
Kurs C64

Effektives Pro­
grammieren in
Assembler
Es gibt viele Möglichkeiten, ein Basic-
Programm schneller und komfortabler zu
gestalten. Aber auch für die Assembler­
programmierung gibt es einige Tricks und
Kniffe, die wir Ihnen in diesem praxis­
nahen Kurs verraten wollen.

Wer das Optimum an Geschwindigkeit aus seinem
Computer herausholen will, kommt an Maschinen­
sprache nicht vorbei. Die Grundlagen zur Maschi­

nenprogrammierung wurden bereits im Kurs »Assembler ist
keine Alchimie«, den Sie in diesem Sonderheft finden,
geschaffen. Das Thema dieses Artikels ist es nun, die Mög­
lichkeiten von Maschinensprache optimal zu nutzen. Sie
erfahren, wie man
a) Programme beschleunigen und
b) Speicherplatz sparen kann.

Dazu werden Ihnen eine Vielzahl von Programmiertechni­
ken, Tips und Tricks vermittelt, die Ihnen die Programmierung
erleichern.

1. Beschleunigungen des Betriebs­
systems (in Assembler)

Der C 64 muß viele Aufgaben gleichzeitig erledigen: Bearbei­
ten des Hauptprogramms, Ablauf der Systeminterrupts und
Senden des Video-Signals (an den Monitor/Fernseher). Alle
diese Funktionen erfordern
- viele Zugriffe auf den Datenbus des Prozessors
- und dadurch Ausführungszeit.

Unser Grundproblem ist nun, wie wir den Computer dazu
bewegen, diese Aufgaben nicht (oder nur teilweise) auszu­
führen.
a) Eingriffe in den Systeminterrupt

Eine detaillierte Beschreibung des Systeminterruptsfinden
Sie im bereits erwähnten Kurs »Assembler ist keine Alchimie«.
Hier möchte ich nur zusammenfassen, wasim normalen Inter­
rupt des Betriebssystems geschieht: 60 mal in der Sekunde
wird das Hauptprogramm verlassen und die Routine ab
$EA31 angesprungen. Ist diese abgearbeitet, wird wieder
ins Hauptprogramm zurückgesprungen. Während dieser
Unterbrechung (»interrupt«) tut sich einiges:
- die RUN/STOP-Taste wird überprüft
- die Tastatur und der Datasettenmotor werden abgefragt
- das Cursorblinken wird erledigt
- die interne Uhr (Tl$) wird gestellt.

Überlegen wir uns, welche Funktionen verzichtbar sind:
Die RUN/STOP-Taste bewirkt nur in Basic-Programmen einen
Abbruch, in Assembler müßte sie zum Beispiel über »JSR
$FFE1« zusätzlich abgefragt werden. Die interne Uhr findet
von Maschinensprache aus praktisch keine Verwendung.
Kurz und gut, ein Maschinenprogramm kann auf beideFunk-
tionen verzichten. Dies wird durch ein

LDA #$34
STA $0314

erreicht. Weil der Computer dadurch entlastet wird, läuft das
Hauptprogramm etwas schneller ab.

Die Normaleinstellung erhält man mit
LDA #$31
STA $0314

Beschleunigungsmethode 1:
Trick: Verkürzung der Interrupt-Routine
Nebenwirkungen: Abfrage der STOP-Taste und interne
Uhr entfallen

Können Sie zwischenzeitlich auf die ganze Interrupt-Routine
verzichten, genügt ein einziger Befehl:

SEI (»set Interrupt«)
Er verhindert grundsätzlich das Auftreten von Interrupts.
Die Normaleinstellung bewirkt:

CLI (»clear interrupt«)

Beschleunigungsmethode 2:
Trick: Interrupt total abschalten
Nebenwirkungen: Abfrage von Tastatur, STOP-Taste und
Datasette, sowie Cursor und interne Uhr entfallen.

Es gibt aber noch eine Möglichkeit, im Zusammenhang mit
dem Systeminterrupt: Von der Adresse $DC05, die als Zähler
dient, hängtdie Anzahl der Interrupts (in der Regel 60 Aufrufe
pro Sekunde) in einer bestimmten Zeit ab. Diese Adresse
kann durch Schreibzugriff geändert werden. Schreibt man in
$DC05 einen niedrigen Wert (im Extremfall 0), so werden
sehr viele Interrupts ausgelöst. Dies macht sich in der
Geschwindigkeit der Interrupt-Routine bemerkbar. Cursor
undTastaturabfragewerdensehrschnell,dieinterneUhrgeht
vor, und so weiter. Verwendet man eine eigene, eventuell zeit­
kritische Interrupt-Routine, kann sie auf diese Weise
beschleunigt werden.

