechnungen entsteht
ein deutlicher Geschwindigkeitszuwachs, der Hauptvorteil
von Tabellen. Wie man Tabellen einsetzt, erfahren Sie im
folgenden.

a) Tabellen aus Rechenergebnissen

Noch einmal zum Rechenschieber. Es geht beim Kopfrech-
nen viel schneller, 4x10 auszurechnen als 4X7. Bei einem
Rechenschieber besteht kaum ein Unterschied in der
»Rechenzeit«. :

Dementsprechend existiert fast kein Algorithmus, dessen
Ausfihrungszeit bei unterschiedlichen Parametern immer
gleich bliebe. Wer den Artikel »Dem Klang auf der Spur (5)«
(64’er, Ausgabe 5/85, Seite 152 ff.) gelesen hat, weiB, welch
grobe Differenzen bei Multiplikationen auftreten kénnen.

Ersetzt (beziehungsweise unterstitzt) man einen Algorith-
mus durch eine Multiplikationstabelle, fallt eine einheitlichere
(und kirzere) Ausfihrungszeit an. ,

Fiur das Rechnen mit einzelnen Bits in einem Byte werden
oft die Zweierpotenzen benétigt; es empfiehlt sich, diese als
Tabelle anzulegen:

1000 -; Zweierpotenzen als Tabellle

1010 -; im DOS der Floppy 1541 ab $EFE9

1020 -; zufinden

1030 -; ZWEIPOT .BY 210, 211, 212, 213, 214,

215, 216, 217

Folgende Unterroutine legt im Akkumulator den Wert 2tA
ab, wobei mit A der Inhalt des Akkumulators bei Aufruf der
Routine gemeint ist:

10000 -;

10010 -; Subroutine zur Berechnung von

10020 -; 21A (Ergebnis kommtin den Akku)

10030 -;

10040 - TAX; Akku in Indexregister

10050 - LDA ZWEIPOT,X ; aus Tabelle einlesen

10060 - RTS; Das war’s schon! Wer ein
schnelleres und zugleich so einfaches
Verfahren kennt, moge sich melden. ..

10070 - ZWEIPOT

.BY 210,211,212,213,214,215,216,217
Wenn A gréBerals 7 ist, liefert das Programm falsche Werte.
Sie kénnen es noch erweitern, wenn Sie es fir nétig halten.

160 -.LI 1,3,0

118 -.BA $CO@@ ; START: SYS 49152

128 -3

138 —; RECHNUNG MIT FLIESSKOMMAWERTEN

148 -3

150 -.6L MEMFAC = $BBA2

168 —-.6L FACOUT = $AABC

178 -.GL SGRFAC = $BF71

18@ -.GL LOGNAT = $BYEA

198 -

200 -.MA HOLE (ADRESSE) ; MAKRO-DEF.

210 - LDA #< (ADRESSE); HOLT MFLPT-ZAHL
220 LDY #>(ADRESSE); VON ADRESSE IN
230 JSR MEMFAC ; DEN FAC

240
250
268
270
280

3
3

...HOLE (BSPZAHL)

H
290 - JSR FACOUT 3 AUSDRUCKEN
308 -3
31@ -...HOLE (BSPZAHL)
Iz -3
330 - JSR SERFAC s QUADRATWURZEL
340 -3
350 - JSR FACOUT 5 AUSDRUCKEN
360 -3
378 -...HOLE (BSPZAHL)
38 -3
390 - JSR LOGNAT ;5 LOGARITHMUS NATURALIS
400 -—;
418 - JMP FACOUT 3 AUSDRUCKEN
500 -
S51@ —; BEISPIELZAHL 1.23456

520 -3
538 —;
548 -BSPZAHL
S50 —;

IM MFLPT-FORMAT

.BY $81,%1E,$06,$0F ,$ES

Listing 8. FlieBkommazahlen in Assembler verarbeiten

80

b) Tabellen aus FlieBkommawerten

Zu den zeitraubendsten Operationen gehort die Rechnung
mit FlieBkommazahlen. DaB diese selbst in Maschinenpro-
grammen ldhmend wirkt, sehen Sie am HiRes-3-Befehl
»FUNKT« (64er, Ausgabe 3/85, Grafikkurs-Anwendung).
Daher sollte man nur dann auf die FlieBkommaroutinen zugrei-
fen, wenn es unvermeidbar ist. Berechnen Sie soviele Werte
wie moglich voraus, hierfir eignet sich der Direktmodus des
Basic-Interpreters besonders gut! Wie Sie einen auf diese
Weise berechneten Wert ins MFLPT-(Floating Point)Format
umwandein kénnen, zeigt Innen der folgende Kasten.

Verfahren zur Umwandlung einer Zahl ins
MFLPT-Format

1. SMON (oder anderen Monitor) laden

2. RESET auslésen oder NEW eingeben

3. »XX = FlieBkommazahl« eingeben, zum Beispiel
»XX = 1.23456«

4. Monitor starten (SYS 49152)

5. »M 0805 0809« eingeben

Sie sehen nun in den Adressen $0805 - $0809 die
MFLPT-Darstellung der Zahl, mit der Sie die Variable XX
belegt haben.

Damit wir uns unter Zuhilfenahme préaziser Fachausdriicke
und Abkurzungen verstédndigen kénnen, sollten Sie den
Abschnitt in »Assembler ist keine Alchimie« aufmerksam
lesen, der sich mit FlieBkommazahlen befaBt. Nach dem Stu-
dium dieses Abschnitts sollten Ihnen Begriffe wie >MFLPT,
»FAC« oder »ARG« gelaufig sein.

Im Falle der Zahl 1.23456 erhalten wir als Ergebnis:

:080581 1IEO6 OF ES. ..
Diese Werte legen wir folgendermaBen als Tabelle ab:
540 -BSPZAHL .BY $81, $1E, $06, $0OF, $E5

Wie wir nun diese Zahl verarbeiten, zeigt Ilhnen Listing 8.
Das Makro (200 - 240) stitzt sich auf die Interpreter-Routine
MEMFAC, die eine Zahl (Adresse wird in Akku/Y-Register
Ubergeben) vom Speicherformat MFLPT in den FAC als FLPT-
Zahl schreibt und dabei die erforderliche MFLPT-—FLPT-
Umwandlung durchfihrt.

In der Tabelle in Zeile 540 kénnen Sie beliebige FlieBkom-
mawerte (sofern Sie diese wie angegeben berechnet haben)
einsetzen, das Programm rechnet dann mit der jeweiligen
FlieBkommazahl, die ab BSPZAHL im MFLPT-Format steht.

Diese Zahl wird zundchst nur in den FAC geladen und der
FAC wird dann ausgedruckt (270 - 290), dann wird die Zahl
wieder geholt, die Wurzel berechnet und ausgegeben (310 -
350). SchlieBlich wird die Zahl wieder in den FAC geholt, der
natirliche Logarithmus errechnet und auch ausgegeben
(370 - 410).

Zur Routine FACOUT sind, auBer daB sie den Inhalt des FAC
ausgibt, noch zwei Bemerkungen zu machen:

1. Nach der Zahl wird noch ein CARRIAGE RETURN aus-
gegeben.

2. Nach dem Aufruf von FACOUT hat sich der Inhalt des FAC
aufgrund mehrerer Divisionen durch Zehnerpotenzen
verandert.

Auf das Thema »FlieBkommaarithmetik« geht Texteinschub
1 noch naher ein. Dort werden auch weitere Interpreter-
Routinen vorgestelit.

c) Sprungtabelle

Beim Thema »Unterprogramme« wurde lhnen eine
Methode vorgestellt, um JSR (ind) zu simulieren. Diese
erweist sich in Verbindung mit einer Tabelle, in der die Sprung-
adressen gespeichert sind, als sehr nitzlich. So kann bei-
spielsweise eine Parallele zum Basic-Befehl ON..GOSUB

ZIEL1,ZIEL2.... geschaffen werden.

C 64

Kurs

Ein Beispiel: Wenn der Basic-Interpreter auf einen Basic-
Befehl trifft, holt er aus der Tabelle $A00C - $A09D die
Adresse der zugehorigen Routine. Diese springt er dann
durch Stapelmanipulation an.

Der SMON arbeitet genauso: Seine Sprungtabelle liegt im
Bereich $C02B - $CO06B.

Die Anwendung von Sprungtabellen werden wir noch aus-
fuhrlichim folgenden Abschnitt d) sowie bei der Besprechung
von Listing 11 behandeln.

d) Vergleichstabellen ,

Weder der SMON noch der Basic-Interpreter benutzen
zum Suchen der zum jeweiligen Befehl gehérenden Routine
eine Reihe von CMP-Abfragen mit BRANCH-Befehlen. Auch
fur die Vergleichswerte (in diesem Fall die Befehlsworter) gibt
es eine Tabelle: Beim SMON liegt sie im Bereich $C00B -
$CO2A, beim Basic-Interpreter $A09E - $A327.

Sprung- und Vergleichstabellen sind in gleicher Befehls-
folge angeordnet; wird der Befehl an einer bestimmten Stelle
in der Vergleichstabelle gefunden, erfolgt ein Sprung an die
Adresse, die an gleicher Stelle in der Sprungtabelle steht,
So sehen die Befehls- und Vergleichstabellen im SMON aus:

Spalte Nr. 1 2 3 4
Befehl / # $ %
Sprungadr. $ CADB [C920|C908|C91C

Die Sprungadressen sind wegen der Stapelmanipulation in
der Tabelle ab $C02B um 1 dekrementiert gespeichert; in der
Darstellung sehen Sie aber das tatséchliche Sprungziel.

Wir werden jetzt anhand des SMON die Verwendung einer
Vergleichs-Sprungtabelle in Assembler erlautern.

Wenn wir die zum Befehl » # « gehtérende Sprungadresse
finden wollen, gehen wir folgendermaBen vor:

1. Wir suchen in Reihe 2 das #-Zeichen.

2. Wirgehen (in derselben Spalte) eine Reihe nach unten und
finden dort die Sprungadresse ($C92C).

Der Computer hat nicht die Méglichkeit, direkt eine Reihe
weiter unten die Suche fortzusetzen. Er muB einen Umweg
wahlen und sich die Spalte merken. Ein Beispiel:

1. Der SMON sucht unter den Elementen aus Reihe 2 das
»#« In einem Zahler merkt er sich die Spalte, in der der
Befehl gefunden wurde.

2. Nun sucht er in Reihe 3 in der Spalte, die im Zahler steht,
die zugehdrige Sprungadresse.

Wie &hnlich beide Suchvorgénge sind, erkennen Sie daran,
daB jedesmal die Hauptschritte 1. und 2. vorkommen.

Nach so viel Theorie sehen wir uns nun umso ausfihrlicher
die Routine im SMON an, die fur die Steuerung der
Vergleichs-Befehlstabelle verantwortlich ist. Dazu kénnen
Sie »D C303 C323« eingeben.

Bei Adresse $C303 steht im Akku der ASCII-Code des
Kommandos, das der SMON ausfihren soll (zum Beispiel
$40, wenn ein M-Befehl eingegeben wurde).

C303 LDX #%$20 32-1 Befehle miissen durchsucht
werden. Weshalb »-1« erforderlich
ist, liegt an der Schleifenstruktur und

ist unbedeutend.

Akku (enthélt Befehl) mit X-tem Ele-
ment der Befehlistabelle verglei-
chen; $CO0A = Befehlstabelle -1,
weil Adresse $COOA nie zum Ver-
gleich herangezogen wird.

Vergleich positiv; im X-Register steht
jetzt die Spalte.

C305 CMP $CO0A X

C308 BEQ $C30F

C30A DEX

C308 BNE $C305

C30D BEQ $C2D1

C30F JSR $C315

C312 JMP $C2D6

Zahler wird dekrementiert; es han-
delt sich hier um eine »Dekremen-
tierschleife« (dieses Thema wird
noch behandelt).

Wenn der Zahler noch nicht gleich O
ist, folgt ein Sprung zum Schleifen-
beginn.

Wenn X=0, dann wurde die ganze
Tabelle durchsucht, und der Befehl
nicht gefunden! Deshalb wird in
die SMON-Fehlerbehandlung ge-
sprungen.

Diese Stelle wird von $C308 aus
angesprungen; hier wiederum steht
ein Aufruf des Unterprogramms ab
$C315, das etwas weiter unten
besprochen wird.

Nachdem nun der Befehl durch die
Subroutine $C315 abgearbeitet
wurde, folgt ein Sprung zur Eingabe
des néchsten Befehls.

C315 TXA

C316 ASL

C317 TAX

C318 INX

C319 LDA $C029, X

C31C PHA
C31D DEX
C31E LDA $C029,X

C321 PHA
C322 RTS

Das ist sie, die Subroutine! Weil im
X-Register die Nummer des Befehls
(= Spalte in Tabelle) steht, kommt
das X-Register ins Hauptrechen-
register.

Die Befehlsnummer wird mit 2 multi-
pliziert. ..

und kommt wieder ins X-Register.
Die Multiplikation mit 2 ist erforder-
lich, weil in der Sprungtabelle ein
Element doppelt so lang ist, wie in
der Vergleichstabelle, namlich
2 Byte. Die Sprungadressen be-
legen deshalb 2 Byte, weil sie aus
Low- und High-Bytes bestehen.

Das X-Register wird um 1 erhéht, da
das High-Byte eine Position hinter
dem Low-Byte steht.

High-Byte wird gelesen. Die Sprung-
tabelle beginnt zwar 2 Byte nach
$C029, aber weil es keine Spalte 0
gibt, muB der Speicherbedarf einer
Sprungadresse (=2) abgezogen
werden.

Das High-Byte der Adresse wird auf
den Stapel gelegt.

-1, weil Low-Byte eine Adresse vor
High-Byte steht.

Nun wird auch das Low-Byte der
Adresse

auf den Stapel geschoben.

Der Befehl RTS wird hier zur Simula-
tion von JMP (ind) verwendet. Auf
dieses (unpraktische) Verfahren soll
nicht weiter eingegangen werden,
weil der 6510 den Befehl JMP (ind)
kennt. Wichtig ist fur uns nur, daB
jede SMON-Routine mit einem RTS
abgeschlossen wird, dann erfoigt
ein Rucksprung zur Adresse $C312.

81

Kurs

C 64

Damit haben wir SMONs Schleife zum Suchen eines
Befehls und dessen Routine durchleuchtet. Sofern Sie ein
ROM:-Listing zur Verfiigung haben, kénnen Sie sich zusitz-
lich die entsprechenden Stellen im Basic-Interpreter anse-
hen. Dieser aber benétigt wegen seiner unterschiedlich lan-
gen Befehle einen etwas komplizierteren Suchalgorithmus,
was wiederum zu erheblich héherer Ausflhrungszeit bei-
tragt.

6. Vergleiche von Priifsummen
L |

Nunlernen wir einbesonders raffiniertes Vergleichsverfahren
kennen:

Wie gesagt, benétigen Vergleiche mit Woértern, die aus
unterschiedlich vielen Zeichen bestehen, mehr Taktzyklen.
Dies wére nicht so, wenn wir alle Zeichen auf eine einheitliche
Lange bringen wirden. Genau dies tut der Basic-Interpreter:
Bei Eingabe einer Zeile wandelt er alle Basic-Befehlsworter in
Token um. Jedes Token vertritt einen Befehl und kann, da es
nur ein Byte benétigt, schneller erkannt werden, als es bei
mehreren Bytes méglich wére.

Ein Nachteil ist jedoch der Speicherplatzaufwand; fir die
Umwandlung missen die Befehle irgendwo im Speicher in
Langform vorhanden sein.

Es gibt aber noch ein anderes Verfahren, einer Zeichen-
kette einen Wert zuzuweisen: Die Prifsummenberechnung.
Diese fihren zum Beispiel die Eingabehilfen »xChecksummer«
und »MSE« durch: Aus 8 Byte Programmcode und 2 Byte
Adresse errechnet der MSE eine 1 Byte Priifsumme.

In Bild 4 sehen Sie einen sehr zuverladssigen Algorithmus
zur Berechnung von Prifsummen (insofern zuverlassig, als er
sehr unterschiedliche Prifsummen ermittelt). Listing 9 stellt
ein Hilfsprogramm dar, das zu einer Eingabe die Prifsumme
nach dem Algorithmus aus Bild 4 errechnet.

In Listing 9 ist Ihnen eventuell die Routine NUMOUT nicht
bekannt. Daher eine Kurzbeschreibung: NUMOUT gibt eine
positive Integerzahl, dieim Akkumulator (High-Byte) undim X-
Register (Low-Byte) tbergeben wird, aus. NUMOUT wird
zum Beispiel von der LIST-Routine bei der Ausgabe einer
Zeilennummer aufgerufen.

Die Routine BASIN soll ebenfalls erklart werden, da sie in
allen folgenden Programmen verwendet werden wird. Wenn
die Routine BASIN zum ersten Mal aufgerufen wird, erwartet
das Betriebssystem eine Eingabe (normalerweise von Tasta-
tur), die der Eingabe einer Basic-Zeile entspricht. Nach der
Eingabe wird das erste eingegebene Byte in den Akku gela-
den, jeder weitere Aufruf von BASIN holt das nidchste Zeichen
in den Akku. Wurden alle Bytes eingelesen, wird im Akku der
Wert 13 ($0D, RETURN) Ubergeben. Danach fiihrt ein weite-
rer Aufruf von BASIN zu erneuter Eingabe von Tastatur.

Ein groBer Vorteil von Prifsummen ist, daB die Vergleiche
mit nur einem Byte, ndmlich der Prifsumme, durchgefiihrt
werden missen.

Wie man in den GenuB dieses Vorteils kommt, zeigt Listing
10. Wenn Sie den Namen eines Computers (C 64, VC 20, PC
128 oder AMIGA) eingeben, nennt das Programm den in die-
sem Computer installierten Mikroprozessor. Bei der Eingabe
der Computernamen kann man aufgrund der Zeilen 230 und
248 beliebig viele Leerzeichen eingeben. Bei der Errech-
nung der Prufsummen mit Listing 9 durfen allerdings keine
eingegeben werden, da Listing 9 diese nicht Uberliest und
somit ein falsches Ergebnis liefern wirde.

Der Programmteil, der die Prifsumme der Eingabe berech-
net, ist mit Ausnahmen der Zeilen 230/240 aus Listing 9
Ubernommen worden. Nach Zeile 450 wird die ermittelte
Priufsumme mit der Tabelle »PRUFSUMMENc« (Zeile 2060)
verglichen.

Bei sWEITER2« (Zeile 620) steht im X-Register die Spalte,

82

108 -.LI 1,3,0
118 -.BA $C@@@ ; START: SYS 49152
120 -;

138 -.GL BASIN = $FFCF

14@ -.GL NUMOUT = $BDCD

158 -.GL STROUT = $ABIE

160 -3

17@ -ANFANG LDA #<(TEXT1)

18@ - LDY #>(TEXT1)

1?8 - JSR STROUT

208 -;

218 - LDX #@

228 -SCHLEIFE1 JSR BASIN

230 CMP #13 s 13 = RETURN
240 BEQ WEITER

250
260
27@
280 -3

STA STORE, X
INX
JMP SCHLEIFE1

298 -WEITER STX LAENGE

300 - LDA #{(TEXT2)

3186 - LDY #>(TEXT2)

320 - JSR STROUT

330 - LDA #

340 -; @ = AUSGANGSWERT DER PRUEFSUMME

358 - TAX 5 ZAEHLER = @
368 -SCHLEIFEZ ROL 3 PRUEFSUMME * 2

I7@ EOR STORE, X

380 - INX i ZAEHLER ERHOEHEN
398 - CPX LAENGE

400 - BNE SCHLEIFEZ2

410 - cLC

420 - ADC LAENGE ;3 LAENGE ADDIEREN
438 - TAX 3 PRUEFSUMME

440 - LDA #0 3 AUSGEBEN

4508 - JSR NUMOUT

460 -~ JMP ANFANG s NOCH EINMAL

1000 —;

181@ -; TEXTE

1020 —;

1030 -TEXT1 -.BY 13

18408 -.TX * -
185@ -.TX "EINGABE ? "

1268 -.BY @

10708 —;

1288 -TEXT2 -BY 13
1090 -.TX "PRUEFSUMME "
1100 -.BY @

2000 -;
2018 —; ZWISCHENSPEICHER

2028 -3

2030 ~LAENGE .BY @ 3 ZWISCHENSPEICHER
2040 -STORE .BY @

2050 -; T AB STORE WIRD DIE EINGABE ABGELEGT

Listing 9. Die Berechnung von Priifsummen

(Prafsummenberechnung)

I Eingabe und Speichern der Werte]

l Prifsumme = 0 (Ausgangswert) I

Prafsumme um 1 Bit
nach links schieben B

Prifsumme
mit eingegebenem Wert A
exklusiv/oder verknlpfen

schon
alle Werte
?

Lange zu Prifsumme addieren

@rﬁfsumme ist feﬁig berechneD

.