Dieser Geschwindigkeitszuwachs geht allerdings auf
Kosten des Hauptprogramms, das stark verlangsamt wird.
Bei wenigen Interrupts (große Zahl in $DC05) wird es
beschleunigt. Die entsprechenden Assemblerbefehle lau­
ten:

LDA #$FF
STA $DC05

um eine starke Beschleunigung zu bewirken.
Die Normaleinstellung wird durch
LDA #$3A
STA $DC05
erreicht.

Beschleunigungsmethode 3:
Trick: Anzahl der Interruptaufrufe pro Sekunde ändern
Nebenwirkungen: Bei zu wenigen Aufrufen hinken Uhr,
Cursor und Tastaturabfrage nach; bei zu vielen werden
sie zu schnell.

b) VIC-Register Nummer 17
Ist Ihnen schon bei Hypra-Load, beim Arbeiten mitder Data­

sette und einigen Kopierprogrammen aufgefallen, daß
manchmal der Bildschirm abgeschaltet wird (ähnlich wie im
FAST-Mode des C 128)? Dies kann man mit einem Vorhang
vergleichen, der zwischenzeitlich den Bildschirm verdeckt.
Der Bildschirm kann zwar nach wie vor (hinter dem Vorhang)
geändert werden (PRINT-Anweisungen werden also ausge­
führt), aber sichtbar wird die Wirkung erst, wenn der Vorhang
entfernt wird.

74 iÄj1

C64 Kurs

Verantwortlich für das Ein-/Ausschalten des Bildschirms ist
das VIC-Register Nummer 17:

Bit 4 gesetzt: Bildschirm wird angezeigt
Bit 4 gelöscht: Bildschirm wird abgeschaltet

und nimmt Rahmenfarbe an.
Da wir die theoretischen Grundlagen haben, brauchen wir

nur noch unser Wissen in Befehle umzusetzen:
Bildschirm abschalten:

LDA $D011 ($D011istVIC-Register#17)
AND #$EF ($EF = %111O1111)
STA $DO11 1

Bit4
In diesem Zustand arbeiten manche Kopierprogramme um

zirka 15% schneller. Programme, dienichtaufexterneGeräte
wie die Floppy zugreifen, laufen zirka 5% schneller ab.
Bildschirm wieder einschalten:

LDA $D011
ORA#$10 ($1O = %OOO1OOOO)
STA $DO11 1

Bit4
Dies ist der Normalzustand.

Beschleunigungsmethode 4:
Trick: Bildschirm abschalten
Nebenwirkungen: Der Bildschirminhalt ist nicht zu
sehen, geht aber auch nicht verloren.

c) Hinweise zum bisher Gesagten
Alle bis zu dieser Stelle genannten Tricks beziehen sich auf

die Beschleunigung von Programmen. Sie lassen sich leicht
nachträglich einfügen, weil am Programmalgorithmus keine
Änderungen erforderlich sind.

Sie können das Abschalten des Bildschirms mit dem
Abschalten oder Einschränken des Interrupts verknüpfen,
um die Geschwindigkeit noch weiter zu erhöhen. Wenn Sie
den Interruptganzabschalten (SEI), bringtes keinen zusätzli­
chen Gewinn, ihn einzuschränken oder die Zahl der Aufrufe
zu ändern.

Beachten Sie bitte, daß alle beschriebenen Tricks durch
RUN/STOP-RESTORE, einem Reset oder den Assemblerbe­
fehl BRK rückgängig gemacht werden.

2. Systembeschleunigungen in Basic

Hier erfahren Sie, wie sich die Systembeschleunigungen von
Basic aus verwerten lassen. Die Nebenwirkungen bleiben
allerdings diegleichen, wie unter 1. genannt.
a) Interrupt einschränken

POKE788,52 verkürztdie Interrupt-Routine um das Abfra­
gen der RUN/STOP-Taste und das Stellen von Tl$.

POKE 788,49 Normalzustand
In Basic ist das Ausfallen von RUN/STOP und Tl$ wesent­

lich störender als in Maschinensprache. Überprüfen Sie
daher Ihre Programme auf Verwendung von Tl$ und fügen Sie
den POKE erst nach (!) der Fertigstellung des Programms ein.
b) Interrupt abschalten

POKE 56334,PEEK (56334) AND 254
schaltet den Interrupt ab,

POKE 56334,PEEK(56334) OR 1
schaltet ihn wieder ein. Dies geschieht dadurch, daß der
Timer ab- beziehungsweise wieder eingeschaltet wird.
c) Anzahl der Interrupt-Aufrufe ändern

POKE 56325,0: Extrem viele Interruptaufrufe
POKE 56325,255: Extrem wenige (daraus folgt:
Interrupt langsam, Basic-Programm schnell)

d) Bildschirm abschalten
POKE 53265,PEEK(53265) AND 239

schaltet den Bildschirm ab.
POKE 53265,PEEK(53265) OR 16

schaltet ihn wieder ein.
An dieser Stelle sei noch einmal auf Punkt 1c hingewiesen,

damit keine (vermeidbaren) Probleme auftreten.
Anhand von Listing 1 wollen wir uns nun mit der Anwendung

der Systembeschleunigungen befassen. Dieses kleine Bei­
spielprogramm, an dem Sie nach Herzenslust experimentie­
ren können, versucht, mit Hilfe von Tl$ die Arbeitsdauer der
Schleife (Zeile 150) zu messen.