Bild 4. Das FluBdiagramm zur Priifsummenberechnung

Juldp

ce64 Kurs

in der die Prifsumme gefunden wurde. Listing 10 numeriert,
im Gegensatz zum SMON die Spalten mit O (statt mit 1) begin- 100 LI 1,5.8 RT: Svs 49152
nend. AuBerdem wurde die Adressentabelle in »LOWTAB« 120 —; ’)
(Tabelle der Low-Bytes) und »HIGHTAB« (High-Bytes) zerlegt, L e et
was die Programmierung stark erleichtert. 150 —.GL STROUT = $ABIE
Wir wirden zwar Spalten von 1 an numerieren, fir den 158 TINFANG LDA #<(TEXTD
Computerist es aber besser, mit Spalte 8 zu beginnen. Wenn 182 - LDY #>(TEXT1)
im X-Register die Spalte (0: VC 20,1: C 64, 2: PC 128, 200 s ISR STROUT
3: AMIGA) steht, lesen die Zeilen 620/630 aus einer Tabelle 218 - LDX #a
die Adresse, ab der die ASCII-Darstellung des Prozessors zu I e e ; SPACE?
finden ist. Weil jede der Tabellen »LOWTAB« und »HIGHTAB« e prsiireria I o i
gleich viele Elemente wie die Tabelle PRUEFSUMMENc« hat, 260 - BEQ WEITER1
muB keine komplizierte Umwandlung tiber Multiplikation mit A S STORE.X
2 oder dhnliches erfolgen wie beispielsweise beim SMON. e JMP SCHLEIFEL
Auf eine akute Gefahr bei der Verwendung von Prifsum- 310 -WEITER1 STX LAENGE
men soll jetzt hingewiesen werden: die »Uberschneidung von s - LDV #5 (TEXT2)
Prafsummenc: 380 - JSR STROUT
So wie unterschiedliche Basic-Zeilen beim Checksummer 320 _; O = AUSGARBSWERT DER PRUEFSUMME
eine gleiche Priifsumme haben kdnnen, sind Prifsummen nie I cHEIFEZ X R ey 2
eindeutig. 390 - EOR STORE,X
Wenn Sie bei Listing 10 etwas herumprobieren, werden Sie prea N nEngE | CAEHLER ERHOEHEN
sicher feststellen, daB auch eigentlich nicht vorgesehene 420 - BNE SCHLEIFE2
Eingaben Wirkung zeigen. Dies liegt daran, daB diese Einga- ae - FDC LAENGE : LAENGE ADDIEREN
ben die gleiche Prifsumme wie die Taste »VC 20«. »C 64, 452 -3 WIER STEWT DIE PRUEFSUNME INM Ak
»PC 128« oder »AMIGA« haben. Daher sollte man immer dar- 470 - LDX #8
auf achten, daB sich die vorgesehenen Eingaben nicht in 450 CSCHLEIFES CHP PRUEFSUMMEN.X
ihren Prifsummen Uberschneiden (das heiBt, die gleichen see - INX
Prifsummen haben). Wenn man dies aber beachtet, so ist Se R
das Arbeiten mit Prifsummen, vor allem bei kleineren Daten- 538 -; PRUEFSUMME NICHT GEFUNDEN
mengen, eine angenehme Sache. e PLA
e) Beispielprogramm fiir Tabellen e - DA #¢ (TEXTS)
Wenden wir uns jetzt einem etwas gréBeren (aber keines- 580 - LDY #>(TEXT3)
wegs komplizierteren) Programm zu. Es heiBt schlicht und oA Ton aneonG : VON VORNE
einfach »TABELLEN-BEISPIEL«, womit schon einiges Uber Ol T TER2 LDA LOWTAB.X 5 LOW-BYTE
die Funktion ausgesagt ist: ein reines Beispielprogramm, das 630 - LDY HIGHTAB,X : HIGH-BYTE
nichtden Anspruch erhebt, etwa als Anwendersoftware niitz- pr- IhE ANRANG s NOCH EINMAL!
lich zu sein. In Listing 11 finden Sie den kommentierten Quell- seo -
text. 1010 3§ TEXTE
Zuerst soll die Bedienung des Programms erléutert wer- S oy 13
den. Gestartet wird >TABELLEN-BEISPIEL« durch SYS 1048 -.TX " ; "
49152, worauf man sich in folgendem Menu befindet: 1050 DI gromPUTER =
ZAHL IN ZAHLWORT WANDELN (0) e - v is
BILDSCHIRMFARBE (1) T X “PROZESSOR:
RESET AUSLOESEN 2) iios v o
PROGRAMMENDE UEBER RTS (3) 1120 :';rsxrs .TX "WEISS ICH NICHT!'"
BITTE AUSWAEHLEN! 11s@ -.BY @
Die Zahlen in Klammern sehen Sie nicht, diese zeigen nur die 3;3 -
interne Numerierung der Menipunkte an. 1158 CTeyra -TX Tmos esezt
Der jeweils angewahite Menlpunkt (unmittelbar nach dem 1168 —; . .
Start: 0) wird im Gegensatz zu den anderen revers hervor- Thon Cleuly cTX Tmos esie
gehoben. 1218 -5 . .
Der angewahite Menlpunkt kommt durch Dricken von 1230 _T33°§ -TX MOS @Sz w ze0
F1,RETURN, »—« - oder »=«Taste zur Ausfiihrung. Al Ticome .TX "MOTOROLA 68222
Wollen Sie einen anderen Menipunkt anwahlen, driicken 1268 -.BY @
Sie einfach CRSR DOWN,»D«,F5 oder »+«, um den invertier- o8
ten Bereich nach unten zu bewegen. Weiter nach oben gelan- 20102 T3 NUMERISCHE TABELLEN
gen Sie Uber CRSR UP,»U«,F3 oder »-«. 2032 -LOWTAB LBY <(T6502) ,< (T651@) ,< (TB582) ,< (T48200)
Wenn Sie von »3«aus nach unten wollen, geht es wieder bei Zoaa _ TGHTAB -BY >(T6S02),>(TESIM) »>(TE582) , > (T6BR0@)
»0« los; von »0« nach oben fihrt auf Punkt »3«. 2860 -PRUEFSUMMEN .BY 228,83,149,136
Auf Punkt »0« (Ausgangseinstellung) kommen Sie tber oon) FEIHENFOLGE: VCZ0,C64,PL128, AMIGA
HOME,»0« oder Klammeraffe. 3@1@ —; ZWISCHENSPEICHER
Sicher wirden Sie Ihre Programme auch gerne mit einem Sotp _LAEwee .BY @ : ZWISCHENSPEICHER
solch komfortablen Ment aufwerten. Wenn Sie die Beschrei- 308 o't RB STORE WIRD DIE EINGABE ABGELEGT
bung des Quelltextes gut durchlesen, wird dies keine
Schwierigkeiten bereiten.
Nun zu den einzelnen Menipunkten. Listing 10. Eine Anwendung
»2« (Reset auslésen) springt in die RESET-Routine ab der Priifsummenberechnung
$FCE2. »3« (Programmende Uber RTS) bewirkt einen Ruck-
sprung ins Basic. Wenn Sie aber sSTABELLEN-BEISPIEL« vom

baE | 83

Kurs

C 64

Hypra-Ass aus gestartet haben, finden Sie sich im »AUTO-
NUMBER«Modus wieder. Dies ist weder ein Fehler von
»TABELLEN-BEISPIEL« noch von Hypra-Ass, sondern liegt
daran, daB beide Programme eine bestimmte Adresse ver-
wenden, die Hypra-Ass dann als Aufforderung zur automati-
schen Zeilennumerierung wertet. Am besten starten Sie
»TABELLEN-BEISPIEL« nur vom normalen Basic aus.

Punkt »O« bittet Sie um Eingabe einer Zahl von 0 bis 9 und
gibt zur eingegebenen Zahl das Zahlwort aus. Beispiel: Ein-
gabe »0«, Ausgabe »NULL«.

Danach missen Sie eine Taste driicken, um ins Hauptment(i
zu kommen.

Punkt »1« schlieBlich bietet die Mdglichkeit, die Hinter-
grundfarbe besonders elegant einzustellen: Sie geben ein-
fach die Farbe als Wort ein, zum Beispiel SCHWARZ.

Folgende Eingaben sind vorgesehen:
SCHWARZ,WEISS,ROT,TUERKIS,\/IOLETT,GRUEN,BLAU,
GELB,ORANGE,BRAUN,HELLROT,GRAU 1,GRAU 2,
HELLGRUEN,HELLBLAU,GRAU 3

Aufgrund der Uberschneidung von Prifsummen zeigen
jedoch auch andere Eingaben Wirkung, zum Beispiel:
SCH,HYPRA ASS,PRINTCOMPUTER-GRAPHIK,
TAGESSCHAU

Nun wollen wir uns mit dem Quelltext befassen.

Ab Zeile 10000 finden Sie die Tabellen. Und weil unser Pro-
gramm ein Beispiel fur die Verwendung von Tabellen sein soll,
sind es derer recht viele. Die wichtigsten davon sind jedoch
analog der internen Numerierung der MenUupunkte aufge-
baut, da sie Daten fur die MenUsteuerung beinhalten. Diese
Tabellen sind auch mit O - 3 numeriert und grafisch in Bild 6
dargestellt.

Sehen wir uns wieder den Quelltext, beginnend mit der
ersten Zeile, an.

Auf die Symboldefinitionen (210 - 260) folgt die Initialisie-
rung der Hauptschleife (280 - 310). Diese Initialisierung
i6scht Bildschirm (280) und Tastaturpuffer (290 - 300).
AuBerdem wird der aktuelle (= derzeit invers dargestellte)
Menupunkt (immer in der Adresse »MPT« enthalten) auf O
gesetzt (310). Zeile 310 ist also dafur verantwortlich, daB
nach dem Start Gber SYS 49152 das Inversfeld ganz oben
steht (auf Punkt 0).

Die Texte, die der Beschreibung der Mentpunkte dienen,
werden in der Hauptschleife "HSCHLEIFE« (350 - 550) aus-
gegeben. Mit dieser wollen wir uns nun eingehend auseinan-
dersetzen.

Zuné&chst wird die Tabelle »RVSTAB« geléscht (350 - 400).
Diese Tabelle enthalt die Information, ob der erlduternde Text
zu einem Menlpunkt invers ausgegeben wird. Wenn nein, so
enthalt das entsprechende Byte eine »0«, andernfalls eine
»18« (= REVERS-ON-Code fiir Betriebssystem). Das ent-
sprechende Byte aus »RVSTAB« braucht nur vor dem
Menipunkt-Textausgegeben werden (470 - 480). Die Zeilen
410 - 430 sorgen dafir, daB das Byte in »>RVSTAB«, welches
sich auf den aktuellen Menulpunkt bezieht, den RVS-ON-
Code erhait.

In der Hauptschleife muB das X-Register in »XSAVE« gesi-
chert werden, weil die Routine »>STROUT« den Inhalt des
X-Registers andert.

Mit »TASTE« (610) beginnt dann die Tastaturabfrage im
Men. Die Routine »GET« holt ein Zeichen von der Tastatur als
ASCII-Code in den Akku. Wurde keine Taste gedriickt, erhalt
der Akku den Code 0. In diesem Fall wartet 620 auf eine neue
Eingabe. Beachten Sie bitte, daB der Akku nach der Zeile 620
NIE den Wert O haben kann (dies wird sich bald als nitzlich
erweisen)!

Wurde nun eine Taste gedriickt, sucht »>SCHLEIFE« (630 -
680) in der Tabelle sTASTEN, die im Quelltext ab Zeile 10210
steht, nach dem eingegebenen Zeichen (wird es nicht gefun-
den, erfolgt in 690 der Sprung zur neuen Eingabe).

84

100
112
120
130
140
150
160
170
i8@
19@a
200
210
220
230
240
250
260
270
280
290
308
310
320
330
340
350
368
370
380
390
400
410
420
430
440
450
460
470
480
490
See
510
520
530
5S40
550
560
570
580
590
600
610
&20
630
640
650
660
670
&£80
690
700
710
720
730
740
750
760
77@
78@
79@
800
810
82e
830
840
a5e
860
a87e
880
8%a
900
918
928
930
240
95a
260
97@
8@
90
1000
iei@
1220
1238
1240
1850
1060
1@7@
108@
107@
1100
1112

J
o
>

$CA0@ ; START: SYS 49152

TABELLEN - BEISPIEL

BY FLORIAN MUELLER

X X K X X ¥
* Kk £ % kX

|

we ws we ws we ws s e

|
.
Q
~

STROUT = $ABIE

-.6L CURSORHOME = $ES&6

-.6L BET = $FFE4

-.6L BASIN = $FFCF

—.BL BASOUT = $FFD2

—.GL RESET = $FCE2 ; SOFTWARE-RESET

3
—START

JSR $ES44 3 = PRINT CHR$(147)
- LDA #@ ;3 TASTATURPUFFER
- STA 198 5 LOESCHEN
- STA MPT

-3 T SETZT AKTUELLEN MENUEPUNKT AUF @

—HSCHLEIFE JSR CURSORHOME

-3 T HSCHLEIFE = HAUPTSCHLEIFE
- LDA #0

- TAX

—SCHLEIFE1 STA RVSTAB,X

INX

- CPX #4

- BNE SCHLEIFE1

- LDX MPT

- LDA #18 ;s 18 = REVERS EIN
- STA RVSTAB, X

- LDX #@

-3 t SCHLEIFENZAEHLER INITIALISIEREN
~SCHLEIFE2 STX XSAVE 5 X RETTEN

- LDA RVSTAB,X

- JSR BASOUT

- LDA TEXTLO,X ; ERKLAERUNG

- LDY TEXTHI,X 3 ZUM MENUEPUNKT
- JSR STROUT 3 AUSGEBEN

- LDX XSAVE 3 X WIEDER HOLEN
- INX

- CPX #4

- BNE SCHLEIFEZ2

5 HIER IST DAS MENUE BEREITS AUF

—3 DEN BILDSCHIRM AUSGEGEBEN WORDEN.

’
-TASTE JSR
- BEQ
- LDX
—SCHLEIFE3 CMP
- BEQ
INX
CcPX
BNE
JMP
-WEITER1 XA
LSR
LSR
TAX
LDA
STA
LDA
sTA

L T R A A B |

GET ;3 TASTATURABFRAGE

TASTE 3 WARTEN AUF TASTENDRUCK
#0

TASTEN, X

WEITER1

#16
SCHLEIFE3
TASTE

;s DIVIDIERT AKKU-
3 MULATOR DURCH 4

SP1LO, X
SPRUNG

SP1HI, X
SPRUNG+1

—.EQ@ RUECKSPRUNG = HSCHLEIFE-1
—35 T LEGT RUECKSPRUNGADRESSE DES
-3 UNTERPROGRAMMS FEST.

.
-3
LDA
PHA
LDA
PHA
JMP

#> (RUECKSPRUNG)

#< (RUECKSPRUNG)

(SPRUNG)

—HOME LDX #@
- STX MPT
—ENDE RTS 3 ENDE DES UNTERPRG
—~DOWN LDX MPT 3 MENUEPUNKT
- INX 5 UM 1 ERHOEHEN
- CPX #4 s BROESSER ALS 37
- BEQ HOME 3 DANN =0
- STX MPT 5 SONST UEBERNEHMEN
- RTS 3 ZUR HAUPTSCHLEIFE
H
-upP LDX MPT 5 MENUEPUNKT
- DEX 5 DEKREMENTIEREN
- BPL ENDUP ;s > @7
- LDX #3 3 NEIN, DANN =3
—ENDUP STX MPT 3 UND UEBERNEHMEN
- RTS 3 ZUR HAUPTSCHLEIFE
-3
3
-EXEC PLA 3 STAPELMANIPULATION

- PLA
- LDX

MPT

Listing 11. »Tabellen-Beispiel«, ein Beispiel zur
Verwendung von Tabellen

C 64

Kurs

1120 - LDA SP2LO,X

1130 ~ STA SPRUNG

1140 - LDA SP2HI,X

1150 — STA SPRUNG+1

1160 - JMP (SPRUNG)

1170 —;

1180 —;

1190 —;

1208 -ZAHLWORT LDA #<(TZAHL) ; AUFFORDERUNG
1210 - LDY #>(TZAHL) ; ZUR EINGABE
1220 - JSR STROUT : AUSGEBEN

12308 - JSR BASIN ; HOLT ZEICHEN
1248 - SEC 3 IN BINAERZAHL
1250 - SBC #"@Q" 3 UMWANDELN

12608 - TAX 5 INS X-REGISTER
1278 —;

128@ —; JETZT STEHT IM X-REGISTER

1298 —; DIE EINGEGEBENE ZAHL

1300 —;

1318 - CMP #1@ 3 > 187

1320 - BCC ZAHLWORT1 ; NEIN=> WEITER
1330 - JMP ZAHLWORT 3 NEUEINGABE
1340 -3

1358 —-ZAHLWORT1 STX XSAVE 3 X RETTEN

1360 - LDA #<(TWORT) i AUFFORDERUNG
1370 - LDY #>(TWORT) ; ZUR EINGABE
13808 - JSR STROUT : AUSGEBEN

139@ - LDX XSAVE 3 X WIEDER HOLEN
1400 - LDA ZWLO,X : ADRESSE DES
1410 - LDY ZWHI,X ; ZAHLWORTES HOLEN
1420 - JSR STROUT 3 UND Z.WORT DRUCKEN
1430 —;

1440 -WAIT JSR GET 3 WARTET AUF
145@ - BEQ WAIT ; TASTENDRUCK
1460 — JMP START 5 ZUM HAUPTMENUE
147@ —;

1480 —;

149@ -3

1508 -FARBE LDA #< (TFARBE)

1518 - LDY #>(TFARBE)

1520 - JSR STROUT

1530 - LDX #@

154@ -FARBE1 JSR BASIN ; HOLT EINGABE
1550 — : CMP #v © ; SPACE 7

1568 — BEQ FARBE1 ; JA=>UEBERLESEN
1570 - CMP #13 ; ENDE DER EINGABE?
1580 — BEQ FARBEZ 5 JA, DANN WEITER
1598 - STA FARBWORT,X ; EINGABE SPEICHERN
1600 ~ INX i ZAEHLER ERHOEHEN
1610 - JMP FARBE1 3 ZUR SCHLEIFE
1628 -FARBEZ2 STX 2 i LAENGE MERKEN
1630 — LDX #@

1640 — XA

165@ -FAREBES ROL

16608 — EOR FARBWORT,X

1670 - INX

1680 ~ / cPX 2 3 SCHON FERTIG?
169@ - BNE FARBEI 3 NEIN,ZUR SCHLEIFE
1700 - cLc i LAENGE

1710 - ADC 2 ; ADDIEREN

1728 —;

1738 —; HIER STEHT IM AKKU DIE PRUEFSUMME

1740 —;

175@ - LDX #@

1760 ~FARBE4 CMP PRUEFSUMMEN, X

1770 — BEQ FARBES 5 BGEFUNDEN

1780 - INX

179@ - CPX #16&

1800 - BNE FARBE4

1818 - JMP FARBE NEUE EINGABE
1820 -FARBES STX 53280 BILDSCHIRM—
1830 — STX 53281 FARBE SETZEN
1840 - JMP START ZUM MENUE

1850 —;

10000-;

10010-; TABELLEN

10020-; = .

100303

10040~; TEXTE:

100503

1006@-PUNKT® .TX "ZAHL IN ZAHLWORT UMWANDELN"
10070~-.BY 13,13,0

10080—;

10098-PUNKT1 .TX “BILDSCHIRMFARBE"

12108-.BY 13,13,0

18118

18120-PUNKTZ .TX "RESET AUSLODESEN"

18130-.BY 13,13,0

10140—;

18158-PUNKT3 .TX "PROGRAMMENDE UEBER RTS"

1016@0-.BY 13,13,13
1@17@-.TX "BITTE AUSWAEHLEN '
10180-.BY @

18190—;

10200-;

18218-TASTEN -BY 133,13,"+",

"="3; 133=F1,13=RETURN

10220-.BY 19,"@","&",8 ; 19=HOME,@=DUMMY

i@23@-.BY 17,"D",135,"

;5 17=CRSR DOWN, 135=F5

1824@-.BY 145,"U",134, 5 145=CRSR UP,134=F3

10250—;
10268-3

10278-TZAHL -BY 147

s CLEAR HOME

1228@-.TX “"ZAHL (B8-9) 2 "

10298-.BY @

103003

18310-TWORT -TX " IN WORTEN : *
18320-.BY @

18330—;

10348-;

1@350-; ZAHLWOERTER (@-9)

10360-;

10370~;

18380-NULL . TX "NULL"

1@390-.BY @

10400—;

1041@-EINS . TX "EINS"

10420-.BY B

104383

10440-ZWEI - TX "ZWEI™

12450-.BY @

10460-;

1847@-DREI .TX "DREI"

10480-.BY @ .

10490—;

18500-VIER .TX "VIER"

108510-.BY @

105283

1053@-FUENF . TX "“FUENF"

18548-.BY @

105503

1056@-SECHS .TX "SECHS"

1857@0-.BY @

10580-;

10598-SI1EBEN . TX "SIEBEN"

1060@-.BY @

10610-3

18620~-ACHT .TX “"ACHT™

1063@-.BY @

18640-;

1065@8—-NEUN - TX "NEUN"

10660-.BY @

18670—;

18680-;

10690-TFARBE .BY 147 s CLEAR HOME
1070@-.TX "WELCHE FARBE 7 "

ie7i1@-.BY @
12720-;
18730—;
1874B-RVSTARB
10750-;
18760-3
1@77@-; ZAHLEN:

18788—;

1079@-; ADRESSEN DER TEXTE, DIE DIE
128@0-; MENUEPUNKTE BESCHREIBEN
10810-;

1@820-TEXTLO -BY < (FUNETQ) ,< (FUNKT1)
1283@--.BY < (PUNKT2) ,< (PUNKT3)

10840-;

18850-TEXTHI -BY > (PUNKT®) ,>(PUNKT1)
1@86@-.BY > (PUNKT2) , > (PUNKT3)

.BY 2,0,0,08 ; 4 BYTES RESERVIEREN

128703
10880-;

1@89@-; ADRESSEN DER ZAHLWOERTER

12900-;

1891@8-ZWLO .BY <(NULL) ,<(EINS),< (ZWEI) ,< (DREI)

1@92@-.BY < (VIER) ,< (FUENF) ,< (SECHS) ,< (SIEBEN)
1893@~-.BY < (ACHT) ,< (NEUN)

109403 o
18950-ZWHI LBY >(NULL),>(EINS),>(ZWEI) ,>(DREI)
1@96@-.BY >(VIER) ,>(FUENF) , > (SECHS) , > (SIEBEN)
18970~-.BY >(ACHT) , > (NEUN)

10980~;

10990~;

11@88-; ADRESSEN DER UNTERROUTINEN

1101@-; FUER DIE MENUESTEUERUNG

11020-;
11@30-SP1LO
11240—;
1185@-SP1HI
11060-;
118703
11@80-; ADRESSEN DER EINZELNEN

11@98-; MENUEPUNKTE

11100-;

11118-SP2L0 .BY < (ZAHLWORT) ,< (FARBE)
1112@-.BY < (RESET),<(ENDE) ; BEI ENDE STEHT
1113@-SP2HI .BY >(ZAHLWORT) , > (FARBE)
1114@-.BY >(RESET),>(ENDE) ; EIN RTS—BEFEHL
11150~;

1116@~; PRUEFSUMMEN DER FARB-WDERTER

11170

11180-PRUEFSUMMEN .BY 41,158,137,212,159,101
1119@-.BY 3,2,33,69,201,116,113,121,127,114
11208-;

«BY <(EXEC),< (HOME) ,< (DOWN) ,< (UP)

-BY >(EXEC),>(HOME) , > (DOWN) , > (UP)

11210-;
112203 ZWISCHENSPEICHER

11230—;

11240-MPT .BY @ s 1 BYTE RESERVIEREN
11250-XSAVE .BY @

11268-SPRUNG .Wo @ ; 2 BYTES FREIHALTEN

11270-FARBWORT .BY @
1128@-; T AR 'FARBWORT® WIRD DIE EINGABE
11290-; DER FARB-BEZEICHNUNG ABGELEGT.

READY.

85

c64 Kurs
Spalte 0 1 2 3
TEXTLO ° ! 2 ? Adressen der TextTabellen, die
I [I die MenUpunkte beschreiben
TEXTHI 0 K 2 3
zeigen als
Vektorgen auf: PUNKT O PUNKT 1 PUNKT 2 PUNKT 3 }Text-Tabellen
, enthalt Information, ob Text zu
/ RVSTAB 0 ! 2 3 } Menupunkt invertiert werden soll
SP2LO 0 : ? ? enthalt die Adressen der
I Routinen zu den Menlpunkten
SP2HI 0 1 2 3
zeigen als Routine Routine Routine Routine
Vektoren auf: | ZAHLWORT FARBE RESET ENDE
Bild 5. So verwendet man Tabellen zur Realisierung eines Meniis

Diese Tabelle »TASTEN« enthélt alle vorgesehenen Tasten-
driicke zur Menusteuerung, die in 4er-Blockweise angeord-
net sind (Bild 5). Nach der Suchschleife steht im X-Register
die Position der gedrickten Taste innerhalb der Tabelle
»IASTEN« (zum Beispiel 0 = F1 gedrickt, 4 = HOME
gedriickt). Diese Position wird - ohne Berlcksichtigung des
Divisions-Restes - durch 4 dividiert (700 - 730), um festzu-
halten, von welchem Tastenblock eine Taste gedriickt wurde.

Dadurch ist eindeutig bestimmt, welche Befehlsgruppe
aufgerufen werden muB.

Stehtnach 730 im X-Register O, wurde eine der ersten vier
in sTASTEN« enthaltenen Tasten gedriickt, die die Ausfiihrung
des aktuellen Menlpunktes veranlassen (Zeile 10210 und
Bild 5). Ist X=1, so wurde eine Taste aus Zeile 10220

gedrickt. In 10220 steht als letztes Byte eine 0. Diese dient,
da fur die Funktion »Inversfeld in HOME-Position« nur drei
Tastendriicke vorgesehen wurden, zum Aufflllen auf vier
Tasten. O kann hier bedenkenlos als Dummy (Fullbyte ohne
wirkliche Bedeutung) stehen, da der Akku aufgrund von 620
nie den Wert 0 annehmen wird.

Beinhaltet X nach der Division durch 4 den Wert 2, wird das
inversfeld nach unten bewegt, ist X=3, dann nach oben. Dies
kénnen Sie sich an Bild 6 veranschaulichen.

Anden Zeilen 740 - 870 sehen wir nun die Verwendung ei-
ner Sprungtabelle. Unsere Sprungtabelle ist »SP1LO/SP1HI«.
»SP1LO« beinhaltet die Low-, »SP1HI« die High-Bytes der
anzuspringenden Routinen. In den Vektor »SPRUNG« wird
einfach die Zieladresse geschrieben (740 - 770).

X = 0 1 2 3
RE- _ L 0- | |CRSR L | & _
TASTEN | F1 e HOME| O | @ Byte Iy D|F5] + CRSR U |F3
\. N\ \. /. v /
in Zeile 10210 10220 10230 10240
dazugehdrige
Routine: EXEC HOME DOWN UP
Wirkung: angewahiter aktueller Inversfeld Inversfeld
Mendpunkt Mentpunkt wird nach wird nach
wird ausgefhrt wird auf unten bewegt oben bewegt
(Sprung in 1160) 0 gesetzt
MPT = O 1 2 3
| 2twvor | | Fang | | ResET | | Enoe | Bild 6. Die Tastaturabfrage aus Listing 11

86

C 64

Kurs

Die Zuweisungszeile 790 errechnet die Ricksprung-
adresse des aufzurufenden Unterprogramms. Bei einem RTS
soll némlich zur >HSCHLEIFE« gesprungen werden.

Diese Ricksprungadresse »RUECKSPRUNG« wird auf
den Stapel gelegt (830 - 860), zuletzt erfolgt der indirekte
Sprung (870). Die Uiber die soeben beschriebene Simulation
von JSR (ind) angesprungenen Routinen finden Sie ab Zeile
900. Es wird einfach der aktuelle Menlpunkt »MPT« entspre-
chend dem Tastendruck geédndert, dann wird zur
»HSCHLEIFE« gesprungen, die auch die Tabelle »RVSTAB«
entsprechend anpaBt.

»EXEC« (1090) holt die Riicksprungadresse vom Stapel
(1090 - 1100), da diese Routine nicht als Unterprogramm
behandelt werden soll. .

Die Zeile 1110 holt den angeforderten MenUpunkt ins X-
Register. Dann wird aus »SP2LO/SP2HI« die Adresse der
zum MenUpunkt gehérenden Routine geholt und diese Uber
einen gewodhnlichen indirekten Sprung aufgerufen (1160).

Als Routine zu »2« wird einfach die RESET-Routine des
Betriebssystems angesprungen, fir »3« eignet sich jeder
RTS-Befehl, also auch der bei »ENDE« (920).

»ZAHLWORT, die Routine zu 0, holt eine Zahl als ASCII-
Code (1230) und wandelt sie in einen numerischen Wert um
(1240-1250), indem der ASCII-Code von 0 abgezogen wird.
Das Ergebnis landet im X-Register (1260). Ob auch eine Zahl
eingegeben wurde, prifen die Zeilen 1310 - 1330. Bei
»ZAHLWORT« (1350) wird das Resultat der Subtraktion in
»XSAVE« gesichert, der Text >IN WORTEN« ausgegeben und
das X-Register wieder geholt.

Die Tabelle »ZWLO/ZWHI« enthélt die Adressen, ab denen
die Texte der Zahlwoérter als ASCII-Code stehen. Aus
»ZWLO/ZWHI« wird dann diese Adresse geholt (1400 -
1410) und der dort stehende Text ausgegeben (1420).
Danach erwartet das Programm noch einen Tastendruck
(1440-1450), bevor ins Hauptmenii verzweigt wird (1460).

Als letzte Routine wird »FARBE«besprochen (1500-1850):
Hierzu ist jedoch aufgrund der Ahnlichkeit zu Listing 10 nicht
viel zu erlautern. Bei 1820 steht im X-Register der Code der
eingegebenen Farbe (= Position der Prifsumme innerhalb
der Tabelle PRUEFSUMMENc«). Dieser muB nur noch in die
entsprechenden VIC-Register geschrieben werden
(1820-1830). Ab Zeile 10000 stehen dann die Tabellen.
Wenn Sie die Tabellen angesehen haben, sollten Sie durch-
aus noch einmal den Quelltext bis 10 000 betrachten und die
hier endende Beschreibung des Programms lesen. Denn
wenn Sie das Programm »TABELLEN-BEISPIEL« ganz ver-
standen haben, sind Sie einen groBen Schritt in der Assem-
blerprogrammierung weitergekommen!

ich kénnte mir Gbrigens vorstellen, daB Sie in Ihren eigenen
Programmen jetzt auch eine Menilsteuerung wie die in
»IABELLEN-BEISPIEL« einbauen; wie das geht, kénnen Sie
dem Programm »TABELLEN-BEISPIEL« entnehmen.

Eine Anmerkung ist wichtig: sTABELLEN-BEISPIEL« kann
noch weiter verbessert werden. Sie werden sehen, daB viele
Stellen noch optimiert werden kénnen. Insbesondere der
Speicherplatzbedarf kann verringert werden.

f) Weitere Anregungen zur Anwendung von Tabellen
Auch die bisherigen Erlauterungen und das Beispielpro-

gramm kénnen die Kreativitdt des Programmierers nicht

ersetzen, sondern nur die Programmierung erleichtern. Aus
diesem Grund méchte ich lhnen noch einige Beispiele nen-
nen, wie sich Tabellen sinnvoll verwerten lassen.

- Ein Anwenderprogramm, das aus Mentis und Untermeniis
besteht, sollte in einer Tabelle die Adressen der
Menis/Untermeniis speichern.

- Spiele mussen oft viele Spritebewegungen, die immer
gleich sind, durchfihren. Es empfiehlt sich, die Spritebe-
wegungen als Koordinaten in einer Tabelle abzulegen.

- Bei Software-Interfaces mussen viele Umrechnungen

baEr,

erfolgen. Durch eine Umwandlungstabelle konnen diese
stark beschleunigt werden.

- Naturwissenschaftlich orientierte Programme missen ver-
schiedene MaBe umrechnen. Die Umrechnungswerte
kénnen in einer Tabelle untergebracht werden.

Dies soll nur eine Anregung sein. Ich wiiBte aber kein komple-

xes Programm, das sich nicht durch dengezielten Einsatz von

Tabellen vereinfachen und beschleunigen lieBe.

Texteinschub #1: FlieBkommazahlen

Im Text wurde ein Verfahren vorgestellt, um eine Zahl ins
MFLPT-Format (MELPT=Memory floating point) umzu-
wandeln. Das 5 Byte lange Ergebnis dieser Umwandiung
kann man dann als KONSTANTE handhaben. Konstanten
sind feste, vorausberechnete Werte, die man mit Hilfe der
Routine »MEMFAC« in den FAC (Flieskomma-AKKU)
kopieren kann. Fir viele Werte ist es jedoch tiberflissig,
die Umwandlung durchzufiihren und eine entsprechende
Tabelle anzulegen, da sie schon im ROM vorhanden sind.
Im Kurs »Assembiler ist keine Alchimie« wurden solche
Konstanten mitsamt ihrer Adressen schon in einer Tabelle
vorgestelit.

Um mit Konstanten (fur die Rechenroutinen macht es
keinen Unterschied, ob diese im RAM oder im ROM ste-
hen) zu rechnen, kann man diese wie gesagt, in den FAC
kopieren und alle weiteren Operationen auf diesen bezie-
hen. Dies war in Listing 8 bei den Funktionen SQR und
LOGNAT ausreichend.

Oft méchte man aber den Inhalt des FAC nicht mit einer
Funktion wie SQR behandeln, sondern mit anderen Kon-
stanten addieren, multiplizieren und so weiter.

Dafir méchte ich Ihnen im folgenden weitere
Interpreter-Routinen vorstellen, die das Rechnen mit Kon-
stanten erméglichen. Da fastimmer in den Akku das Low-,
ins Y-Register das High-Byte der Adresse, ab der die Kon-
stante abgelegt ist, geladen werden muB, definieren wir
noch vorher folgende Makro:

-.MA LDAY (ADRESSE)

- LDA # < (ADRESSE)

- LDY # >(ADRESSE)

-RT

Nun zu den Routinen, bei deren Parameteriibergabe wir
uns auf das Makro LDAY stitzen wollen:

ADDMEM FAC+Konstante — FAC ...LDAY (KONSTANTE)
JSR $B867
ADDO,5 FAC+0.5 — FAC JSR $B849
SUBMEM Konstante-FAC — FAC ...LDAY (KONSTANTE)
JSR $B850
MULMEM Konstante* FAC — FAC ...LDAY (KONSTANTE)
JSR $BA28
MULT10 FAC*10 — FAC JSR $BAE2
DIVMEM Konstante/FAC — FAC ...LDAY (KONSTANTE)
JSR $BBOF
DIVS10 FAC/10 — FAC JSR $BAFE
CMPMEM vergleicht Konstante mit FAC ...LDAY (KONSTANTE)
FAC < Konstante: Akku=$FF JSR $BC5B
FAC=Konstante: Akku=$00
FAC > Konstante: Akku=$01
POTMEM Konstante 1FAC — FAC ...LDAY (KONSTANTE)
JSR $BF78
POTE etFAC — FAC JSR $BFED
MEMFAC holt Konstante in FAC ...LDAY (KONSTANTE)
JSR $BBA2
FACMEM FAC ab Konstante als LDX # < (KONSTANTE)
MFLPT-Zahl ablegen LDY # >(KONSTANTE)
JSR $BBD7
FACOUT gibt FAC aus JSR $AABC

87

Kurs

C 64

7. Die Initialisierung

»Initialisierung« nennt man eine Routine, die vor einem Pro-
grammteil (meist einer Schleife) steht und diese vorbereitet.
Die Initialisierung wird nur einmal, eine Schleife aber mehr-
fach durchlaufen. Deshalb bringt es einen Geschwindigkeits-
zuwachs, wenn die Initialisierung der Schleife Arbeit
abnimmt.

Ein Beispiel: Wenn ein Basic-Programm mit » RUN« gestar-
tet wird, werden alle Variablen geléscht, Files geschlossen
und die Adressen, ab denen die Variablen abgelegt werden
durfen, errechnet. Dies ist die Initialisierung der Interpreter-
schleife. Dann wird Byte fur Byte des Basic-Programms ein-
gelesen und bearbeitet.

MuB im gerade lbersetzten Befehl ein Sprung (GOTO 500
oder dhnliches) durchgefihrt werden, kostet dies bekannt-
lich viel Zeit, wenn das Sprungziel am Ende eines langen Pro-
gramms steht. Dies ist darauf zurlckzufihren, daB der Inter-
preter, beginnend mit der ersten Zeile, das ganze Programm
nach der Sprungzeile durchsucht, bis er sie gefunden hat.

Diese Berechnung der Adressen wird bei jedem »GOTO«
oder »GOSUB« neu durchgefihrt.

Viel besser und schneller ware folgende Vorgehensweise:
Bei »RUN« wird zunachst eine Tabelle angelegt, in der die
Adressen aller Zeilen enthalten sind. Diese Tabelle kénnte
zum Beispiel als Array definiert werden. Folgt nun ein Sprung,
kann aus der Tabelle die Adresse der Zeile im Speicher geholt
werden.

Damit haben wir noch ein wesentliches Merkmal der Initiali-
sierungsroutinen gefunden: Die Initialisierung kann Tabellen
anlegen, die dann von der Hauptschleife verarbeitet werden.

Aber nicht nur Tabellen kénnen generiert werden, auch die
Berechnung von Flags ist sinnvoll. So merkt sich die
»LOAD/VERIFY«-Routine ($FFD5), ob ein Verifizieren oder
Laden gewiinscht wird. Die Ladeschleife liest dann ein Zei-
chen von der Floppy oder der Datasette ein und entscheidet
erstanschlieBend, ob das Byte im Speicher abgelegt oder mit
dem Speicher verglichen werden soll.

Halten wir also fest, daB Initialisierungsroutinen Schleifen
entlasten kénnen. Naher werden wir uns damit beim Thema
»Schleifen« beschéftigen.

8. Die Nutzung der Zeropage

In jedem Assembler-Lehrbuch werden die Vorteile der
Zeropage-Adressierung gepriesen. Speicherplatzersparnis
und hohe Verarbeitungsgeschwindigkeit sind nicht die einzi-
gen Vorzlge; die indirekt-indizierte Adressierung kann nur
auf Zeropage-Adressen zugreifen, nicht auf absolute 16-Bit-
Adressen. Damit wird der Leser aber schon alleine gelassen.
Er erfdhrt nicht, welche Adressen in der Zeropage fur die
Praxis geeignet sind. Das wird nun nachgeholt.

Fast die ganze Zeropage wird durch Basic-Interpreter und
Betriebssystem belegt. Deshalb fiihren bestimmte Werte in
Zeropage-Adressen oft zum Absturz oder sonstigem Fehl-
verhalten des Computers.

Wie dies im einzelnen aussieht, erfahren Sie in der Serie
»Memory Map mit Wandervorschlageng, die im 64’er Stamm-
heft erscheint. Nicht nur in Zweifelsfallen stellt diese Serie
das optimale Nachschlagewerk dar.

Ich méchte Ihnen nun zeigen, welche Adressen Sie als
(Zwischen-)Speicher ohne Schwierigkeiten verwenden
kénnen, beziehungsweise was Sie bei Verwendung von
Zeropage-Adressen beachten missen.

a) Adressen, die problemlos verwendet werden kénnen
Auf die Adressen $02 und $FB - $FE wird weder vom

88

,6088 AZ 00 LDX #20
L6002 BS @2 LDA @2,Xx
,6084 9D B@ &F STA 6FBALX
, 6087 EB8 INX

,6008 E@ FE CPX #FE
,680A D@ Fb6 BNE 6002
Listing 12

L5888 AZ FE LDX #FE
L6882 BS a1 LDA #01
56084 9D FF &E SBThA &EFF,X
6887 CA DEX

,60@2 D@ FB BNE &@82
Listing 13

6888 AZ FE LDX #FE

, 4002 BD FF 6E LDA &EFF,X
, 6805 95 21 STA #@1
6007 CA DEX

, 6088 DO F8 BNE &@082
Listing 14

,6000 Az 34 LDX #34
,6@882 BS 16 LDA 16,X
6004 9D BB &F STA 6FBA,X
, 6087 CA DEX

,6008 1@ F8 BFL 6002
Listing 15

, 6808 AZ 34 LDX #34
6002 BD B8 6F LDA &6F0BB,X
, 6085 95 16 STA 16,X
6087 CA DEX

,6008 1@ F8 BPL &0@2
Listing 16

L6808 AZ FF LDX #FF
,6B02 BD BB @1 LDA @10A,X
, 6005 9D B0 &6F STA &6F20,X
, 6888 CaA DEX

,6009 DA F7 BNE 6002
,60@8B AD 0@ A1 LDA Q100
s6B0E 8D BB &F STA &F0B
,6811 BA TSX

,6012 8E @@ 78 STX 7000
Listing 17

5008 A2 FF LDX #FF
,60@82 BD @@ &6F LDA &F@A,X
, 6805 9D @@ 81 STA @10@8,X
, 6888 CaA DEX

, 6089 D@ F7 BNE &Q@22
J,60BB AD V@ &F LDA &FBQ
,60@0E 8D @00 A1 STA Q104
6811 AE @@ 7@ LDX 72020
,6814 94 TXS

Listing 18

C 64

Kurs

Basic-Interpreter noch vom Betriebssystem zugegriffen.
Lediglich bei Initialisierung der Arbeitsspeicher (RESET)
werden Sie auf O gesetzt.

Fur die Praxis heiBt das, daB Ihnen die genannten Adressen
véllig zur Verfiigung stehen.

b) Adressen, die in keiner Weise verwendet werden
soliten

Von anderen Adressen hingegen missen wir unsere Fin-
gerlassen. Diese haben entweder elementare Funktionen fir
Betriebssystem oder CPU, oder werden von beiden dauernd
gedndert, so daB die Datensicherheit in Frage gestellt ist.
Genauer soll hier nicht unterschieden werden.

Belassen Sie die Adressen $00 und $01 unveréndert, da
sie (siehe Memory Map) fir die CPU wichtige Informationen
beinhalten und auBerdem einige Bits nur durch externe Vor-
génge geandert werden.

Das Betriebssystem und der Basic-Interpreter beanspru-
chen alle bislang ungenannten Adressen.

Von Bildschirmeditor und Tastaturabfrage werden die
Adressen $C6 - $F6 beeinfluBt. Die Adressen $90 - $C2
dienen der Ein-/Ausgabe-Steuerung mit Peripheriegeraten
und der Verwaltung offener Files. Einzige Ausnahme: $A0 -
$A2 (interne Uhr). Wenn ein Maschinenprogrammm in ein
Basic-Programm eingebaut ist, sind die Adressen $03 - $56
sowie $73 - $8B tabu.

c) Bedingt einsetzbar

Der Vektor $C3/$C4 wird durch RUN/STOP-Restore,
RESET oder LOAD beeinfluBt. Ansonsten kann mit $C3/$C4
frei verfahren werden.

Ganz Vorsichtige kénnen diesen Vektor auf seinen Aus-
gangswert $FD30 setzen, sobald das Programm die Adres-
sen $C3/$C4 nicht mehr fir eigene Zwecke benétigt.

d) Adressen, die unter Verzicht auf Kassettenbetrieb ver-
wendet werden kdnnen
Die folgenden Adressen kdnnen verwendet werden, wenn
nicht auf RS232 oder Datasette zugegriffen wird.
$9E/$9F, $A5-$A7, $A9-$AB, $B0-$B6, $F7-$FA
Bei anderen Adressen, die sich auf den RS232- oder Kas-
settenbetrieb beziehen, ist Vorsicht angebracht.

e) Geeignete Zwischenspeicher

Die Adressen $22-$2A und $57-$60 sind sogenannte
»verschieden genutzte Arbeitsbereiche«. Sie werden vom
Basic-Interpreter vor allem bei arithmetischen Operationen
als Zwischenspeicher verwendet. Als solche Zwischenspei-
cher kénnen wir sie auch verwenden. Sobald allerdings
bestimmte Interpreterroutinen aufgerufen werden, kénnen
die Inhalte dieser Adressen verlorengehen. Eine langer-
fristige Aufbewahrung von Daten in diesen Adressen ist zwar
nicht méglich, andererseits kénnen wir aber durch Schreib-
zugriffe auf diese Adressen das Betriebssystem oder den
Basic-Interpreter nicht stéren.

Zu sagen ware noch, daB die Adressen $57 - $60 den
wichtigen Routinen BLTUC und UMULT (siehe »Assembler ist
keine Alchimie«) als Zwischenspeicher dienen.

f) Zeropage kopieren

Zum AbschluB dieses Abschnittes tber die Nutzung der
Zeropage mdchte ich lhnen noch einen kleinen Trick verra-
ten, der von einigen professionellen Programmen angewandt
wird.

Wir sichern die Zeropage-Inhalte in einem anderen
Bereich, zum Beispiel von $6F00 an.

Dann kdnnen wir viele Adressen in der Zeropage nutzen,
sofern wir keine Interpreter- oder Betriebssystemroutine auf-
rufen. Danach schreiben wir die Zeropage wieder von der
Kopie, zum Beispiel von $6F00, zuriick und kénnen wie
gewohnlich fortfahren.