Während des Ablaufs dieser Schleife, die kontinuierlich die
Rahmenfarbe ändert, sollten Sie keine Taste drücken, um die
Meßwerte nicht zu verfälschen.
Wenn Sie dies beachten, erhalten Sie folgende Werte:
1. Normalzustand: 000003
2. Verkürzter Interrupt: 000000

An der gemessenen Zeit können Sie erkennen, daß Tl$
abgeschaltet wurde.

3. Häufige Interrupts: 000010
Aufgrund vieler Interrupt-Anforderungen wurde die Uhr
Tl$ sehr oft erhöht.

4. Seltene Interrupts: 000001
Da die IRQ-Routine nur selten durchlaufen wurde, ist Tl$
kaum weitergezählt worden.

5. Bildschirm abgeschaltet: 000002
Nur bei diesem Punkt (und natürlich auch bei »1«) hat Tl$ volle
Aussagekraft bezüglich der Ablaufzeit. An dieser Zeit können
wir erkennen, daß durch das Abschalten des Bildschirms tat­
sächlich gegenüber »1« ein Zeitgewinn anfällt.

Bei den Punkten »3« und »4« wurde der Cursor eingeschal­
tet. Bei »3« (häufige Interrupts) ist er sehr schnell, bei »4«
dagegen sehr langsam.

An Punkt »5« können Sie erkennen, daß bei abgeschalte­
tem Bildschirm der Hintergrund immer die Rahmenfarbe
($D020) annimmt, ohne daß wir die entsprechende Farbe ins
Register$DO21 »POKEn«.

90 GOTO 200 <026>
100 REM » UP - SCHLEIFE << <138>
110 : <086>
120 PRINT" <TASTE>";:WAIT 198,l:PQKE 198,0

:FOR 1=1 TO 7:PRINT CHR$(20);:NEXT <221>
130 : <106>
140 FOR 1=1 TO 100:NEXT <122>
150 TIf="000000":FOR I = 0 TO 255:P0KE 532

80,1 AND 15:NEXT:PRINT TI*sRETURN <205>
160 : <136>
170 REM >> UP - CURSORBLINKEN AUS « <206>
180 : <156>
190 POKE 207,0:POKE 204,l:PRINT" ":RETURN <186>
200 REM----------------------- <222>
210 REM — HAUPTPROGRAMM — <045>
220 REM----------------------- <242>
230 : <206>
240 PRINT CHR$(147)"DEM0 FUER SYSTEMBESCHL

EUNIGUNGEN (BASIC)"; <061>
250 PRINT"---------------------------------------

<127>
260 PRINT"<2D0WN}1) NORMALZUSTAND";:GOSUB

100 <033>
270 : <248>
280 PRINT"<D0WN>2) VERKUERZTER INTERRUPT";

:POKE 788,52:G0SUB 100:POKE 788,49 <084>
290 : <012>
300 PRINT"<DOWN}3) HAEUFIGE INTERRUPTS";:P

OKE 56325,20:POKE 204,0:GOSUB 100:GOSU
B 170 <018>

310 : <032>
320 PRINT"4) SELTENE<2SPACE}INTERRUPTS";:P

OKE 56325,150:POKE 204,0:GOSUB 100:GOS
UB 170 <113>

330 SYS 64931:REM NORMALZUSTAND EIN <253>
340 : <062>
350 PRINT"5) BILDSCHIRM ABGESCHALTET ";:PO

KE 53265,PEEK(53265) AND 239:G0SUB 140 <107>
360 POKE 53265,PEEK(53265) OR 16sPRINT"<D0

WNJ** ENDE **" <066>

© 64'er

Listing 1. Systembeschleunigungen in Basic

75

Kurs C64

3. Optimierung der Bildschirmausgabe

Ohne die Bildschirmausgabe kommt kein Programm aus, aber
oft kostet sie unnötig viel Rechenzeit. Der Grund ist hier nicht
beim Betriebssystem zu suchen, sondern bei umständlicher
Programmierung. Diese wiederum ist auf mangelndes Know-
how zurückzuführen, welches wir nun ändern wollen.