Die Adressen O und 1 kopieren wir nicht, weil diese nach
wie vor fur solche Zwecke nutzlos sind. Ebenso kénnten wir

BA-ET,

, 6B A D2 LDA #DZ

, 6082 85 14 STA 14
6084 AT 3F LDA #3F
,6886 83 15 STA 15
6088 A 002 LDY #@@
,688A Bl 14 LbA (14),Y
,688C 49 FF EOR #FF
,6B0E 921 14 STA (14),Y
,60108 E&6 14 INC 14
,6012 D@ a2 BNE &816
6814 E& 1S INC 15
,6816 A5 14 LDA 14
6818 C9? 60 CHMF #60
,681A AS 135 LDA 15
,6081C E9 47 SBC #47
L6B1E 9@ EA BCC &@BA
Listing 19

, 6088 AT SF LDA #5F
L6082 85 14 STA 14

, 68004 A9 47 LDA #47
,6086 85 15 STA 15

, 6008 AQ QG LDY #0200
,608A Bl 14 LbA (14),Y
,608B8C 49 FF EOR #FF
,6@BE 91 14 STa (14),Y
,6818 AS 14 LDA 14
,60812 D@ @2 BNE 6460164
,60814 Cé6 15 DEC 15
,0016 Cbé6 14 DEC 14
,6818 AS 14 LDA 14
,081A C9 D2 CMP #D2
,681C AS 15 LDA 15
,6@1E E? 3F SBC #3F

, 6020 B@ EB BCS &6@3A
Listing 20

,6008 A7 00 LDA #0Q
16002 85 14 STA 14

, 6004 A9 20 LDA #2@

, 6886 85 1S5 STA 1S

, 6088 A @0 LDY #@@
,608A Bl 14 LDA (14),Y
,6@8C 49 FF EOR #FF
J,608E 91 14 STA (14),Y
,6018 C8 INY

60811 D@ F7 BNE &08A
,6@813 E6 15 INC 13
6015 A5 15 LDA 15
,6@817 C? 40 CMFP #40
,6819 DA EF BNE 6@83A
Listing 21

89

Kurs Cc64
nur einzelne Bereiche kopieren (zum Beispiel die Zeiger fur
6008 A9 00 LDA #2@a Basic-Programme $16 - $4A). Dann dirfen wir aber auch nur
» 6002 B3 14 sTA 14 diesen Bereich verandern.
, 6084 A8 TAY Wenn wir nun den Bereich $02 - $FF kopieren, stehen uns
L6085 A9 20 LDA #20 folgende Adressen zur Verfligung:
,68@7 85 15 STA 15 $03-%$06, $14-$86, $71-$8A, $C3/$C4, $FB-SFF
, 6009 AA TAX Diese Adressen koénnen Sie nur so lange verwenden, bis
(00A Bl 14 LDA (14),V Ufgerufen wira. Davor mub cie alte Zeropags zurdckge:
,6@aC 49 FF EOR #FF sch?'ieben werden Peg ’
,6A0E 91 14 STA (14),Y Da Sie auf diese Weise viel Speicherplatz in der Zeropage
16012 C8 INY gewonnen haben, ist es sogar mdglich, eine Tabelle aus
26811 D@ F7 BNE &00@A Geschwindigkeitsgriinden in die Zeropage zu verlegen.
26813 E6 15 INC 15 Damit steigt auch der Wert der indiziert-indirekten Adressie-
,6815 CA DEX rung erheblich.
,6016 DO F2 BNE 46004 _ Dennoch ist der Speicherplatz in der Zeropage begrenzt.
Uberlegen Sie sich also, auf welche Werte besonders schnell
Listing 22 zugegriffen werden muB und schreiben Sie vorzugsweise
diese in die Zeropage.
70 —.BA $Cava 718 - LDA #< (ANFANGSADRESSE)
60 -.LI 1,3,0 720 - STA ZAEHLER
9@ -3 736 - LDA #> (ANFANGSADRESSE)
10@ =3 HR NI I NN NI W 740 - STA ZAEHLER+1
118 —; = QUELLTEXTE (HYPRA-ASS) * 750 - LDY #@
120 —; » * 768 —-SCHLEIFE4 LDA (ZAEHLER),Y
130 -5 = * 77@¢ - EOR #$FF
140 -—; * FUER VERSCHIEDENE SCHLEIFEN * 788 — STA. (ZAEHLER) ,Y
15@ -5 = * 79@ - INC ZAEHLER
166 —; *» 28.08.85 BY FLORIAN MUELLER * 800 - BNE WEITER
176 —; = * 8186 - INC ZAEHLER+1
18@ —3 MR NIEII K IIIEI NI I NI 820 -WEITER LDA ZAEHLER
190 -3 ase - CMP #< (ENDADRESSE+1)
2068 -—; 8408 - LDA ZAEHLER+1
218 -3 QUELLTEXT ZU LISTING 1 858 - SBC #>(ENDADRESSE+1)
220 -3 86@ - BCC SCHLEIFE4
230 -3 870 -—;
240 -—.EQ ANFANGSADRESSE = $@2 a8 -3
250 —.EQ ENDADRESSE = $FF 898 -3 QUELLTEXT ZU LISTING 1@
260 -.EQ ZIELBEREICH = $&4F0@ %ea -—;
278 —; 918 -3
280 - LDX #@ 920 -—-.EQ ANFANGSADRESSE = $2000
29@ -SCHLEIFE1 LDA ANFANGSADRESSE, X 938 -.EQ@ ENDADRESSE = $3FFF
306 - STA ZIELBEREICH,X 94@ -.EQ ZAEHLER = %14
3180 - INX 958 -—;
3z - CPX #(ENDADRESSE+1—-ANFANGSADRESSE) 960 - LDA #< (ANFANGSADRESSE)
330 - BNE SCHLEIFE1 9786 - STA ZAEHLER
340 -3 98@ - LDA #>(ANFANGSADRESSE)
358 -3 9%a - STA ZAEHLER+1
360 -3 QUELLTEXT ZU LISTING 2 ieea - LDY #@
376 —; 101@ -SCHLEIFES LDA (ZAEHLER),Y
3B -3 1020 - EOR #$FF
390 -—.EQ@ ANFANGSADRESSE = $@02 1030 - STA (ZAEHLER) ,Y
40@ -.EQ ENDADRESSE = %FF 1040 - INY
418 -—-.EQ ZIELBEREICH = $6F00@ 1058 - BNE SCHLEIFES
428 -3 1060 - INC ZAEHLER+1
4708 - LDX # (ENDADRESSE+1-ANFANGSADRESSE) 1a7@ - LDA ZAEHLER+1
44@ -SCHLEIFE2 LDA ANFANGSADRESSE-1,X 1e80 - CMP #>(ENDADRESSE+1)
458 - STA ZIELBEREICH-1,X 1890 - BNE SCHLEIFES
460 - DEX 3 DEKREMENTIERBEFEHL 1100 —;
478 - BNE SCHLEIFEZ2 1110 —;
480 —; 1120 —; QUELLTEXT ZU EINER SCHLEIFE,
490 —; 1138 —; DIE DEN BEREICH $3FD2-%$47D1
S0@ -3 QUELLTEXT ZU LISTING 4 1140 —; KOMPLEMENTIERT
518 —; 1158 —;
5920 -3 1168 —-.EQ ANFANGSADRESSE = $3FD2
538 -—.EQ ANFANGSADRESSE = #$16 1170 -.EQ ENDADRESSE = %$47D1
S48 —-.EQ ENDADRESSE = $4A 11880 —.EQ@ ZAEHLER = %14
550 -—-.EQ ZIELBEREICH = $&F00 1198 —3;
560 —; 1200 - LDA #< (ANFANGSADRESSE)
570 - LDX #(ENDADRESSE-ANFANGSADRESSE) 1210 - STA ZAEHLER
580 -SCHLEIFE3 LDA ANFANGSADRESSE , X 1228 - LDA #> (ANFANGSADRESSE)
59@ -~ STA ZIELBEREICH,X 1230 - STA ZAEHLER+1
&8 - DEX 1240 - LDX #>(ENDADRESSE+1-ANFANGSADRESSE)
6106 "~ BPL SCHLEIFE3 3; PRUEFT N-FLAG 1250 - LDY #@
&208 -3 126@ —SCHLEIFES6 LDA (ZAEHLER) ,Y
638 -3 127@ - EOR #$FF
640 —3; QUELLTEXT ZU LISTING 8 1280 - STA (ZAEHLER) ,Y
&50 —; 12908 - INY
&60 -3 1300 - BNE SCHLEIFE&
&70 —.EQ ANFANGSADRESSE = $3FD2 1310 - INC ZAEHLER+1
680 -—.EQ ENDADRESSE = $475F 1328 - DEX
690 —.EQ@ ZAEHLER = $14 1330 - BNE SCHLEIFES&
700 —; 1348 —;
.4 350 -3 ENDE VON LI
Llstmg 23 1350 -3 LISTING 12

90

C 64

Kurs

9. Schleifenprogrammierung
L]

Zunadchst befassen wir uns mit Schleifen, die maximal
256mal durchlaufen werden.
Typ a: Schleifen mit maximal 256 Durchlaufen

Da 256 verschiedene Zahlen mit einem 8-Bit-Prozessor
dargestellt werden kénnen, verwendet man hier das X- (oder
Y-) Register als Schleifenzéhler. In Listing 12 sehen Sie
die einfachste Form einer Schieife, die die Zeropage-Adres-
sen $02 - $FF nach $6F00 kopiert.

Da der Schleifenzéhler X in Listing 12 INKREMENTIERT
wird, haben wir es mit einer INKREMENTIERSCHLEIFE zu
tun. Nach dem Inkrementieren (»6007 INX«) wird durch
»6008 CPX # FE«Uberprft, ob die Schleife beendet werden
kann. Eine eingehendere Beschreibung des Programm-
ablaufs ertbrigt sich.

Fur Schieifen des Typs a (maximal 256 Durchlaufe) ist es
aber meist vorteilhaft, eine DEKREMENTIERSCHLEIFE zu
verwenden. Wie eine solche Schieife programmiert wird,
sehen wir an Listing 13.

Listing 13 unterscheidet sich in der Wirkung nicht von
Listing 12, obwohl man dies nicht unbedingt auf den ersten
Blick erkennt. Deshalb soll dieses Listing naher besprochen
werden. In Zeile 6000 erhélt das X-Register den Inhalt $FE.
Durch »6002 LDA 01,X« wird damit das letzte Byte der Zero-
page, namlich $FF, zuerst gelesen und nach $70FE
geschrieben. Dann wird X dekrementiert. Ist X noch nicht O,
so wird die Schleife erneut durchlaufen.

Der niedrigste X-Wert innerhalb der Schleife ist folglich 1;
aufgrund von »6002 LDA 01X« ist $02 die niedrigste
Zeropage-Adresse, die kopiert wird. In Listing 12 ist O der
niedrigste X-Wert. Die niedrigste Adresse aufgrund von
»8002 LDA 02, X«istalso auch $02 (stimmt auffallig). Warum
$FF die hochste kopierte Zeropage-Adresse ist, kénnen Sie
nun selbst den Listings 12 und 13 entnehmen.

Listing 14 ist eine Dekrementierschleife, die die Kopie der
Zeropage wieder von $6F00 nach $02 zuritickhoilt.

Der Vorteil von Dekrementierschleifen beim Typ a ist, daB
zum Erkennen der Abbruchbedingung (X=0) kein Ver-
gleichsbefehl erforderlich ist, weil nach dem DEX-Befehl
automatisch das Z-Flag gesetzt wird, wenn X Null wird.

Das Entfallen des Vergleichsbefehls »CPX # « bringt eine
Ersparnis von 2 Byte Speicherplatz sowie insgesamt 508
Taktzyklen Rechenzeit. Da jedoch bei 6004 eine Seiteniiber-
schreitung (eine Seite entspricht 256 Byte) vorliegt,
schrumpft der Zeitgewinn auf 254 Taktzyklen (dies lieBe sich
aber vermeiden, indem wir die Zeropage nach $6F01 kopie-
ren, womit durch »6004 STA $6F00,X« keine Seiteniiber-
schreitung auftreten wirde).

Nun wollen wir noch einen Sonderfall behandein:

Dekrementierschleifen vom Typ a, bei denen der Aus-
gangswert fur X < 129 ist.

in Listing 15 sehen Sie eine Schieife, die den Bereich $16
- $4A nach $6F00 kopiert, Listing 16 schreibt die Werte von
$6FO00 zuriick nach $16. Selbstverstandlich hitten wir das
Problem auch so 16sen kénnen wie in Listing 13. Wir wollen
aber noch eine andere Konstruktion von Dekrementierschlei-
fen kennenlernen, die in diesem Sonderfall moglich ist.
Besprechen wir also Listing 15.

Bei 6000 wird ins X-Register die Zahl geladen, die man zu
$16 addieren muB, um $4A zu erhalten. Dadurch wird
zundchst bei 6002 die Adresse $4A gelesen und nach
$6F34 geschrieben. Bei 6007 wird dekrementiert. Neu ist
der Verzweigungsbefehl: es wird das N-Flag tberpruft. ist
X = $FF, wird das N-Flag gesetzt und »6008 BPL 6002«
beendet die Schieife. Der niedrigste Wert von X, der inner-
halb der Schleife vorkommt, ist demnach $00.

Der BPL-Befehl funktioniert nur, wenn der Ausgangswert

i -

, 6088 A 0@ LDY #00@
,6002 BY 80 20 LDA 2000.,Y
, 6085 49 FF EOR #FF
6087 99 @8 28 STA 2000a,Y
,600A C8 INY

6808 D@ F5 BNE 6002
,608D EE 84 6@ INC 60604
6818 EE @9 6@ INC 4209
,6813 AD @9 6@ LDA 6009
L6816 C9 408 CMF #40
,6@18 DA ES8 BNE 6002
Listing 24

, 6000 AB G0 LDY #0@
,6002 BY @8 4@ LDA 4Q00,Y
s 60085 49 FF EOR #FF

, 6007 99 @8 4@ STA 400@a,Y
,600A CB INY

,608B DA F3 BNE 6002
,688D EE @4 6@ INC 6204
,6081@ EE @09 6@ INC 6009
6813 AD B9 6@ LDA &60@%9
,6016 C9 4@ CMP #40

, 6818 D@ E8 BNE &@02
Listing 25

, 6000 A9 00 LDA #Q@0
,6002 8D 13 6@ STA 6013
6085 8D 18 68 STA 6@18
,6008 A% 20 LDA #20
,608A 8D 14 4@ STA 6Q14
608D 8D 19 6@ STA 6819
6018 A 22 LDY #0@
6812 B9 FF FF LDA FFFF,Y
,6@815 49 FF EOR #FF
6817 99 FF FF STA FFFF,Y
,681A C8 INY

26818 D@ FS BNE 6012
26810 EE 14 6@ INC 6014

. 6020 EE 19 6@ INC 6019
26023 AD 19 6@ LDA 6019
26026 C2? 40 CMP #40
,6028 D@ E8 BNE 6@12
Listing 26

von X <129 ist. Andernfalls ware namlich nach dem Dekre-
mentieren X>127 und damit das N-Flag gesetzt. Dies aber
hétte zur Folge, daB die Schieife nur 1mal durchlaufen wirde.

Zur soeben behandelten Schleifenkonstruktion sind noch
zwei Dinge zu sagen; erstens, daB sie nur in diesem Sonder-
fall (X< 129) méglich ist, und zweitens, daB sie nicht effekti-
ver als eine Lésung wie in Listing 13 ist.

Allgemeine Giiltigkeit hat aber folgende Regel fur Schleifen
vom Typ a:

Bei Schleifen vom Typ a ist Dekrementieren effektiver
als Inkrementieren, solange die Durchlaufzahl nicht
255 Uberschreitet.

Bei 256 Durchlaufen erweist sich Inkrementieren oft
als besser.

91

Kurs

C 64

An Listing 17 sehen wir ein Beispiel fur den letzten Satz der
Regel. Listing 17 kopiert die letzten 256 Speicherplétze des
Stapels ($0100 - $01FF) und den Stapelzeiger nach $6F00
- $7000. Listing 18 schreibt den Stapel wieder zurlck.

Die Dekrementierschleife (6000 - 600A) kopiert nun den
Bereich $0101 - $01FF, $0100 wird nicht tUbertragen. Dies
geschiehtin 600B - 600F. Eine andere Moglichkeit wire ein
zeitraubender CPX # FF-Befehl nach »6008 DEX«.

6011 - 6013 sichert schlieBlich noch das SP-Register.

Hier istin der Tat eine Inkrementierschleife besser. Andern
wir Listing 17 also in Listing 17a:

, LDX # 00

-LOOP LDA 0100,X

- STA 6F00,X
INX

- BNE LOOP

- TSX

- STX 7000

(1

aus jeder 1 wird eine O und umgekehrt). Da hierfir ein 8-Bit-
Indexregister nicht ausreicht, benétigen wir einen 16-Bit-
Zahler, namlich $14/$15. Dieser sollimmer die Adresse bein-
halten, die invertiert wird. In diesen Zahler schreibt die Initiali-
sierung der Schleife den Startwert $3FD2 (siehe $6000 -
$6007).

Daes beim 6510 keine indirekte Adressierung fur LDA/STA
gibt, sbndern nur die indirekt-indizierte oder indiziert-
indirekte, missen wir auf eine dieser Adressierungen aus-
weichen und den Index auf O setzen (»6008 LDY # 00«).

Bei $600A beginnt die Schleife: der Wert wird eingelesen,
mit $FF EOR-verknUpft und zurtickgeschrieben. Nun wird
der 16-Bit-Zahler $14/$15 erhéht (6010 - 6015). Dann wird

Analog ergibt sich Listing 18a:

LDX #00
LOOP LDA 6F00,X
- STA 0100,X
INX
- BNE LOOP
- LDX 7000
- XS

(1)

In den Listings 17a und 18a habe ich diejenigen Befehle,
die sich in der symbolischen Darstellung nicht von den
Listings 17 und 18 unterscheiden, mit einem »-« markiert.

Typ b: Schleifen mit mehr als 256 Durchlaufen

Wahrend Schleifen des Typs a meist so schnell abgearbei-
tet werden, daB man es gar nicht bemerkt, dauern Typ-b-
Schleifen oft eine oder mehrere Sekunden.

Deswegen wollen wir hier versuchen, den Zeitbedarf von
Typ-b-Schleifen zu verringern.

Unsere erste Typ-b-Schleife (Listing 19) soll den Bereich
von $3FD2 bis $475F invertieren (= EOR # FF-verknUpfen,

, 68008 A D2 LDA #D2

,60@2 8D 11 6@ STA 46011
, 6805 8D 16 6B STA 6816
,6088 A 3F LDA #3F

,608A 8D 12 6@ STA 6012
,68@8D 8D 17 6@ STA 6@17
6818 AD OB 2@ LDA Q2RO
, 6813 49 FF EOR #FF

,60815 8D 00 0@ STA 0000
,6018 EE 11 6@ INC 6011
,6@81B EE 16 6@ 1INC 6016
,6B1E DB @6 BNE 6026
,6020 EE 12 6@ INC 6012
,6@823 EE 17 4@ INC 6017
6826 AD 11 6@ LDA 6011
, 6029 C9 60 CHMP #6460

+6@82B AD 12 68 LDA 6812
,682E E9 47 SBC #47

, 6838 9@ DE BCC 6010
Listing 27

, 6008 A2 00 LDX #0@@
6002 B8E 11 6@ STX 6011
,60805 B8E 14 4@ STX 6014
,60B8 A2 AB LDX #AQ
,6800A B8E 12 6@ STX 6012
,608D BE 15 6@ STX 6015
,6018 AE G2 0@ LDX 0000
,6013 BE 0@ AB@ STX 20018
,6016 EE 11 648 INC 6011
26819 EE 14 68 INC 4014
,681C D@ F2 BNE 6010
y6B1E EE 12 6@ INC 6012
6821 EE 15 6@ INC 6015
6024 AE 12 6@ LDX 6812
,6@027 E@ C@ CPX #Cao
, 68029 D@ ES BNE 601@
Listing 28

80 —.BA #6000

98 -.LI 1,3,@

ie@ -—;

110 —; HYFRA-ASS-RUELLTEXT ZU EINER

128 -; SELBSTMODIFIZIERENDEN SCHLEIFE .

13@ -3 (ARBEITET WIE LISTING 35)

148 -3

15@ -3 1985 BY FLORIAN MUELLER

1648 —;

17@ -3

188 -.6GL START = $A00@

19@ -—-.GL ENDE = $BFFF

2006 -3

218 - LDX #< (START)

228 - STX MOD1+1

238 - STX MOD2+1

240 - LDX #2>(START)

25@ - STX MOD1+2

2686 - STX MOD2+2

27@ -MOD1 LDX #FFFF

28@ -—-MODZ2 STX #FFFF

298 - INC MOD1+1

30 - INC MOD2+1

31 - BNE MOD1

328 - INC MOD1+2

Iz - INC MOD2+2

348 - LDX MOD1+2

350 - CPX #>(ENDE+1)

360 - BNE MOD1

Listing 29

Cc64 Kurs

100 -.BA $0801 1080 - JMP READY 5 WARMSTART

11@ -.0B "LOADER-MAKER 64,P,W" 1098 —;

120 -3 118@ -.BY "R",$D5,13 ; "R",SHIFT U,RETURN

158 -3 1110 —;

14@ —3 RN H RN 1120 —; HIER ENDET DER PROGRAMMTEIL,

15@ -3 * * 1138 —; DER MODIFIZIERT WIRD.

160 -3 * LOADER-MAKER =* 1140 —; ES FOLGT DIE MODIFIKATIONSROUTINE:

178 -3 * * 1150 —;

18@ =3 HNHINK NI IR IR NN 116@ -MDFIKATOR JSR $ES544 5 = PRINT CHR#(147)
190 —; » * 117@ —...PRINT (TEXT1)

200 -; * EIN PROGRAMMGENERATOR # 118@ —; STARTADRESSE HOLEN

218 —; » * 1190 —;

228 -3 * VON FLORIAN MUELLER * 1200 - JSR $AEFD 5 PRUEFT AUF KOMMA
238 -3 * * 1210 - JSR $AD8A 5 HOLT PARAMETER
2402 =5 TR NI 1220 — JSR $B7F7 3 NACH $14/%15

258 -3 12308 —;

260 - 1240 - LDX $14 ;5 STARTADRESSE

276 -3 1250 - LDA $15 s HOLEN,

288 -.GL BASIN = $FFCF 1260 - STX START+1 ;5 IM PROGRAMM

29@ -.GL SETPAR = $FFBA 1278 - STA START+2 5 ABLEGEN UND

300 -.GL SETNAM = $FFBD 12680 - JSR NUMOUT 5 UND AUSGEBEN

31@ -.GL LOAD = $FFDS 1290 —;

320 -.GL READY = $A474 1300 —;

330 -.GL NUMOUT = $BDCD 131@ —; NUN WIRD NOCH DER ZU MODIFIZIERENDE

348 -.GL TASTPF = 631 ; TASTATURPUFFER 132@ —; PROGRAMMTEIL IN DEN AUSGANGSZUSTAND

35@ -.GL ANZAHL = 198 ; ENTHAELT ANZAHL 133@ —; GEBRACHT:

368 -3 DER ZEICHEN IM 1340 —;

370 -3 TASTATURPUFFER 1350 - LDX #15 5 NAMEN MIT NULL-BYTES
380 -.GL KASSPF = 828 ; KASSETTENPUFFER 1360 - LDA #@ s BELEGEN

3980 -3 137@ -SCHLEIFE3 STA NAME,X 5 DURCH EINE

400 -—; 1380 - DEX 5 DEKREMENTIER-
41@ -.MA PRINT (TEXT) 1390 - BPL SCHLEIFE3 ; SCHLEIFE

428 - LDA #< (TEXT) 3 MAKRO 1400 -3

430 - LDY #>(TEXT) ;5 FUER 1410 - STA SYSTEM+1 ;5 KEINE SYSTEMMELDUNGEN
440 - JSR $ABLE 3 TEXTAUSGABE 1420 -3

450 -.RT 1430 - LDA #3 5 SPRUNGWEITE = 3
460 -3 1440 - STA FEHLER+1

478 -3 1450 -3

488 -3 1460 - LDA #$A2 5 OPCODE FUER "LDX #"
490 -3 1470 - STA GERAETENR

500 -.WO LINK+1 ; LINKPOINTER 1480 —;

518 -.WO 1985 ; ZEILENNUMMER 1490 —;

528 -.BY $9E 3 TOKEN FUER "SYS" 150@ —; AN DIESER STELLE IST DAS "GERUEST"

538 - -TX "20861" 151@ —; (DER ZU MODIFIZIERENDE TEIL)

540 -—LINK .BY 0,0,0 3 ENDMARKIERUNG 1520 —; IM AUSGANGSZUSTAND

550 -3 DER BASIC-ZEILE 1530 -3

S6@ -3 154@ —;

5780 —-SYSTEM LDX #@ 3 FLAG FUER SYSTEM- 155@ —; EINGABE DES FILENAMEN

588 - STX $9D 3 MELDUNGEN SETZEN 1560 —;

590 -3 1578 —;

&0 - LDX #£49 s DEKR.-ZAEHLER 1588 —...PRINT (TEXT2)

61@ —SCHLEIFE1 LDA ABLAGE,X 3 LADEROUTINE 1598 — LDX #0 s ZAEHLER AUF @
&20 - STA KASSPF,X 3 VON ABLAGE IN 1608 -SCHLEIFE4 JSR BASIN

638 - DEX 3 DEN BEREICH 1610 - CMP #13 ;5 ENDE DER EINGABE?
648 - BPL SCHLEIFE1I ; KOPIEREN, IN 1620 — BEQ@ WEITER1 3 JA=>WEITER

650 -3 DEM SIE LAEUFT 1630 - STA NAME, X 35 BYTE ABLEGEN

&6 - JMP KASSPF 3 & STARTEN 1640 - INX

670 -3 1650 - CPX #16 3 16 ZEICHEN MAX.
688 -3 1660 — * BNE SCHLEIFE4 ; NAECHSTES ZEICHEN
498 -3 ES FOLGT DIE LADEROUTINE, DIE HIER 1670 —;

708 -3 AN FALSCHER STELLE ABGELEGT IST UND 168@ —3; WENN DIESE STELLE DURCHLAUFEN WIRD,

71@ -—; VON DER "SCHLEIFE1" (&6@0@-64@) IN 1698 -3 HAT DAS X-REGISTER DEN WERT 16.

72@ -3 DEN ORIGINALBEREICH GESCHRIEBEN WIRD. 1700 —;

730 -3 171@ —-; BEI "WEITER1" HINGEGEN KANN ES AUFGRUND
748 —ABLAGE LDA #1 ;5 FILENUMMER #1 172@ -3 DES BRANCH-BEFEHLS "BEQ WEITER1"

758 - TAY 5 SEKUNDAERADRESSE #1 173@ —; UNTERSCHIEDLICHE WERTE HABEN.

760 —GERAETENR LDX #@ ;5 GERAETEADRESSE #7? 1740 —;

77@ - JSR SETPAR ;5 PARAMETER SETZEN 1758 -WEITER1 STX LAENGE+1

780 -3 176@ —3

79@ -LAENGE LDA #@ ;5 LAENGE DES FILENAMEN 1778 —;

8ea - LDX #< ($35C) 5 ADRESSE DES 178@ —; EINGABE DER GERAETEADRESSE

810 - LDY #>($35C) 5 FILENAMEN: $@35C 179@ —;

aze - JSR SETNAM ;5 NAMEN SETZEN 1800 -;

838 -3 181@ —...PRINT (TEXT3)

840 - LDA #0 5 FLAG FUER "LADEN" 1820 - JSR BASIN 5 HOLT ZEICHEN

8se - JSR LOAD 1830 - SEC 3 VOR SUBTRAKTION
868 -3 1840 - SBC #"@" 5 IM AKKU STEHT JETZT
878 -FEHLER BCS LOADERROR ; LADEFEHLER? 185@ —; ’ DIE ZAHL

88@ -START JMP @ 5 ZUR STARTADRESSE 1860 —;

89@ -LOADERROR LDX #$1D s "LOAD ERROR" 1878 - STA GERAETENR+1; ABLEGEN

Jea - JMP ($30@) 5 AUSGEBEN 1880 - BNE WEITER2 ;5 GERAET<>@ : WEITER
918 -3 189@ —-; DA ALS GERAETENUMMER @ EINGEGEBEN

928 -NAME .BY 0,0,0,0 5 16 BYTES 19@8@ —-; WURDE, MUSS DER GESAMTE BEFEHL

938 - .BY 0,0,0,0 ;5 FUER FILENAMEN 1918 —; "LDX #GERAET" IN "LDX $BA"

94@ - .BY 0,0,0,0 3 RESERVIEREN 1920 -; UMGEWAENDELT WERDEN, DAMIT DAS

958 - -BY 0,0,0,0 193@ —; NACHLADEN VON DEM GERAET ERFOLGT,

960 —; 1948 —-; VON DEM DER LADER EINGELESEN WIRD.

97@ -BASIC STX $2D ;5 POINTER FUER 195@ —;

988 - STY $2E 5 PROGRAMMENDE SETZEN 1960 — LDA #$A6 ;5 OPCODE FUER "LDX ZP"
998 - JSR $ES44 5 = PRINT CHR$(147) 197@ — STA GERAETENR

1000 - LDX #3 5 3 BYTES IN 1988 — LDA #$BA 5 "LDX $BA"

1018 - STX ANZAHL s TASTATURPUFFER 1990 — STA BERAETENR+13; GENERIEREN

1028 -3 2000 —;

1830 —SCHLEIFE2 LDA $@383,X 5 AUS DER TABELLE 2010 —;

1040 - STA TASTPF,X s IN ZEILE 1100 2020 —; MASCHINENPROGRAMM (J/N)7?

1858 - DEX ;5 KOPIEREN 2@3a —;

1060 — BPL SCHLEIFE2 2040 —;

1870 -3 2050 -WEITERZ ... PRINT(TEXT4)

Listing 30

baer, 93

 Ergiinzen Sie

m6aer.

| Schaffen Sie sich ein interessantes Nachschlagewerk -
und gleichzeitig_ein wertvolles Archiv!

Kennen Sie alle Ausgaben von 64’er? Suchen Sie einen ganz bestimmten Testbericht? Oder haben Sie einen Teil
eines interessanten Kurses versdumt? Suchen Sie nach einer speziellen Anwendung?

Damit Sie jetzt fehlende Hefte mit »Ihrem« Artikel nachbestellen kénnen, finden Sie auf diesen Seiten eine
Zusammenstellung aller wesentlichen Artikel von Ausgabe 4/84 bis Ausgabe 3/85.

Und so kommen Sie schnell an die noch lieferbaren Ausgaben: Priifen Sie, welche Ausgabe in Ihrer Sammlung
noch fehlt, oder welches Thema Sie interessiert. Tragen Sie die Nummer dieser Ausgabe und das Erscheinungs-
jahr (z.B. 2/85) auf dem Bestellabschnitt der hier eingehefteten Bestell-Zahlkarte ein. Die ausgefiillte Zahlkarte ein-
fach heraustrennen und Rechnungsbetrag beim nichsten Postamt einzahlen. Ihre Bestellung wird nach Zahlungs-
eingang umgehend zur Auslieferung gebracht.

Stichwort Titel Seite Aus- Stichwort Titel Seite Ans- Stichwort Titel Seite Aus-
gabe gabe gabe
Aktuell Denkspiel 3D-Vier gewinnt — Spielen in der dritten Dimension 9 12/84 Ein Drucker fiir alle Fille: Epson FX-80 23 10/84
Computer Die neuen — 264 und 364 (von der CES in Las Vegas) 9 4/84 Mastermind als Vierzeiler 8l 12/84 Ein Star der es in sich hat (delta-10) 25 10/84
HeiBe Messe in der Wiiste: CES (PC 128, PC 10, Generator Spring Vogel, spring (LdAM) 68 9/84 Olympia ic compact 2: i ine fiir 28 10/84
Commodore LCD) 8 3/85 Pacman Pac-Boy — die Herausforderung 89 8/84 den C 64
DFU Datex-P und auslidndische Netzwerke 59 10/84 Reaktion Escape (VC 20) 86 8/84 Roland DXY-101 — ein Flachbettplotter im 27 10/84
Interessant bis brisant — die elektronischen Brief- 10 12/84 Rennfahrer ohne Sturzhelm (VC 20) 86 4/84 DIN-A3-Format
kisten Strategie Schiebung (VC 20) 7 9/84 Seikoshas GréBter: Test GP-550A 26 10/84
Chaos Ci iction Congress 15 3/88 Taktik Epedemic (VC 20) 12 10/84 EPROM EPROM-Brenner: Vergleichstest 36 8/84
Kreatives Chaos (Interview mit dem CCC) 12 10/84 Gehimtraining mit Supermemory 8l 2/85 Expansions Expansions iiber alle Grenzen hinaus 34 4/84
MCI Mail: die schnelle Post 8 2/85 Kampfe wie im alten Rom — Caesar 78 4/84 Floppy Floppy mit (Speeddos, T 26 12/84
Floppy Neues 1451-Laufwerk 14 3/85 Wettbewerb Notlandung 16 2/85 Computing)
SFD 1002 8 9/84 . Interface Das macht den Kleinen gréBer (64-KByte-Karten) ne 9/84
Messen Consumer Electronics Show in Chicago 0 8/84 Tips & Tricks (VC 20)
Musik Musikneuigkeiten aus den USA — MIDI 44 9r84 Auto Automatische Zeilennumerierung 84 12/84 Digitalisierte Bilder mit dem C 64 24 18
Autoboot ARutoboot beim C 64 8 3/85 Speichertuning filr VC 20: MR 64 26 1/85
Autostart Autostart fiir den VC 20 98 8/84 Joystick Joystick-Vielfalt (20 Joysticks im Test) 34 12/84
ieti: 3 Basic Basic-Zeilen genau betrachtet 87 2/85 Monitore Die Scharfmacher (Cable, Taxan, BMC) 20 12/84
Listings zum Abtippen Basic- PRINT AT und RESTORE N (VC 20) 01 8/84 | Schnitt Card/Print +G — Das Allround-Interface (Centronics) 20 3/85
Anwendung Erweiterung stellen Das Interface mit Weitblick (WW-92000/G:
Abtippen Checksummer (C 64 und VC 20) 72 1/85 Stringy: C 64-Erweiterung 86 12/84 Centronics) 18 3/85
Checksummer (C 64 und VC 20) 65 2/88 Buchstaben GroBe Buchstaben 89 1/85 Hardware-Interface ganz weich: EC-64 23 /8
MSE — Abtippen sicher und leicht gemacht 68 2/85 Datasette Fast Tape — die schnelle Kassette (VC 20) 80 12/84 Sprachaus- Die Stimme des Meisters: Voice Master 19 2/85
MSE — Abtippen sicher und leicht gemacht 8 3/85 Musik aus der Datasette 84 12784 gabe Sprachausgabe mit dem SDP 120 22 8/84
Neuer Checksummer 64 — blitzschnell und kiirzer 68 3/88 Direk P i Direk 82 12/84
DFU Mailboxprogramm fiir den C 64 14 9/84 Floppy 22 Read Error — Theorie und Praxis 4 3/88
EPROM D: i: Wie jere ich EPROMs? le2 9/84 Auf das “1” kommt es an 92 l2/84
Familie Familienplanung mit dem VC 20 (AdM) 52 2/85 Disk Copy 92 4/84
Finanzen Abgerechnet wird mit dem C 64 (AdM) 68 8/84 Diskette intern (Disk-Durmp) 95 10/84 Hardware
i Fi ik (AdM) 68 10/84 Disketten-Organisation (VC 20) 7 10/84
Floppy Drucker/Floppy ein- oder ausgeschaltet? ks 8/84 Floppy-Lister 82 3/85 B: i 16-KByte-Erwei g (VC 20) 20 2/85
Hypra-Load: Schnelles Laden von Diskette (LdM) 67 10/84 Hypra-Load mal vier 82 1/85 Commodore im neuen Kleid 30 8/84
Kalend i i (VC 20) 50 4/84 Kopieren mit Komfort: Super Copy 102 10/84 Das 30-Mark-Interface (RS232) 29 3/85
Maske Bildschirmasken schnell erstellt 8 9/84 Maschinenprogramme auf Diskette speichern 91 2/85 Ihr Akustikkoppler wird zum Modem: Automodem 114 9/84
i ical-Basic: Das Super-Basic fiir den 50 12/84 View BAM 99 8/84 Joystick im Selbstbau 33 3/85
VC 20 (LdM) Funktionen Kudiplo auf fiir den C 64 (Kurvendiskussion) 9 10/84 Resetschalter am C 64 34 8/84
Monitor Ohne gutes Werkzeug geht es nicht: SMON (Teil 2) 61 12/84 Grafik Tips und Erweiterungen zu Hi-Eddi und Simons 88 3/85 Richtig verbunden — Video/Audio-Kabel! fiir den 22 2/85
Ohne gutes Werkzeug geht es nicht: SMON (Teil 3) 69 1/88 Basic Ce4
Ohne gutes Werkzeug geht es nicht: SMON (Teil 4) 72 2/85 Joystick Cursorsteuerung leicht gemacht (mit Joystick) 86 2/85 DFU A i und 3 it 28 8/84
Musik Die Musik macht der C 64: Elektronikorgel (AdM) 70 9/84 Listing Der groBe Uberblick: formatiertes Listing 90 10/84 Drucker MPS 801 — Ein Erfahrungsbericht 20 8/84
Musik, Musik, Musik: Synthesizer (AdM) 81 12/84 Fehlersuche leicht gemacht: LISTSTOP 97 9/84 Marktiibersicht: Drucker (Teil 1) 29 10/84
Sport Computer und Sport — Auswertung von s 4/84 Prograrfmiertes LISTing: LIST XY 100 10/84 EPROM Nichts ist ewig (ROM-Change, verbessertes Betriebs- 30 12/84
DMM-Ereignissen) Listsch List- und L& leicht gemacht 85 12/84 sytem)
Der C 64 als Handballtrainer (AdM) 52 U85 Maschi laschi auf 8 12/8¢ | Monitor Richtig verbunden — Video/Audio-Kabel fiir den 2 2/85
Gut Ziel mit dem C 64 (AdM) 52 3/85 sprache DATAWandler 02 9/84 ce4
Ohne Organistaion kein Tor: Ligatab (LdM) 50 3/85 Merge Kleben per Software — Merge % 4/84 Musik MIDI — Glanz und Elend eines Interfaces 46 9/84
Super 8 VC 20 steuert Super 8-Kamera 0 2/85 Monitor Besseres Monitorbild beim C 64 % 2/85 Reparatur Geheimnissen auf der Spur: 1541 reparieren 24 8/84
UserPort Analoger MeBwert rein — analoger Stellwert raus B 8/84 Opcodes Hexereien: undefinierte Opcodes beim 6502 84 3/8s Schitt- Erst ein IEC-Bus 6ffnet Tir und Tor (Marktiibersicht 24 3/85
] Kopplung iiber den User-Port (VC 20) 3 8/84 POKEs Durch POKES zum Erfolg — Die SpieleTrickkiste 83 3/85 stellen und Test)
Video Video-Vorspann mit dem VC 20 80 10/84 POKE mal wieder: diverse POKEs 9l 10/84 Gute Connections (RS232-, Centronics- 21 3/85
D fidr den VC 20 : 9 984 Parameter ii an P in Maschi 88 1/85 Marktiibersicht)
sprache
Alcori Sk e Drawii) & e | Rese Resetschalter am C 64 3 e/ee
Axiometrie Von allen Seiten betrachtet (SB 60 1z/gs | Restore Festo :ﬂ?:('{','é'ezx‘};mg““‘me el
sze*;’:mg Screen Change 94 9/84 sen Erste Hilfe fir den C 64: RENEW 02 9/84 Kurse
nitt- Di i
Elektro- Elektrotechnisches Zeichnen mit dem VC 20 1 388 ellen Ve:l:::ﬁ\;:lr ;:fhg,“cvg»zo o Y& | Assembler Assemblerist keine Alchimie (Teil 1 138 9/84
technik Scrollen Als die Bilder laufen lemten ... (Scrollen) 88 2/85 Assemblex ist keine Alchimie (Teil 2) 180 10/84
Funktionen Kudiplo erfiillt Schiilertrdume (Kurvendiskussion auf 80 8/84 Basic Haben Sie den Bogen raus? (ARC bei Simons Basic) 98 9/84 Assembler ist keine Alchimie (Teil 4) 13¢ 12/84
dem VC 20) Simons Basic: Befehle die nicht im Handbuch stehen 103 9/84 Assembler st keine Alchimie (Teil §) i
Grafik Bewegte Grafik und Text mischen 66 12/84 Speicher R.AM-Floppy. 92 2/85 Assembler ist keine Alchimie (Teil 6) 134 2/85
Hardcopy 1520-Hardcopy mit dem VC 20 87 9/84 ‘ -) Assembler ist keine Alchimie (Teil 7) 124 3/85
Der VC 1525/MPS 802 als Grafikdrucker 83 10/84 Synthetische Die Suche nach den Synthetischen 104 o/84 Codes Alle Tasten-, Zeichen- und Steuercodes (Teil 4) 151 8/84
Die mehrfarbige Hardcopy mit dem 1520-Plotter 84 10/84 Tastatur User-PortTastatur (Zehnertastatur) 93 l0/84 Comal Comal — Eine Einfithrung (Teil 2) 145 12/84
Hardcopy Epson FX-80 88 10/84 Tips & Tricks Diverse 89 10/84 Comal — Eine Einfithrung (Teil 3) 130 2/88
Hardcopy Gemini-10X 85 10/84 Lésung von Dallas Quest) 90 /85 Eff. Prog. Finden mit System — Eine neuartige Suchmethode 48 3/85
Hardcopy MPS 801/VC 1515 82 10/84 Trace Trace und Single Step fiir Mchnenpmgmme 76 12/84 (Teil 3)

| Hardcopy filr den Sieger (FX-80 mit Gérlitz-Interface) 83 8/84 Der C 64 als PET 87 1/85 im C Die G: C i 122 1/8s

! Die Software-Vielfalt der CBMs fir den C 64 nuzen 102 8/84 (Teil 1)

' Schnitt- Olympia compact 2: ein Centronics-Interface 86 10/84 Von den Kleinen auf die GroBen (C 64 - CBM) 9% 8/84 i i in Maschi he (Teil2) 147 2/85
stellen User-Port User-Port-Display o1 8/84 Floppy In die Geheimnisse der Floppy ei (Teil) 153 10/84
Sprites Der Super-Sprite-Editor 89 9/84 User-PortTastatur (Zehnertastatur) 93 10/84 In die Geheimnisse der Floppy ei (Teil3) 139 12/84

Sprites schneller bewegen 70 4/84 In'die Geheimnisse der Floppy ei (Teil4) 148 185
Vier PseudoVICs mit 32 Sprites 7% 1/85 In die Geheimnisse der Floppy ei (Teil) 130 3/85
Zeichnen HI-EDDI: Ein fantastisches Zeichen und 50 1/85 Grafik Hires 3 (Teil 1) 123 2/85
Malprogramm (LDM) Hires 3 (Teil 2) 136 3/85
nudmmt Reise durch die Wunderwelt der Grafik (Teil 5) 142 8/84
Spiel 80-Zeichen- Mehr Ubersicht am Bildschirm (VC 20) 20 10/84 Reise durch die Wunderwelt der Grafik (Teil 6) 44 9/84
Abenteuer Castle of Doom — Adventure (LdM) 66 8/84 karten Reise durch die Wunderwelt der Grafik (Teil 7) 146 10/84
Das Grab des Pharao (LdM) 51 2/85 C G i —TestC 16 6 1/85 G Geschwindigkeit durch M: —so 39 2/85

Action Apocalypse now 106 10/84 Plus und Minus beim Plus/4 14 2/85 arbeiten Compiler
Q+Bert (VC 20) 8 2/85 Drucker Adcomp X100 — farbig plotten und drucken 22 10/84 Musik Dem Klang auf der Spur (Teil 1) 131 12/84
Arcade Invaders 4 4/84 Brother HR-5C: fast nicht zu héren 24 10/84 Dem Klang auf der Spur (Teil 2) 136 1/85

Stichwort

gabe
Dem Klang auf der Spur (Teil 3) 152 2/88
Precompiler Strubs — ein Precompiler fiir Basic-Programme 1o 4/84
(Teil 1)
Speicher Memory Map mit Wandervorschlagen (Teil 2) 132 12/84
Memory Map mit Wandervorschlidgen (Teil 3) 127 1/85
Memory Map mit Wandervorschligen (Teil 4) 150 2/88
Memory Map mit Wandervorschlagen (Teil 5) 144 3/85
VvC 20 Der gldserne VC 20 (Teil 1) 185 9/84
Der gldserme VC 20 (Teil 2) 157 10/84
Der gldserne VC 20 (Teil 4) 130 1/85
Der gliserne VC 20 (Teil 5) 141 2/85
Der gldserne VC 20 (Teil 6) 185 3/85
Spiele-Test
Abenteuer Die Lésung von Hobbit 49 2/88
Gordon Saga 48 2/85
Gruds in Space 137 8/84
House of Usher 37 10/84
Lésung von Dallas Quest 90 1/85
Lésung von Enchanter 44 3/88
Lésung von The Blade of Blackpool 34 10/84
The Quest 47 1/88
Action Flip and Flop 48 4/84
Impossible Mission 46 2/88
QX 9, Catastrophes 48 12/84
Save New York und Survivor 46 4/84
Tom + Zaga 48 1/85
Wizard 49 12/84
Arcade Fire Galaxy (VC 20) 37 10/84
Schnellboot — Rettung aus der griinen Hélle 109 9/84
Flipper Slamball — der ellenlange Flipper 108 9/84
Grundlagen Fantasy-Spiele 106 9/84
Sport One on One 136 8/84
Spiel des Jahres: International Soccer 46 12/84
Summer Games — Los Angeles 148t griiBen 138 8/84
Taktik Taktik- und Strategiespiele 4R 3/85
So machen’s andere
F C 132 4/84
Datenbank Klein aber oho — der VC 20 136 4/84
Finanzen Geregelter Zahlungsverkehr 164 9/84
Landwirt- Der Computer im Kuhstall 156 8/84
schaft
Lichttelefon Mit vier Baud iiber den Balkon 166 10/84
Software-Test
Assembler Assembler im Test (AS-64, MAE, TEX.AS., ASSI/M) 34 1/85
Assembler im Test: Mastercode, Profimat, Profisoft, 30 2/88
Maschine 64
Assembler? Assembler! 32 1/88
Basic- GBasic 28 1/85
Erweiterung
CP/M Erste Erfahrungen mit dem CP/M-Modul 18 4/84
Compiler Basic-P: auf Trab : Austro-Speed, 34 2/85
BASS, Exbasic, Petspeed
DFU Terminal 64 — Schwer auf Draht 24 2/88
Datenbank ISM 64 — ohne FleiB kein Preis uz 8/84
Finanzen Lohnsteuerjahresausgleich leicht gemacht 46 10/84
Floppy Ex-DOS und Disk Doctor 48 10/84
Quickcopy — das schnelle Kopierprogramm 28 9/84
Grafik Elektronische Aquarelle: Paint Magic 14 8/84
Graphics-Basic (HES) 38 12/84
Lemn- M i iber und Musik 43 12/84
programme
ilfe auf K; (M: i 26 2/88
SoftLearning — die weiche Welle des Lernens 40 1/85
ining mit dem Ci 39 3/88
‘Was bringt die Lern-Software? 42 12/84
ilfe auf K (26 2/85
Musik Gute Noten fiir gute Noten: Extendend Synthesizer 24 9/84
System
M i und Musik 43 12/84
Music-Composer — Komponieren leicht gemacht 42 9/84
Musicalc — oder was wirklich im C 64 steckt 29 9/84
Synthimat — Das Piano fiir den Aktenkoffer 38 9/84
Sprachen Die Turbo-Pascal-Story 40 12/84
Forth ohne Floppy (C 64 und VC 20) 50 10/84
Oxford-Pascal fiir den Commodore 39 12/84
Pascal — leistungsfihiger und eleganter als Basic 44 8/84
(Teil 2)
Sechs Pascal-Versionen im Vergleich 50 8/84
Tabellenkal- Calc Result — Dreidimensionale Kalkulation 21 9/84
kulation
H - i 2zu Hause 36 3/85
tung Textomat — Biiroanwendung zum kleinen Preis 34 9/84
TotlText — Flexibilitit ist Trumpf 38 3/88
Vizawrite 64 — Der C 64 wird zum PC 43 10/84
i mit dem C 39 3/85
Software
Basic Fehlersuche in Basic-Programmen (Teil 2) 67 9/84
Compil G indigkeit durch Maschi —s0 39 2/85
arbeiten Compiler
DFU Datex-P und auslindische Netzwerke 59 10/84
Mailboxprogramm fiir den C 64 4 9/84
EPROM D Wie iete ich EPROMs? 162 9/84
Floppy 22 Read Error — Theorie und Praxis 41 3/85
Grafik Neues vom Video-Chip beim VC 20 56 8/84
G D: Die i D 63 8/84
Die index-sequentielle Datei 54 9/84
luBdiagramme 20 9/84
So macht man Basic-Programme schneller (Teil 2) 44 12/84
Tips fiir den Umgang mit Sinnbildern (Flus- 14 9/84
diagrammen)
Tips fiir sauberes Programmieren 38 4/84
Musik Hard und Soft: eine kleine Marktiibersicht 58 9/84
Kl und i hnik 62 9/84
M der 271 9/84
Sprachen Basic ist out — Es lebe Forth 43 1/88
Pascal — leistungsfihiger und eleganter als Basic 44 8/84
Was ist Comal? 41 8/84
Von der i ine zum 34 3/85
tung (Auswahlhilfe)
Tips DOS 5.1 (Teil 2) 16 9/84
Wettbewerbe
Einzeiler inzeil Die ni 14 187 1/85
Kreuz- Kreuzwortritsel selber machen 181 12/84
wortrétsel
Unter- Formatierte Eingabe 156 1/85
programm Sieger mit Maske — Maskenerstellungsprogramm 172 10/84

Alle Beitrage sind in der Regel fiir den C 64, sofern nicht anders
gekennzeichnet (VC 20).

Folgende Abkiirzungen wurden verwendet: LDM = Listings des Monats,
AdM = Anwendung des Monats, SB = Simons Basic.

TIPS &TRICKS ABENTEUERSPIELE

(1. Programm-Sonderheft) (2. Programm-Sonderheft)
Eine wahre Fundgrube an Auf mehr als 100 Seiten
Ideen und Programmen viele interessante Adven-
fiilr Computer-Profis und tures, die Sie lange Zeit

alle, die es werden

fesseln werden. Mit ab-
wollen.
BESTELLCODE: Tips&Tips

geschlossenem Kurs zur
Programmierung eigener
Abenteuerspiele und zahl-
reichen Lésungen profes-

sioneller Adventures.

BESTELLCODE:

Abenteuerspiele
SPIELE GRAFIK & DRUCKER
(3. Programm-Sonderheft) (4. Programm-Sonderheft)
HeiBe Listings fiir alle Randvoll mit Informationen:
Spiele-Fans: Sportspiele, Rund 28 Listings der Spit-
SchieBspiele, Denkspiele, zenklasse. Darunter Top-
Spielegeneratoren, Aben- Listings zur rdumlichen
teuerspiele, Brettspiele, Darstellung von Kérpern
Taktikspiele, Geschick- aus beliebigen Betrach-
lichkeitsspiele und eine tungsrichtungen.
Marktiibersicht aller in Weiters: Priifsummenli-
Deutschland erhiltlichen stings, Drucker-Anwen-
professionellen Spiele dung, Basic-Erweiterung,

bringen alles, was das
Herz der Spiele-Fans
héher schlagen 148t.
BESTELLCODE: Spiele

Hardcopy-Routinen, Zei-
chengenerator, Grundla-
gen, Tips & Tricks.
BESTELLCODE:

Grafik & Drucker

FLOPPY/DATASETTE
(8. Programm-Sonderheft)

Alles zum Thema Massen-
speicher: So stellt man die
Datasette ein. FMON 1541:
Das Werkzeug fiir werden-
de Floppy-Spezialisten.
Disk-Basic 64: Fast 50 neue
Befehle fiir komfortablen
Floppy-Betrieb. Turbo Tape
de Luxe: Datasette 10mal
schneller als Floppy 1541.
8fach schneller laden mit

Hypra-Copy. i - mol
BESTELLCODE: Floppy o M

Am besten
gleich mithestellen:
Die 64'er-Sammelbox

Fiiralle Leser, die »64’er«regelma-
Big kaufen, sammeln oder im
Abonnement beziehen, gibt es
jetzt ein interessantes Service-An-
gebot: die 64’er-Sammelbox!

Mit dieser Sammelbox bringen
Sie nicht nur Ordnung in Ihre
wertvollen Hefte, sondern schaf-
fen sich gleichzeitig ein interes-
santes und attraktives Nachschla-
gewerk.

Ubrigens: Die Sammelbox ist
nicht nur ein praktisches
Aufbewahrungsmittel: Sie
eignet sich auch her-
vorragend als Ge-
schenk fiir Freun-
de und Bekannte

2u vielen

Anldssen.

Kurs C 64
2060 - JSR JANEIN s (JA/NEIN)? 10070— .TX "STARTADRESSE : "
2070 - BEQ WEITER3 5 JA=SWEITER 10080 .BY @
2088 — LDA #$6C ;5 SPRUNG AUF $@34C 100903
2090 - LDY #3083 3 VERBIEGEN 10100-TEXT2 .BY 13,13
2100 — STA START+1 35 BEI $36C STEHT 18110 .TX "FILENAME : "
2118 — STY START+2 ;5 EINE ROUTINE, 10120— .BY @
2120 -3 DIE DEN "RiIN"-— 101303
2130 —; BEFEHL SIMULIERT 10140-TEXT3 .BY 13,13
214@ —; 18150~ .TX "GERAETENR. (1-93@=UEBERNEHMEN) : "
215@ -3 10160- .BY @
216@ —; SYSTEMMELDUNGEN (J/N)7? 10170—;
217@ -3 1018@-TEXT4 .BY 13,13
2180 —; 10190- .TX "MASCHINENPROGRAMM"
2190 -WEITER3S ... PRINT(TEXTS) 10200~ .BY @
2208 — JSR JANEIN 3 (JA/NEIND? 10210-;
2210 - BNE WEITER4 5 NEIN=>WEITER 18220-TEXTS -BY 13,13
2228 - LDA #$80 ;s FLAG FUER 10230 .TX "SYSTEMMELDUNGEN"
2230 - STA SYSTEM+1 5 SYSTEMMELDUNGEN 18240- .BY @
2248 —; 102503
2258 —; 10260-TEXT6 .BY 13,13
2260 —; LOAD ERROR AUSGEBEN (J/N) 10270~ .TX "LOAD ERROR AUSGEBEN"
2278 —; 10280- .BY @
228@ —; 18290-;
2290 -3 10300-TEXT7 .BY 13,13,18
2308 —WEITER4 e.. PRINT(TEXT&) 10310 «TX "##% LOADER GENERIERT #%x"
2318 - JSR JANEIN 5 (JA/NEIN)? 18320- -BY 13,13
2320 - BEQ WEITERS s NEIN=>WEITER 10338 .TX "MIT °"SAVE® SPEICHERN,"
2330 - LDA #@ 5 FEHLERMELDUNGEN 10340~ .TX " MIT 'RUN’ STARTEN"
2340 — STA FEHLER+1 3 UNTERDRUECKEN 108350- -BY @
2350 —3 103603
23608 —; 1037@0-TEXT8 .BY 13,13,18
2378 -3 PROGRAMMENDE 10380 .TX "#%% PROGRAMMENDE ! ###"
2380 —; ============ 10390- .BY 13,13,0
2398 —; 10400-;
2400 -3 10410-TEXTY JTX " /N7
2410 -WEITERS ... PRINT(TEXT7) 10420- .BY @
2420 -3 10430-5
2430 -3 VEKTOR FUER BASIC—ENDE SETZEN 104403
2440 —; 20000—;
2450 —; 20010-; UNTERPROGRAMM FUER "J/N?"
2468 —; 20020-;
2470 — LDA #< (MDF IKATOR) 200303
2480 — STA $2D 5 LOW-BYTE 20040-;
2490 — LDA #>(MDFIKATOR) 20058-JANEIN ... PRINT(TEXTS)
2508 — STA $2E 5 HIGH-BYTE 20060~ JSR BASIN s EINGABE HOLEN
2510 — JMP READY ;5 SPRUNG INS BASIC 20070~ CMP #"«"
2528 —; 20080 BNE JANEIN1
2538 -3 20090~ PLA ;s SIEHE STAPEL—
100003 20100 PLA s MANIPULATION
1001@-; ASCII-TABELLEN 20110—. . .PRINT(TEXT8)
10020-; ============== 20120~ JMP READY 5 SPRUNG INS BASIC
10030—; 20130-JANEIN1 CMP #"J" s VERGLEICH MIT "J"
10040—; 20140~ RTS 5 RUECKKEHR VOM
10050-TEXT1 .TX "LOADER-MAKER 64" 20150—; UNTERPROGRAMM
10060~ .BY 13,13 20168-.EN
Listing 30 (SchluB)

Uberprift, ob die nachste Adresse schon mit der ersten
Adresse nach der Endadresse ($475F), also $4760, ber-
einstimmt (siehe $6016 - $601D). Dieser 16-Bit-Vergleich
wurde bereits im SMON vorgestellt. Bei $601E wird schlieB-
lich die Schleife beendet, falls die Abbruchbedingung (C=1)
erfullt ist.

Listing 20 ist eine Dekrementierschleife, die sich in der Wir-
kung nicht von Listing 19 unterscheidet. Da das Dekremen-
tieren einer 16-Bit-Adresse beim 6510 langsamer und spei-
cherplatzaufwendiger ist als das Inkrementieren, ist Listing
20 weniger effektiv als Listing 19.

Grundsatzlich kénnen Sie an den Listings 19 und 20
sehen, wie man eine Typ-b-Schleife programmiert. Diese
arbeitet jedoch nicht besonders schnell. Der Grund ist, daB
der Bereich von $3FD2 - $475F nicht restlos in ganze Sei-
ten (256-Byte-Blocke)aufgeteilt werden kann. Daher sollte
man sich immer Uberlegen, ob die Schileifendurchlaufzahl
nicht auf ganze 256-Byte-Blocke »aufgerundet« werden
kann. In unserem Fall wirde dies heiBen, daB mit einer
schnelleren Schleife der exakt 8 x 256 Byte lange Bereich
$3FD2 - $47D1 invertiert wird, anstelle des »ungeradenc
Bereichs $3FD2 - $475F. An einfacheren Zahlen wollen wir
nun eine solche Schieife flir ganze Seiten programmieren.
Der 32 x 256 Byte umfassende Bereich von $2000 bis
$3FFF (einschlieBlich) soll invertiert werden. Mit einer sol-
cher Routine kénnte das gerade sichtbare Bild bei Hi-Eddi
invertiert werden.

96

Die einfachste Form finden Sie in Listing 21. Zuerst wird die
Anfangsadresse in $14/$15 abgelegt. Ins Y-Register kommt
der Wert 0. Dann wird der Wert invertiert und das Y-Register,
der Low-Zahler, erhéht. Ist der Wert noch nicht 0, wird die
Schleife neu durchlaufen. Andernfalls wurde gerade eine
Seite abgearbeitet. Der High-Z&hler ($15) wird erhoht. Ist der
Inhalt des High-Zahlers = $40, wird die Schleife abgebro-
chen. Zubemerkenist, daB wahrend der Schieife die Adresse
$14 unverandert O bleibt. Die Adresse, die invertiert wird,
ergibt sich folgendermaBen:

(Y+Inhalt von $14)4256* (Inhalt von $15)

Da wir auf die Adresse (iber das Prozessor-Register Y Ein-
fluB nehmen kénnen und die Adresse $14 nicht verandert
werden muB, ist die Verarbeitungsgeschwindigkeit gegen-
Uber der »Normalforme (Listing 20) gestiegen. Das High-Byte
mussen wir aber weiterhin in $15 belassen. Neu fuhren wir
den High-Zahler X ein. Im X-Register merken wir uns, wieviele
Seiten invertiert werden. Diesen Wert verwenden wir als
Dekrementierzahler. In unserem Fall werden $20 Seiten
invertiert. Weil $20 zufalligerweise auch das High-Byte der
Anfangsadresse ($2000) ist, wird dieser Wert in Listing 22
nur einmal (6005) in den Akku geladen und dann bei 6009
ins X-Register tubertragen.

Beachten Sie bitte, daB in Listing 22 die Befehle »6004
TAY« und »6009 TAX« nur bei den Werten dieses Beispiels
verwendet werden kdénnen. In der Regel sind eigene »LDX
«- oder »LDY #-«-Befehle erforderlich. Wenn wir zum Bei-

bAEr,

C 64

Kurs

spiel den Bereich $3FD2 - $47D1 invertieren wollen, muB
die Initialisierung so aussehen:

LDA #D2 Low-Byte der ersten Adresse

STA 14

LDY #00 Index-Register

LDA #3F High-Byte der ersten Adresse

STA 15

LDX #08 High-Zahler
... Schleife wie ab 600C in Listing 22

Damit hatten wir eine Schleife, die den Bereich # 3FD2 -

$475F (siehe Listings 19 und 20) invertiert und wesentlich
schneller als die Listings 19 und 20 arbeitet. Da wir aber »auf-
gerundet« haben, wird zusétzlich der Bereich $4760 -

programm : loader—maker 0801 0a38

0801 Ob 08 c1 07 %e 32 30 36 Oa

0809 : 31 00 00 00 a2 00 86 9d ba
0811 : a2 49 bd 1f 08 9d 3c 03 Of
0819 : ca 10 7 4c 3c 03 a9 01 7
0821 : aB a2 00 20 ba ff a? 00 71
0829 : a2 Sc a0 03 20 bd ff a? «cS
0831 : 00 20 dS ff bO 03 4c 00 Ob
0839 : 00 a2 1d &c 00 03 00 00 77
0841 : 00 00 00 00 00 00 00 00 42
0849 : 00 00 00 00 00 00 86 2d be
0851 : 84 2e 20 44 e5 a2 03 86 09
0859 : cé6 bd 83 03 9d 77 02 ca 72
0861 : 10 £7 4c 74 a4 52 dS 0d Sd
0867 : 20 44 e5 a9 21 a0 09 20 dS
0871 : le ab 20 fd ae 20 8a ad 9e
0879 : 20 f7 b7 abé 14 a5 15 8e 37
0881 : 38 08 8d 39 08 20 cd bd 7c
0889 : a2 Of a? 00 2d 3f 08 ca a7
0891 : 10 fa 8d Oe 08 a% 03 8d 38
0899 : 36 08 a9 a2 8d 22 08 a? ef
08ail : 42 a0 09 20 1le ab a2 00 44
08a? : 20 cf ff c? 0d f0 08 9d 9e
08b1 : 3f 08 eB €0 10 dO f1 Be b7
08b% : 28 08 a? S50 a0 09 20 le &9
08c1l : ab 20 cf ff 38 e? 30 B8d 1f
08c? : 23 08 dO Oa a? aé 8d 22 bO
08d1 : 08 a9 ba 8d 23 08 a9 74 10
08d? : a0 09 20 1e ab 20 ib Oa 06
08et : fO Oa a%? 6c a0 03 8d 38 97
08e? : 08 Bc 37 08 a? 88 a0 09 fa
08f1 : 20 1le ab 20 1b Oa d0O 05 GSf
08f9 : a9 80 8d Oe 08 a9 9a a0 81
0901 : 09 20 le ab 20 1b Oa f0 fc
0909 : 05 a? 00 8d 36 08 a? bt 42
0911 : a0 09 20 le ab a? 69 85 ba
0919 : 2d a? 08 85 2e 4c 74 a4 2e
0921 : 4c 4f 41 44 45 52 2d 4d 24
0929 : 41 4b 45 S2 20 36 34 0d 4a
0931 : 0d S3 54 41 52 54 41 44 7a
0939 : 52 45 53 53 45 20 3a 20 ec
0941 : 00 Od Od 46 49 4c 45 4e 7d
0949 : 41 4d 45 20 3a 20 00 O0d 45
0951 : 0d 47 45 52 41 45 54 45 b8
0959 : 4e S2 2e 20 28 31 2d 39 93
0961 : 3b 30 3d 55 45 42 45 52 ce
0969 : 4e 45 48 4d 45 4e 29 20 ci
0971 : 3a 20 00 Od Od 4d 41 53 44
0979 : 43 48 49 4e 45 4e S0 52 a9
0981 : 4f 47 52 41 4d 4d 00 Od B8a
0989 : 0d 53 59 53 54 45 4d 4d 40
0991 : 45 4c 44 55 4e 47 4S5 4e 89
0999 : 00 Od Od 4c 4f 41 44 20 3d
0%al : 45 S2 52 4f 52 20 20 41 b7
0%a? : 55 53 47 45 42 45 4e 00 aa
09b1 : Od Od 12 2a 2a 2a 20 4c 1c
09b9 : 4f 41 44 45 52 20 47 45 30
0%9cl : 4e 45 52 49 45 52 54 20 e8
09c? : 2a 2a 2a 0d Od 4d 49 54 3e
09d1 : 20 27 53 41 56 45 27 20 ee
09d? : 53 S0 45 49 43 48 45 52 ff
0%9el : 4e 2c 20 4d 49 54 20 27 +d
0%9e? : 52 S5 4e 27 20 53 54 41 cf
09f1 : 52 54 45 4e 00 O0d Od 12 49
09f9 = 2a 2a 2a 20 S0 52 4f 47 2a
0a01l : 52 41 4d 4d 45 4e 44 45 53
0a0? : 20 21 20 2a 2a 2a 0d 0d 49
Qall : 00 20 28 4a 2f 4e 29 3f fd
0al9 : 20 00 a9 12 a0 Oa 20 le +d
0a21 : ab 20 cf ff c? S5f dO Oc 3
0a29 : 68 68 a%? f6 a0 09 20 1le 1le
0a31 : ab 4c 74 a4 c? 4a 60 Sc dd
Listing 31

$47D1 invertiert, obwohl wir das gar nicht wollen. Es gibt nun
mehrere Méglichkeiten, dies zu verhindern:

1. Wir verwenden die Schleife aus Listing 19, missen aber
eine deutlich héhere Arbeitsdauer hinnehmen.

2. Wir verwenden die Schleife aus Listing 22 mit obiger
Initialisierung. Dann invertiert eine Typ-a-Schleife den Rest-
bereich $4760 - $47D1 ein weiteres Mal. Damit wéren -
eine Besonderheit der EOR # FF-VerknlUpfung - im Restbe-
reich die alten Inhalte wiederhergestellt. Diese Lésung eignet
sich aber (fast) nur bei dieser logischen Verkniipfung und hilft
bei den meisten anderen Typ-b-Schleifen nicht weiter.

3. Dies durfte wohl die beste Losung sein: Wir schreiben
eine »gemischte« Schileife, die aus einer Typ-a-Schleife und
einer Typ-b-Schleife besteht. Dieses Verfahren ist immer (!)
moglich und wird von der BLTUC-Routine ($A3BF) des
Basic-Interpreters angewandt. Diese Verschiebe-Routine
zerlegt den Bereich, der verschoben werden soll, in einen
Bereich der aus 256-Byte-Blécken besteht und in einen
Restbereich. Beide Bereiche werden dann getrennt verscho-
ben.

FolgendermaBen sieht die optimale Invertierroutine fir den
Bereich $3FD2 - $475F aus:

a) Der exakt 7 Seiten umfassende Bereich 3FD2 - $46D1
wird mit einer Typ-b-Schleife wie in Listing 22 komplemen-
tiert.

b) Der Restbereich $46D2 - $475F wird mit einer Typ-a-
Schieife wie in Listing 13 komplementiert.

Wir haben nun viele verschiedene Schleifenkonstruktio-
nenin Theorie und Praxis behandelt. Was uns noch fehlt, sind
Formeln, nach denen Sie die einzelnen Parameter (zum Bei-
spiel den Startwert fur X in einer Dekrementier-Schleife vom
Typ a) errechnen kénnen. Als Zusammenfassung finden Sie
in Form von Listing 23 ein Hypra-Ass-Assemblerlisting zu
mehreren Schleifenkonstruktionen. An den Quelltext-Aus-
driicken kénnen Sie sehen, wie einzelne Parameter errech-
net werden koénnen.

Merke: Sofern es der Programmablauf zulaBt, sollten Sie
Inkrementierschleifen verwenden.

Bei Verschiebeschleifen ist aber oft eine Dekrementier-
schleife erforderlich.

Noch etwas zum Schleifen-Inhalt: Wenn mehrere Schleifen
einen gleichen Innenteil haben (zum Beispiel einen Invertier-
befehl), definieren Sie diesen unbedingt als Makro und nicht
als Unterprogramm! JSRs sollten Sie nur beim Aufruf von
ROM-Routinen verwenden.

Damit wére das Thema »Schleifen« erst einmal abgeschlos-
sen. Im nachsten Abschnitt (iber Selbstmodifikation) werden
wir uns aber wieder mit Schleifen auseinandersetzen.

10. Selbstmodifikation

Bevor wir uns mit dieser Programmiertechnik beschéftigen,
die zwar nicht strukturiert, aber sehr trickreich ist, soll der
Begriff geklart werden.

Unter Modifikation versteht man »eine Anderung, Anpas-
sung«. Wenn Sie bei einem Spiel einen der vielen POKE-
Befehle, die im 64’er schon vorgestellt wurden, eingeben, so
wird dadurch das Spiel »modifiziert«. Die Anderung ist zum
Beispiel eine Erhéhung der Spielfigurenanzahl.

Selbstmodifikation bedeutet, daB ein Programm sich selbst
programmgesteuert verdndert. Dies ware der Fall, wenn im
Spielprogramm eine Passage stiinde, die den POKE aus-
fahrt.

Wenn Sie sich flur die Selbstmodifikation von Basic-
Programmen interessieren, finden Sie in der Zeitschrift
»Happy-Computer« (Ausgabe 8/85) unter der Uberschrift
»Lernen Sie lhren Commodore 64 kennen«alles, was Sie wis-

97

Kurs

C 64

sen mussen. Auf simulierten Direktmodus wurde im 64’er
schon mehrfach eingegangen, unter anderem in der
»Memory Map mit Wandervorschlédgenc.

Wir werden uns an dieser Stelle ausschlieBlich mit der
Selbstmodifikation von Maschinenprogrammen befassen.
Als erstes Beispiel nehmen wir Listing 24.’

Es handelt sich um eine selbstmodifizierende Schieife, die
den Bereich $2000 - $3FFF komplementiert.

TRACERN Sie doch einmal Listing 24 mit dem SMON und
vergleichen Sie die disassemblierten Befehle mit den
urspringlichen Werten, die Sie in Listing 24 finden. Sie wer-
den erkennen, daB die Befehle »6002 LDA 2000,Y« und
»6007 STA 2000,Y« aufgrund der INC-Befehle immer auf
andere Adressen zugreifen. Besagte INC-Befehle erhéhen
jeweils das High-Byte des Operanden. Ist dieses schon $40,
so wird die Schleife beendet. In Listing 25 sehen Sie, wie
unsere Schleife aus Listing 24 aussieht, wenn sie fertig
durchlaufen wurde. Ein weiterer Start bewirkt, daB das Pro-
gramm sich friher oder spéater selbst invertiert und darum
abstirzt.

Was nédmlich unserem Listing 24 fehlt, damit es mehr als
einmal arbeitet, ist eine Initialisierung, die jedesmal den Aus-
gangswert ($2000) in die LDA/STA-Befehle einsetzt. In
Listing 26 sehen Sie eine solche Initialisierung (6000 -
600F). Die Adresse $FFFF (bei 6012 und 6017) ist ein
Dummy-Wert, das heiBt er dient nur zum vorlaufigen Ausftllen
von Adressen und hat keine programmtechnische Bedeu-
tung. Der Dummy-Wert wird ohnehin von der Initialisierung
Uberschrieben; wir hatten also statt $FFFF auch $040C
oder andere verwenden kénnen. Wichtig ist nur, daB »LDA
Dummy,Y« 3 Byte belegt.

Ein besonderer Vorteil der Selbstmodifikation ist es, daB
selbstmodifizierende Schieifen keine Zahler in der Zeropage
bendtigen, weil der Zahler praktisch im Programm selbst
liegt. In puncto Geschwindigkeit sind selbstmodifizierende
Schleifen den herkdémmlichen aber oft unterlegen.

Ein weiterer Vorteil von ihnen ist aber, daB man auBer mit
weniger Zeropage-Speicherplatzen auch mit weniger Regi-
stern auskommen kann (sofern man hier Einsparungen vor-
nehmen will). Listing 27 beispielsweise invertiert den
Bereich $3FD2 - $475F. X- und Y-Register sowie die Zero-
page bleiben unveréandert, lediglich der Akkumulator fungiert
als Arbeitsregister.

Listing 28 kopiert den Basic-Interpreter ($A000 - $BFFF)
ins RAM.an gleicher Adresse, wobei nur das X-Register ver-
wendet wird (!).

Nun wollen wir sehen, wie man bei der Entwicklung selbst-
modifizierender Programme unter Zuhilfenahme eines guten
Assemblers (Hypra-Ass) vorgehen muB.

Zunachst einmal mussen diejenigen Stellen, an denen
Modifikationen vorgenommen werden, mit Label definiert
werden. Von diesen Label aus kdnnen die Stellenim Speicher
die geandert werden sollen, leicht berechnet werden.

Befehlscode = LABEL + O = LABEL
Low-Operand = LABEL + 1
High-Operand = LABEL + 2

Bei 2-Byte-Befehlen wird der Parameter wie der Low-
Operand eines 3-Byte-Befehls errechnet.

Als Beispiel finden Sie in Form von Listing 29 einen Quell-
text (Assembler: Hypra-Ass) fur Listing 28. Wahrend in
Listing 28 der Ausgangswert bei 6010 »LDX 0000« und bei
6013 »STX 0000« ist, wurde im Quelltext $FFFF verwendet
(270, 280), um den Assembler zu zwingen, den Dummy-
Wert als 16-Bit-Adresse abzulegen (und nicht als Zeropage-
Adresse, wodurch der Befehl nur 2 statt 3 Byte belegen
wirde). ’

Die Stellen, die modifiziert werden, wurden mit »MOD1«
und »MOD2« definiert. MOD1 ist zugleich der Schleifen-
beginn.

98

Nachdem Sie jetzt den Eingang gefunden haben, méchte
ich einige Anregungen liefern, wie Sie die Vorteile der Selbst-
modifikation nutzen kénnen. Wir werden hier die Anwendung
nach den verschiedenen Adressierungsarten unterteilen.

a) Anwendung auf absolute Adressierung
Bei der Stapelmanipulation haben wir schon ein Verfahren
kennengelernt, den Befehl JSR (indirekt), der im normalen
6510-Befehlssatz nicht existiert, zu simulieren.
FolgendermaBen kann Uber Selbstmodifikation ein Unter-
programm ab ADRESSE aufgerufen werden.

LDA # <ADRESSE
STA SPRUNGBEFEHL+1 ; Low-Operand
LDA # >ADRESSE
STA SPRUNGBEFEHL+2 ;
High-Operand

SPRUNGBEFEHL
JSR $FFFF ; $FFFF=Dummy

Genauso kann man mit dem JMP-Befehl verfahren. Sogar
bei den Schieber-, Dekrementier- und Inkrementierbefehlen,
die im Gegensatz zu JMP die indirekte Adressierung nicht
haben, ist auf diese Weise eine Simulation der indirekten
Adressierung moglich.

Wird eine Sprungtabelle per Selbstmodifikation verarbei-
tet, missen die Sprungadressen in der Tabelle nicht (!)
dekrementiert werden.

b) Anwendung auf Immediate-Befehle

Oft miissen Werte, die berechnet werden, auf dem Stapel
oder im Speicher abgelegt und dann, wenn sie gebraucht
werden, wieder aufgenommen werden.

Ein Beispiel hierfur ist der »Basic-Start-Generator« (64'er,
7/85, Seite 74). Bei Erwdhnung dieses Programms taucht
naturlich die Frage auf, ob es sich hier noch um ein selbst-
modifizierendes Programm handelt oder ob der »Basic-Start-
Generator« nicht eher zu den Programmgeneratoren zihlt.
Diese Frage ist voll berechtigt. Deshalb wollen wir darauf kurz
eingehen.

Der »Basic-Start-Generator« ist eindeutig den Programm-
generatoren zuzuordnen, da der generierte Programmteil nie
angesprungen wird und somit ein eigensténdiges Programm
darstellt. Das Programm modifiziert also nicht sich selbst,
sondern vielmehr ein zweites Programm, welches dann vom
Benutzer gespeichert werden kann.

Die Programmierung ist aber bei Programmgeneratoren
nicht anders als bei selbstmodifizierenden Programmen. Auf
den Unterschied Programmgeneration/Selbstmodifikation
werden wir an spéaterer Stelle naher eingehen.

Zunidchst wollen wir aber ein praktisches Beispiel fur die
Anwendung der Modifikation von Immediate-Befehlen
behandeln. Oft steht man vor dem Problem, ein Register zu
sichern und spater wieder zu holen. Im Falle des Akkumula-
tors sieht das so aus:

PHA ; Akku sichern
..... ; weiteres Programm
PLA ; Akku wieder holen

Beim X-Register wird's schon ungunstiger:

TXA ; X-Register in Akku
PHA ; Akku sichern

...... ; weiteres Programm
PLA ; Akku wieder holen
TAX ; Akku ins X-Register

Hier wird also zusétzlich der Akku beeinfluBt. Wenn dies
vermieden werden muB, wird folgender Weg gewahlt:

STX $02 : $02 = Zwischenspeicher
; weiteres Programm
LDX $02 ; X wieder holen

Fur die Sicherung des X-Registers gibt es aber noch eine
weitere Losung, die den X-Wert im Programm ablegt und

C 64

Kurs

dadurch nicht den Stapel oder einen Zwischenspeicher
auBerhalb des Programms benétigt.
STX GETX+1 ; X direkt in Inmediate-Befehl

schreiben
; weiteres Programm
GETX LDX #$00 ; $00 = Dummy-Wert
Obiges Beispiel kann sehr leicht auf Akkumulator oder Y-
Register umgeschrieben werden.

FolgendermaBen kann das X-Register mit dem Akkumulator

verglichen werden:
STX VGL+1 ; in Vergleichsbefehl ablegen

........ ; evtl. weitere Programme)

VGL CMP #$00 ; $00 = Dummy

Als letztes Beispiel fur die Anwendung auf Immediate-
Befehle soll das Y-Register zum Akkumulator addiert werden:

STY ADD+1 ; in Arithmetikbefehl ablegen
......... ; evil. weiteres Programm)
CLC ; Carry vor Addition

ADD ADC #$FF ; $FF = Dummy

Die Anwendungsmdglichkeiten sind hier unbegrenzt.

c) Anwendung auf komplette Befehle

Bisher haben wir nur die Parameter einzelner Befehle modi-
fiziert. Es ist selbstversténdlich auch méglich, die Befehlsco-
des oder die kompletten Befehle zu modifizieren.

Wenn nur der Befehlscode geéndert wird (zum Beispiel ein
ORA #- in einen EOR #-Befehl) bleiben die Parameter er-
halten. Es kdnnte ferner ein impliziter Befehl (SEI,CLI,CLD,
DEX,INX,....) gedndert werden, um beispielsweise zwischen
In- und Dekrementieren umzuschalten. AuBerdem kénnte bei
einem BRANCH-Befehl die Sprungbedingung (CS,CCVS,
VC,NE,EQ) geandert werden. Aus BCS konnte also leicht
BCC werden.

Weil man hier die Opcodes der Befehle kennen muB, emp-
fehle ich das erste 64'er Extra (Ausgabe 9/85) oder die
Tabelle am Ende dieser Ausgabe.

Nun l6sen wir noch das haufig auftretende Problem, wie die
Ausfihrung eines Unterprogramms verhindert wird. Dazu
werden wir drei Losungen (I - lll) entwickeln.

I. Die Adresse FLAG wird auf O gesetzt, wenn das Unter-

programm ausgefiihrt werden soll; auf einen anderen Wert,
wenn es nicht ausgefihrt werden soll.

LDA #0 ; Flag fur Ausfiihrung

STA FLAG ; Flag setzen

........ ; evil. weiteres Programm)

LDA FLAG ; Flag testen

BNE NEIN ; Flag < > 0, also nicht ausfihren
JSR UNTER-

PROGRAMM ; Aufruf

NEIN weiteres Programm

Das Flag kénnte auch am Beginn des Unterprogramms
abgefragtund dann (wenn FLAG < > 0) das Unterprogramm
verlassen werden.

Il. Als ersten Befehl des Unterprogramms verwenden wir

NOP:
UP NOP

; Beginn des Unterprogramms
; Fortsetzung des Unterprogramms
So wird die Ausfuhrung des Unterprogramms gestattet:

LDA #$EA ; Opcode fiir NOP
STA UP ; an Anfang des Unterprogramms
schreiben
Und so wird sie verhindert:
LDA #$60 ; Opcode fur RTS
STA UP ; an Anfang des Unterprogramms
schreiben

Wer noch einen NOP-Befehl und damit 1 Byte sparen
méchte, kann den NOP-Befehl entfallen lassen. Dann muB
auch der Opcode $EA beim Erlauben des Unterprogramms
in den Opcode des ersten Byte im Unterprogramm-geéndert

bAET,

werden. Weil dies ziemlich muhselig ist, ziehe ich die
urspriingliche Losung Il trotz des um 1 Byte erhéhten Spei-
cherbedarfs vor.

1Il. Das beste Verfahren. Wir schalten den JSR-Befehl aus,
indem wir ihn in einen BIT-Befehl abandern.
AUFRUF JSR Unterprogramm
JSR ausschalten:

LDA #%$2C ; Opcode firr BIT
STA AUFRUF

JSR wieder erlauben:
LDA #%$20 ; Opcode fiur JSR
STA AUFRUF

Der JSR-Opcode kann auch mit $0C tberschrieben wer-
den. $0C ist ein illegaler Opcode fiir ein 3-Byte-NOP und
arbeitet mit allen mir bekannten Versionen des C 64. Ob er
ebenfalls auf dem C 128 lauft, konnte ich noch nicht priifen.

Im Gbrigen kénnen mit dem soeben beschriebenen Verfah-
ren auch andere Befehle ausgeschaltet werden, zum Bei-
spiel JMP, LDA, STA und so weiter. Wenn aber der JSR-
Opcode mit $2C (BIT) tiberschrieben wird, ist darauf zu ach-
ten, daB bei der Ausfiihrung des BIT-Befehls die Prozessor-
flags gesetzt werden.

Sicherlich gibt es noch mehr Problemlésungen als | - IlI,
aber Il durfte wohl kaum zu Ubertreffen sein.

d) Anwendung auf mehrere Befehle

Selbstverstéandlich kénnen ganze Befehlsfolgen, also gro-
Bere Programmteile gegeneinander ausgetauscht werden.
Zu beachten ist nur, daB die Routinen, die gegeneinander
ausgetauscht werden, auch in dem Bereich, in den sie vom
Programm aus geschrieben werden, laufféhig sind. Dies ist
vor allem dann gegeben, wenn nur die relative Adressierung
verwendet wird und dadurch die Routine im Speicher frei
verschoben werden kann.

e) Anwendung auf Tabellen

Dieser Anwendungsfall wiirde auch zum Abschnitt Uber
»labellen« passen. v

Wir bleiben hier bei der Theorie, denn die Umsetzungin ein
Programm ist nicht mehr schwer. Vielmehr soll Ihre Kreativitat
nicht durch Unmengen von Beispielen gehemmt werden.

Zunichst wollen wir uns ein wenig mit dem SMON befas-
sen. Wenn Sie den Disk-Monitor einschalten, kopiert das Pro-
gramm einen Floppy-Befehl («U1 ..<) vom Ende des SMON in
einen Bereich zwischen $02A0 und $02FF. Dieser Lesebe-
fehl wird nach Bedarf modifiziert, zum Beispiel wird beim
Schreiben der »U1«- in einen »U2«-Befehl umgewandelt oder
die Angabe des einzulesenden Blocks wird geandert. Dies
waére ein typisches Anwendungsbeispiel fir Selbstmodifika-
tion, wenn der Lesebefehl nicht erst in einen Bereich auBer-
halb des Programms kopiert wurde (worin ich keinen Sinn
sehe), sondern am Ende des SMON (etwa bei $CFFO) bliebe
und dort modifiziert wirde.

Im Hi-Eddi liegt eine Tabelle, die die High-Byte der Bit-Map-
Anfangsadressen beinhaltet. Diese Tabelle wird von Hi-Eddi
bei jedem Bildwechsel umgerechnet.

Nach den vorausgegangenen zwei Beispielen an Spitzen-
programmen aus dem 64’'er mochte ich noch andere Anwen-
dungsbeispiele nennen.

Besonders flexible Programme erlauben Eingriffe des
Anwenders in die Befehls- oder Text-Tabellen. So kénnen
Bildschirmmasken editiert oder Eingabemasken erstellt wer-
den.

Ein solches Programm braucht sich nach den Modifikatio-
nen nur selbst abzuspeichern. Weil hier unter Umstéanden ein
erheblicher Teil des Programmschutzes verlorengeht, wer-
den dann lediglich die Tabellen gespeichert.

Ein Adventure-Generator modifiziert in der Regel auch nur
die Tabellen eines fertigen Adventureprogramms, das eigent-
liche Programm bleibt unveréndert. In diesen Tabellen sind
die einzelnen Spielsituationen enthalten.

Kurs

C 64

Bei diesen (theoretischen) Fallen wollen wir es belassen.
Letztendlich muB ja der Programmierer entscheiden, inwie-
weit er die Selbstmodifikation auf Tabellen anwenden kann.
f) Das Beispielprogramm »Loader-Maker 64«

Wie aus dem Namen des Beispielprogramms schon zu ent-
nehmen ist, handelt es sich um einen Programmgenerator.
Da - wie gesagt - die Programmierung wie bei selbstmodifi-
zierenden Programmen ist, habe ich bewuBt einen Pro-
grammgenerator als Beispiel gewahit.

Als Listing 31 finden Sie ein MSE-Listing, falls Sie »Loader-
Maker 64« bequem abtippen wollen und an der Anwendung
des Programms interessiert sind. Deshalb zunachst eine
Kurzbeschreibung fir Anwender.

»Loader-Maker« erméglicht es lhnen, zu einem Programm
ein (Maschinensprache-) Ladeprogramm zu generieren, wel-
ches normal geladen und mit »>RUN« gestartet wird, worauf es
das nachzuladende Programm nachladt und startet.

Nach dem Laden von »Loader-Maker« wird dieses Pro-
gramm durch SYS 2154,START gestartet. START ist eine
Variable und wird durch die Startadresse des nachzuladen-
den Programms ausgedriickt. Soll ein Basic-Programm nach-
geladen werden, hat diese Adresse keine Bedeutung (ein-
fach SYS2154,0 eingeben). Bei einem Maschinenprogramm
handelt es sich hier um die Adresse, mit der das Programm
Uber »SYS« gestartet wird (49152 beim SMON $C000).

Das Programm meldet sich mit sLoader-Maker 64« und gibt
die Startadresse aus. Dazu kénnen Sie den Filenamen einge-
ben.

Bei allen weiteren Eingaben (Gerdtenummer, von der gela-
den werden soll; Maschinenprogramm j/n; Systemmeldun-
gen wie »SEARCHING FOR«ausgeben j/n; LOAD ERROR bei
Ladefehler ausgeben j/n) kénnen Sie das Programm durch
Eingabe des Linkspfeils abbrechen. Sind alle Eingaben
gemacht worden, kommt die Meldung »LOADER GENE-
RIERT« und der Lader kann mit »SAVE« gespeichert werden.

Wenn das nachzuladende Programm von der Adresse
geladen werden soll, von der auch das Ladeprogramm selbst
eingelesen wurde, ist als Gerdtenummer nur O einzugeben.

Befassen wir uns nun mit dem Programm, dessen Quelltext
Sie als Listing 30 finden.

Die Zeilen bis 990 stellen das Ladeprogramm in unmodifi-
Zierter Form dar und enthalten viele Dummywerte, wie zum

Beispiel die (unsinnige) Startadresse O in Zeile 820.
~ Mit 1000 beginnt die Modifikationsroutine. Nach 1120
wurde die Startadresse eingelesen, die ja per SYS (ber-

geben wurde, und wird wieder mit dem Titel ausgegeben.
.~ 1100/1110 schreiben die Startadresse hinter den JMP-
Befehl in Zeile 820.

1150 - 1350 bringen das (noch unmodifizierte) Gerust in
den Ausgangszustand, der dann nach Bedarf geandert wird.

1400 - 1550 holen den Filenamen, legen ihn bei NAME
(850) ab, berechnen gleich die Lange des Filenamens und
legen diese bei LAENGE (750) ab.

1600 - 1720 holen die Gerateadresse. Da diese im ASCII-
Format vorliegt, muB der ASCII-Code von O abgezogen wer-
den (1640/1650). Wurde O eingegeben, wird der LDX
DEVICE-Befehl (730) in >LDX $BA« geandert. Die Adresse
$BA enthélt jeweils die Adresse, von der das letzte Programm
geladen wurde.

1750 - 1850 fragen, ob das nachzuladende Programm mit
der per SYS Ubermittelten Startadresse gestartet wird (Ein-
gabe »j«). Wurde »n« eingegeben, mu3 das Programm lber
den Basic-Befehl RUN eingegeben werden. Auf eine ent-
sprechende Routine (870 - 980) wird die Startadresse
gestelit (1810 - 1840).

1900 - 1970 ermoglichen die Einstellung, ob »SEAR-
~ CHING..«, »LOADING« etc. ausgegeben werden sollen.
~ Sollim Falle eines Ladefehlers das Programm nicht gestar-
. tet und stattdessen »LOAD ERROR..« ausgegeben werden,

100

wird dies bei 2000 - 2090 festgelegt. Wird die Fehleraus-
gabe unterdriickt, muB der BCS-Befehl (810) unschédlich
gemacht werden. Dies geschieht einfach dadurch, daB die
Sprungweite auf O gesetzt wird (2070/2080).

Am Programmende wird noch eine Meldung ausgegeben
(2140 - 2160) und der Vektor fir das Ende des Basic-
Programms neu gesetzt, damit das generierte Ladepro-
gramm mit »SAVE« gespeichert werden kann.

10000 - 10310 enthalten nur die Text-Tabellen.

Von 15000 bis zur letzten Zeile (1517 0) steht ein Unterpro-
gramm, daB bei jeder J/N-Entscheidung tiber »JSR J,N« auf-
gerufen wird.

Es gibt den Text »(J/N)?« aus (15030 - 15050) und holt
eine Eingabe. Ist diese »J«, so ist nach dem Verlassen des
Unterprogramms (1517) das Zero-Flag gesetzt (andernfalls
nicht).

Wurde der Linkspfeil eingegeben, wird das Programm
abgebrochen und eine entsprechende Meldung ausgege-
ben (15100 - 15150).

Wie wir nun gesehen haben, handelt'es sich bei »Loader-
Maker« um einen Programmgenerator. Mit zwei kleinen
Anderungen wird er jedoch zum selbstmodifizierenden Lade-
programm. Wir missen nur die beiden »JMP READY.«-
Befehle (2240/15150) in »JMP SYSTEM« umwandeiln,
wodurch am Programmende der generierte Lader ange-
sprungen wirde. Schon hatten wir ein selbstmodifizierendes
Ladeprogramm.) .

Um lhnen noch die Anwendung des Loader-Maker zu
erleichtern, hier zwei Eingabebeispiele:

Startadresse................... 49152
Filename........cccoeeveeenn.. SMON $C000
Gerateadresse................ 0
Maschinenprogramm i
Systemmeldungen........... i

LOAD ERROR ausgeben..j
Startadresse................... 0 (bedeutungslos)
Filename........................ HI-EDDI
Gerateadresse................ 8
Maschinenprogramm n
Systemmeldungen........... n

LOAD ERROR ausgeben ..j

g) Verbesserungen an »Tabellen-Beispiel«

Zum AbschluB des Themas »Selbstmodifikation« wollen wir
noch kleine Verbesserungen am Programm »labellen-
Beispiel« erwéhnen. Ich werde hier eher Anregungen geben
als fertige Anderungsvorschlége.

Zunachst soll die Adresse XSAVE (zum Sichern des X-
Registers in Schleifen) Gberfliissig werden. So kénnte es nun
gesichert werden:

X8V STX GETX

GETX LDX #$00 O0=Dummy; hier wird X wieder
aufgenommen.
Auch die Sprungtabelle 148t sich - viel einfacher, finde ich -

anders handhaben:

LDA J?LOX JMLO oder JELO
STA SPRO+1

LDA J?HIX JMHI oder JEHI
STA SPRG+2

SPRG JMP 0000

In den Tabellen JMLO/JMHI und JELO/JEHI (Low- und
High-Bytes der Sprungadressen) dirfen die Adressen aber
nicht dekrementiert werden.

Wird ein JSR (IND)-Befehl simuliert, muB nach wie vor die
Rucksprungadresse auf den Stapel gelegt werden. Dies
wirde entfallen, wenn die Rucksprungadresse direkt auf
»SPRG JMP 0000« folgen und der JMP-Befehl bei SPRG in
JSR umgewandelt wirde.

(= <

Bestellungen aus der
Schweiz bitte direkt an:
Markt&Technik

Vertriebs AG, Kollerstr. 3,
CH-6300 Zug,

Tel. 042/4156 56.
Bestellungen aus
Osterreich bitte direkt an:
Bucherzentrum Meidling,
Schénbrunnerstr. 261,

Bestellungen aus
anderen Lindern bitte
per Auslandspost-
anweisung! Achtung:
Nicht die eingeheftete
Zahlkarte verwenden!

1120 Wien,

Tel. 0222/833196.
Mikrocomput-ique

Erhard Schiller

Fasangasse 21, 1030 Wien,
Tel. 0222/785661.

Programme aus den frilheren Ausgaben

Sonderheft: Professionelle Ausgabe 11/85

Besteil-Nr. L6 85 11A DM 29,90*
d é\;\sl::zgungen Commodore 64

Bostell-Nr. L6 85 S7TD DM 34,90% eoksummerV3 s

4 Kassetten . '
Koala-Painter Hardcopy S. 39
Bestell-Nr. L6 85 STK DM 34,90% |\ vhcoin e (AdM) s 58
Sonderheft: TopThemen Hypra-Platos (LdM) S. 61
2 Disketten Profiprint S. 7
Bestell-Nr. L6 85 S6 DM 34,90 Apfelménnchen S. 80
Block Out S. 84
Sonderheft: Floppy, Spritekill S. 86
Screen-Dump S. 88
gg(te?tiette Pseudo«lRQ_ S. 88
Bestel-Nr. L6 85S5D DM 29,90+ NPUTRoutine =~ S %
Kassette aynthe';isclée IYIeIodlen 2 gg

- ypra-Ass Erganzung .
Bestell-Nr. L6 85 S5K DM 19,90 DYPIaTSS ol S 97
Sonderheft: Grafik ViervBetriebs:f,ysteme S. 105
Bestell-Nr. L6 85 S4A DM 29,90+ Grafikwelt Teil 2 S. 149
Musikkurs Teil 10 S. 157

Sonderheft: Spiele

Beide Disketten in einem Paket!
Verwenden Sie nur diese Bestell-Nr.:
Bestell-Nr. L6 85 S3A DM 34,90*

Sonderheft: Abenteuerspiele

Ausgabe 10/85

Leider hat sich in die Bestell-Nummer
der letzten Programm-Service-Anzeige
ein Druckfehler eingeschlichen. Die
korrigierte Bestell-Nummer lautet:

Bestell-Nr. L685S2 DM 34,90 L68510A DM 29,90*
. . Commodore 64

Sonderheft: Tips & Tricks Check V3 Dez 64 S. 54

(2. i Auflage) MSE v1.0

Floppy-Utilities CB 023 DM 29,90* Floppy-Adjust S. 32

Hilfsprogramme CB 024 DM 29,90+ Eprom-Trans S. 42
Schreiberling S. 54

Ausgabe 12/85 Cursus Latinus (AdM) S. 57

Bestell-Nr. L6 85 12A DM 29,90* Hypra-Text (LdM) S. 67

Bedeutung der Abkiirzungen

verwendet werden (einschlieBlich
GV)
= 3-KByte-Speichererweiterung
wird bendtigt
*8K> = Speichererweiterung gréRer als
8 KByte wird benétigt
*UPB = Unterprogrammbibliothek

*LdM = Listing des Monats

*AdM = Anwendung des Monats

*SB = Simons Basic

*GV = Grundversion

*GV > = alle Speicherversionen kénnen

*3K

Pacman S. 76
Programm GEN S. 86
SMON + S. 87
Sequenzer S. 129
Musik S. 129
Alarmanlage S. 132
Codeschlof S. 132
Ausgabe 9/85

Bestell-Nr. L6 85 09A DM 29,90*
Commodore 64

Sound-Machine S. 23
Noteneingabe S. 24-25
Sound Master S. 32
Ringmod S. 32
Moonlight S. 33
SYNC S. 33
Prufungsfragen (AdM) S. 55-58
Schlissel (LdM) S. 59-61
Disk Designer S. 70-72
Blinker S. 73
Logelei-1/2 S. 118
Lichtgr. S. 122
Mischsort S. 127
Block Busters S. 159
X-Gleichung S. 159
Musik-Tool S. 159
Ausgabe 8/85

Bestell-Nr. L6 85 08A DM 29,90*
Commodore 64

Quicksort S. 142
Procedure S. 78
Hypra-Save S. 79
Uhr S. 22
NEWEA2 (AdM) S. 60
Disk-Monitor S. 84
Maskengenerator S. 87
Bit-Map S. 81
HiRes3-Komplett S. 159
Forth-Compiler (LdM) S. 63
Vocabulary S. 69
Schach S. 74
Extern-Kurs S. 147
Sprites S. 44
Hypra-Zusatz S. 25
Hi-Text 2.0 S. 7
Ausgabe 7/85

Bestell-Nr. L6 85 07A DM 29,90*
Commodore 64 .

Haushaltsbuch (AdM) S. 57
Terminalprogramm S. 152
Centron S. 80
Editor S. 151
Ein-/Ausgaberoutine S. 77
Fenster (C 16) S. 84
File-Compactor S. 82
Hypra-Assembler (LdM) S. 66
IEEE-Basic S. 46
Logik S. 144
Merkzettel S. 83

* Alle Preise inklusive Mehrwertsteuer.

Bitte verwenden Sie fur lhre Bestellung nur
die eingeheftete Postscheck-Zahlkarte zur
Uberweisung des Rechnungsbetrags.

Modulator
REMKiller
Sound Editor
Startgenerator

Ausgabe 6/85
Bestell-Nr. L6 85 06A
Commodore 64

MSE

HI-EDDI/MPS 801
Prost

E-Routine 64
GCR-HEX

HEX-GCR

Samurai
Scroll-Machine (LdM)
Crossreferenz
Heapsort

Cc16

F-Plotter

Ausgabe 5/85
Bestell-Nr. L6 85 05A
Commodore 64
Checksum. Schnell
MSE Lader

MPS 802
Format-System

vic

65101
Sternenhimmel (AdM)
Assemblerkurs
Direktory-Sorter
Trick.0OBJ
3D-Movie-Maker (LdM)
Modulator (Heft 4)
VC 20

Checksummer
Minigrafik
Longscreen

C 16

Help &Trace

Ausgabe 4/85
Bestell-Nr. L6 85 04A

Ausgabe 3/85
Bestell-Nr. L6 85 03A

Ausgabe 2/85
Bestell-Nr. L6 85 02A

Ausgabe 1/85
Bestell-Nr. L6 85 01A

Ausgabe 12/84
Bestell-Nr. CB 022

Ausgabe 11/84
Bestell-Nr. CB 020

Ausgabe 10/84
Bestell-Nr. CB 019

S. 46
S. 76
S. 136
S. 74

DM 29,90*

S. 54
S. 55
S. 31
S. 147
S. 175
S. 7
S. 57
S. 144
S. 77
S. 65
S. 65
S. 155

S. 54
S. 69
S. 83

S. 84

DM 29,90*

DM 29,90*

DM 29,90*
DM 29,90*
DM 29,90*
DM 29,90*

DM 29,90*

Fehlende Hefte erhalten Sie
bei: Markt & Technik
Vertrieb 64'er
Hans-Pinsel-Str. 2

8013 Haar

: i vilderc

speicherte >Traumbilder«)

: lefeg;z%itiges Malen auf zwel B||(i1§|<1::|1_l|(|;r::n
e einfache Bedienung durch dbers!

Meni.\'(echmkmem:| (16 Farben)

igenes Farb
: tejgfangreiche Diskettenbefehle
(Speichern, LHschen, Laden)

e 100% Maschinensprache

&Technik-Programmo erhalten Sie
andler oder an

bei Ihrem Buchhandler.

d-
nserer Depotbuchhan
ei;:i:\ Markt&Technik Verlag

Markt
an thren Buchh
dlern ausgeliefert.

Bestellkarten bitte " de des Heftes. Beirm
lungen. Adressenverzeichnis am En o e Depot-Han
hend:

T Markt&rechnik
LAG
BUCHVER

bei Miinchen 5656
traBe 2, 8013 Haar & oazist
Markt &Te?t'::&-‘\,llen::tgs AG, Ko||erss‘lra;:: :, 2_114:;;% ;‘:\gc O a1677528
S ich: R hner & Sohn, Heizwerkstra ,
Hsterreich: Rudolf Lec nn,

Kurs

C 64

Damit soll das Thema »Selbstmodifikation« abgeschlossen
sein. Die vorgestellten Programmiertechniken bieten fast
unbegrenzte Méglichkeiten, hier konnte ich nur einen kieinen
Uberblick geben, welcher aber fur fortgeschrittene Program-
mierer ausreicht.

11. Mehr iber relative Adressierung

So wie wir schon die Ticken der Zeropage-Adressierung
zumindest teilweise beseitigen konnten, wollen wir uns mit
der in vergleichbarer Weise leistungsstarken Relativ-
Adressierung auseinandersetzen.

a) So vermeidet man JMP

Oft muB eine Stelle im Programm angesprungen werden,
ohne daB erst eine Bedingung geprift wird. Diese Stelle ist
nicht selten weniger als 128 Byte vom Sprungbefehl entfernt,
kénnte also relativ adressiert werden.

Dennoch ist es in vielen Fallen mdglich, einen Branch-
Befehl - obwohl diese Befehle eine Bedingung (C=0..) pri-
fen - zu verwenden.

Beispiel:
7050 BNE 7040
7052 JMP 708A
Kann ersetzt werden durch:
7050 BNE 7040
7052 BEQ 708A

dabei 7052 in jedem Fall das Z-Flag = 0 ist (daflr sorgt der
Abfang-Befehl BNE) und somit immer verzweigt wird.

Man kénnte den BEQ-Befehl als »Pseudo-Verzweigungs-
befehl« bezeichnen, da die Bedingung gar nicht Gberpriift
werden muBte (sie ist sowieso erflllt).

Der Branch-Befehl tbertrifft den JMP-Befehl deutlich an
Effektivitat, da ein Byte weniger verbraucht wird.

Im Ubrigen ist auch bei

7050 BVS 7040

7052 cLwv
der CLV-Befehl tiberflissig, solange vor 7052 der Befehl von
7050 verarbeitet wird.

b) Zugriff auf Befehle in »Umgebung«
Unter »Umgebung« wollen wir den Bereich um einen Pro-

grammteil verstehen, der Uber relative Adressierung ange-.

sprochen werden kann. Da in diesem oft &hnliche Befehlsfol-
gen stehen wie im anderen Programm, 148t sich hier durch
gezielten Zugriff auf die »Umgebung« der Speicherplatz-
bedarf senken.

Beispielsweise stehen an vielen Stellen im Programm RTS-
Befehle. Diese werden, wenn ein Unterprogramm verlassen
werden soll, manchmal durch einen Branch-Befehl ange-

sprungen.
X1 RTS ; Ende eines im Speicher voraus-
gehenden Unterprogramms
up ... ; Unterprogramm
TEST BEQ X2 ; Unterprogramm verlassen, falls Z=0
...... ; andernfalls weiteres Programm
X2 RTS ; Ende des Unterprogramms

Wenn X1 von TEST aus relativ adressiert werden kann, kon-
nen wir folgendermaBen ein Byte sparen:

X1 RTS

up ...

TEST BEQX1 ; nach X1 springen, wo auch ein RTS
steht

X2 RTS wird nicht mehr bendtigt

Noch ein Beispiel aus dem Basic-Interpreter. Bei Adresse
$AF08 stehen zwei Befehle, die einen SYNTAX ERROR
erzeugen.

Nun gibt es im Basic-Interpreter unzidhlige Stellen, an
denen ein SYNTAX ERROR aufgerufen werden muB. Deshalb

102

steht dort nur »JMP $AF08«. Diese Stellen werden bei
Bedarf relativ adressiert, so daB nicht an jeder Stelle, an der
ein SYNTAX ERROR aufgerufen wird, der Befehl »JMP
$AF08« stehen muB.

Zur Ubung kénnten Sie noch versuchen, im Programm
Tabellen-Beispiel (Listing 11) die Menuroutine (insbesondere
die Routinen HOME, DOWN, UP, EXEC), in der beispiels-
weise wiederholt STX MPT steht, durch Zugriff auf »Umge-
bung« zu optimieren. Besonders hilfreich durfte es sein,
zunachst statt Branch-Befehlen JMPs einzusetzen und dann
zu Uberlegen, inwieweit die JMPs durch Branches ersetzt
werden kénnen, weil zum Beispiel nach »L.DX # O« das Z-Flag
immer gesetzt ist etc.

12. Puffer-Technik

In der Computerei féllt der Begriff »Puffer« sehr haufig. Beim
C 64 gehdren der Kassetten- und der Tastaturpuffer gemein-
hin zu den bekanntesten Puffern. Statt »Puffer« kann man
auch Zwischenspeicher sagen. Puffer dienen namlich immer
als Zwischenspeicher.

Zunachst wollen wir klaren, was zu einem Puffer gehort.

a) Was bendétigt ein Puffer?

- Pufferspeicher

Selbstverstandlich muB ein Puffer einen bestimmten Spei-
cherbereich belegen, in dem die Werte zwischengespei-
chert werden.

Ebenso muB die maximale PuffergroBe festgelegt werden,
damit gepruft werden kann, ob sich der Puffer schon angefillt
hat. Beim Kassettenzugriff werden vorerst alle Byte, die auf
die Kassette sollen, im Puffer (ab $033C) zwischengespei-
chert. Ist dieser Puffer voll, wirde er beim nichsten Byte, das
er aufnehmen soll, Uberlaufen (das heiBt, die maximale Puf-
fergréBe Uiberschreiten). Deshalb wird dann Byte fiir Byte der
Puffer entleert, indem die Bytes auf Kassette geschrieben
werden. Jedes Byte, das auf Kassette geschrieben wurde,
belegt keinen Speicher mehr im Puffer, so daB der Puffer wie-
der aufnahmefahig ist.

Damit das Programm, das den Puffer verwaltet, auch weiB,
aus welcher Adresse im Puffer es sich das nachste Byte
holen soll beziehungsweise wo im Puffer das nichste Byte
abgelegt werden soll, gibt es noch einen
- Pufferzeiger

Auf englisch heiBt er BUFFER-POINTER«, woher auch die
Abkilrzung »B-P« beim Floppy-Befehl zur Manipulation des
Pufferzeigers stammt.

Dieser Pufferzeiger kann mit dem Stapelzeiger verglichen
werden. Auf keinen Fall ist er mit dem
- Puffervektor
zu verwechseln, der die Startadresse des Pufferspeichers
beinhaltet. Ein Puffervektor ist nicht unbedingt erforderlich,
erhéht aber die Flexibilitat.

Damit wéren die Fachausdriicke im Zusammenhang mit
Puffern geklart.

b) Wann verwendet man Puffer?

Puffer dienen in der Regel als Zwischenspeicher, wie zum
Beispiel der Basic-Eingabepuffer (ab $0200).

Im Fall des Tastatur- oder Diskettenpuffers aber sind die
Puffer als Verbindungsstelle zwischen zwei parallel arbeiten-
den Programmen beziehungsweise Peripheriegeraten vor-
gesehen (interruptgesteuerte Tastaturabfrage/Hauptpro-
gramm im Computer, DOS/Betriebssystem des Computers).

Die Puffer sind in diesen Féllen ein Bereich, auf den zwei
(quasi-) parallel arbeitende Programme zugreifen.

Bei Computern, die ein wirklich starkes Multitasking bieten
(wie der Commodore Amiga) finden Puffer weitaus mehr Ver-
wendung als beim C 64, der nur einen quasiparallelen Ablauf
ermdglicht.

ba-ET,

C 64

Kurs

Daher werden bei ihm Puffer hauptséachlich im I/O-Bereich
verwendet, zum Beispiel bei Druckern, Datasette, Floppy,
Tastatur etc. (I/O = Input/Output = Eingabe/Ausgabe).

13. Pass-Technik

a) Begriffserlauterung

Der Begriff »Pass« wurde schon mehrfach im 64’er erlautert
(unter anderem Ausgabe 7/85, Seite 51).

Am einfachsten kann der Begriff als »Schritt beim Pro-
grammmablauf« verstanden werden. Mit »Schritt« ist hier
nicht ein einzelner Befehl, sondern ein gréBerer Blockim Pro-
gramm gemeint.

Wenn ein Programm in 3 Passes (Durchlaufen) arbeitet,
heiBt dies, daB 3 Schieifen hintereinander abgearbeitet wer-
den, die alle eine Teilaufgabe erflllen, die in Verbindung mit
den anderen Passes erst eine gréBere Aufgabe (zum Beispiel
eine Assemblierung) ausfillen kann. Jeder einzelne Pass
fuhrt eine bestimmte Tatigkeit aus, die fur das Funktionieren
der darauffolgenden Passes unbedingt erforderlich ist. Pass
1 wirkt also wie eine Initialisierung von Pass 2 etc.

Komplexe Programme in Schritte (Passes) zu gliedern,
gehort zu den Grundregeln des strukturierten Programmie-
rens. .

b) Beispiele von Anwendungen der Pass-Technik

Besonders umfangreiche Programme wie Assembler
(Hypra-Ass), Compiler (Austro-Speed) und Interpreter
(Comal) sind immer in mehrere Passes eingeteilt.

So erfolgt bei den meisten Assemblern im ersten Pass ein
Syntax-Check und das Anlegen der Symbol-Tabelle. Erst im
zweiten Pass wird der Objektcode generiert, wobei die
bereits erstellte Symboltabelle benétigt wird.

14. Diverse Tips zur
optimalen Speichernutzung

Mit ibermé&Big viel RAM ist der C 64 bestimmt nicht geseg-
net. Bei vielen Anwendungen (zum Beispiel Datenverarbei-
tung) braucht man auch das letzte Byte.

Sie werden nun mehrere Tips erhalten, wie man den weni-
gen vorhandenen Speicher mdglichst sparsam verwenden
kann.

Zu den speicherplatzaufwendigsten Einrichtungen geho-
ren die Puffer. Der Kassettenpuffer beispielsweise belegt
den RAM-Bereich $033C - $03FB, auf den man somit oft
verzichten muB.

- Hier wollen wir einfach den Kassettenpuffer in den Bild-
schirmspeicher (ab $0400 in Normaleinstellung) verlegen.

LDA # <$400
LDY # >$400
STA $B2
STY $B3

Da der Bildschirm beim Kassettenbetrieb ohnehin abge-
schaltet wird, fallt dies nicht auf. Nach dem Kassettenbetrieb
sollte man aber den Bildschirm unverztglich I6schen.

Ebenso kann man andere Puffer, fir die es einen Vektor
gibt, problemlos nach $400 verlegen, sofern sie nicht gréBer
als 1000 Byte sind.

Ein Problem fur sich stellt das RAM ab $E00O (also unter
dem Betriebssystem!) dar. Diesen Speicher kann man nur
durch Bank-Switching nutzen, wobei man noch auf das
Betriebssystem verzichten muB, solange der $E000-Be-
reich auf RAM geschaltet ist.

(3

Hier konnen wir uns zunutze machen, daB der VIC auch
ohne Andern des Prozessor-Ports (Adresse $0001) auf die-
sen RAM-Bereich zugreifen kann. Fiir Grafikbilder oder einen
geénderten Zeichensatz ist der $E000-Bereich bestens
geeignet. .

Oft wird der $E000-Bereich zur Ablage verschiedener
Daten verwendet, auf die nicht andauernd zugegriffen wer-
den muB. :

Man kénnte aber auch das Betriebssystem ins RAM ab
$EO00O kopieren und diejenigen Bereiche, in denen nicht
benétigte Routinen stehen (zum Beispiel fur Kassettenbe-
trieb) einfach Gberschreiben. Dies ist dann sinnvoll, wenn nur
ein paar Byte im $E000-Bereich gebraucht werden. AuBer-
dem ist eine gute Kenntnis des C 64-ROMs erforderlich.

Nun wollen wir noch besprechen, wie der Speicherplatz-
bedarf eines Programms niedriggehalten werden kann. Dazu
wurde im Laufe des Kurses schon einiges gesagt (Unter-
programme statt Makros verwenden etc.).

Jedes Programm bendtigt eine Menge Flags. Meist belegt
ein Flag genau 1 Byte, fur dessen Inhalt es oft nur zwei mégli-
che Werte gibt: einen fir »JA« und einen fir >NEIN«.

Fur diese primitive Unterscheidungsform geniigtaberauch
1/8 Byte, also ein Bit. ;

Wenn Sie sich das 64’er Extrain der Ausgabe 10/85 anse-

hen, werden Sie feststellen, daB fast jedes VIC-Register
mehrere Funktionen hat, weil jedem Bit eine eigene Bedeu-

tung zukommt. Wiirde der VIC hier statt auf Bits auf Bytes
zugreifen missen, wére er

1. langsamer und

2. wirde der Speicherplatzaufwand fiir die Register sich

vervielfachen.

Man sollte also bei Flags jedem Bit eine Bedeutung geben

und nur die Bits prifen:

BIT FLAG

Danach ist das N-Flag gesetzt, falls das 7. Bit im FLAG
gesetztist, und das V-Flag, falls das 6. Bit gesetztist. Die tibri-
gen Flags erhéalt man Uber das Z-Flag im Prozessor-Status-
Register mit Hilfe des Akkus. Angenommen, man méchte
testen, ob Bit O im Flag gesetztist oder nicht, dann macht das
folgendes Programm:

LDA #O01
BIT Flag

BNE ??7? ; (Bit gesetzt)

; (Bit nicht gesetzt)

Der Bit-Befehl ANDet den Inhalt des Akkus mit dem Inhalt der
Speicherzelle »Flag«. M6chte man Bit 1 testen, so ist der
Befehl LDA # 01 zu ersetzen durch LDA # 02 und so weiter.

Durch Selbstmodifikation kénnen Flags bekanntlich ver-
mieden werden. Aber auch sonst bietet die Selbstmodifika-
tion die Moglichkeit, Speicherplatz zu sparen: die Steuerung
einer Sprungtabelle belegt mit Selbstmodifikation weniger
Speicher als ohne.

Auch die »Wegwerfmethode« ist sehr vorteilhaft. Pro-
grammteile werden einmal abgearbeitet und dann (zum Bei-
spiel durch Nachladen) tberschrieben.

Damit hatten wir unseren Kurs abgeschlossen. Ich hoffe,
daB er lhnen etwas SpaB gemacht hat und Sie einige interes-
sante Informationen herausholen konnten. Sie soliten sich
jedoch daruiber im-klaren sein, daB einige der hier vorgestell-
ten Methoden die Lesbarkeit eines Assembler-Listings ein-
schranken kénnen. Also, verzichten Sie, wenn nicht unbe-
dingt notwendig, auf allzu trickreiche Programmierung. Falls
Sie noch Fragen oder Probleme haben (vielleicht erst wegen
diesem Artikel), dann schreiben Sie doch einfach.

(Florian Muller/tr)

103