In der Regel wird zur Ausgabe eines Zeichens dieses in den
Akku geladen und die Routine BASOUT ($FFD2) aufgerufen.
Veranschaulichen wir uns einmal die Arbeitsweise von
BASOUT: Das Betriebssystem prüft bei jedem Zeichen, ob es
sich um einen Buchstaben oder ein Steuerzeichen, zum Bei­
spiel »Bildschirm löschen« handelt. Buchstaben werden in
den Bildschirmcode umgewandelt und ins Bildschirm-RAM
ab $0400 geschrieben.

FürSteuerzeichen existierenjeweilsUnterroutinendiezum
Beispiel eine Leerzeile einfügen, den Bildschirm löschen
oder ähnliches.

Diese aufwendige Überprüfung verlangsamt die Bild­
schirmausgabe erheblich. BASOUT läßt sich zwar gering­
fügig beschleunigen, indem man stattbei $FFD2 (Kernelein­
sprung) bei $E716 einsteigt, aber es geht noch schneller:

a) Bildschirm löschen
Langsam:

LDA #$93 $93 = 147 = Codefür»Bildschirm
löschen«, entspricht PRINT CHR$(147)

JSR$FFD2 (oder$E176)

Schnell:
JSR $E544 (Routine für »Bildschirm löschen«)

b) Cursor in Home-Position (linke obere Ecke)
Langsam:

LDA #$13 ; $13 = Code für »Cursor Home«
JSR$FFD2 (oder$E176)

Schnell:
JSR $E566 (Routine für »Cursor Home«)

c) Cursor-Positionierung
Langsam:
Senden von Steuerzeichen (CRSR DOWN, UP und so weiter)
über BASOUT.
Schnell:

LDX #Zeile
LDY #Spalte
JSR $E50C (Cursorposition setzen)

d) Textausgabe
Unkomfortable Lösung:
Senden von Zeichen (Buchstaben, Grafikzeichen) über
BASOUT.

Eine solche Schleife finden Sie in Listing 2, Zeilen 148 -
220 und 320 - 330. Nach dem Start durch »SYS 49152« gibt
Listing 2 zweimal hintereinander den Text »DAS IST DER
TEXT« aus. Das erste Mal wird der Text über eine BASOUT-
Schleife gedrückt, beim zweiten Mal nimmt das Programm die
Komfortable Lösung:

Ab der Adresse »TEXT« muß der Text (in ASCII-Darstellung)
stehen, in dem keine Anführungszeichen vorkommen dürfen.
Am Ende des Textes muß $00 als Endmarkierung zu finden
sein. Die Ausgabe erfolgt dann über

LDA # < (TEXT) Low-Byte der Adresse
LDY#>(TEXT) High-Byte
JSR $AB1E

Die Routine $AB1E wird fortan als »STROUT« (STRing-
OUTput = String-Ausgabe) bezeichnet. STROUT ist zwar
etwas langsamer als BASOUT; dafür erlaubt die komfortable
Parameterübergabe eine wesentlich bequemere Program­
mierung, wie Sie am zweiten Teil von Listing 2 (Zeilen 260 -
300, 320 - 330) sehen können. Mit nur drei Befehlen wird
der Text ausgegeben!

Beschleunigungsmethode 5.
Zusammenfassung der bisherigen Alternativen
zu BASOUT:
CLEAR HOME: JSR $E544
CURSOR HOME: JSR$E566
Cursorpositionierung: LDX #Zeile

LDY #Spalte
JSR $E50C

Textausgabe: Text ab TEXT ablegen
(wie Listing 2, Zeile 320 - 330)
LDA # < (TEXT)
LDY #>(TEXT)
JSR $AB1E

Alle diese Verfahren sind nicht nur schnell, sondern auch
speicherplatzsparend.

Eine Anwendung von (fast) allen Routinen aus der
Beschleunigungsmethode 5 zeigt Listing 3.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

-.LI 1,3,0

—; TEXTAUSGABE (UEBER BASOUT)

-.BA $C000 ; START: SYS 49152

-.GL BASOUT = $FFD2

LDX #0
-SCHLEIFE LDA TEXT,X ; ZEICHEN LESEN

INX
JSR BASOUT ; UND AUSGEBEN
BNE SCHLEIFE ; SCHON ENDMARKIERUNG?

-; TEXTAUSGABE (UEBER STROUT)

-.GL STROUT = $ABlE

LDA #<(TEXT) ; LOW-BYTE IN AKKU
LDY #>(TEXT) ; HIGH-BYTE IN Y
JMP STROUT ; TEXTAUSGABE UND ENDE

-TEXT .TX "DAS IST DER TEXT!"
-.BY 0 ; ENDMARKIERUNG DES TEXTES

SEARCHING FOR $$

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

LI 1,3,0

TEXTAUSGABE (UEBER STROUT)

BA

GL
GL
GL

GL
GL

$C000

STROUT
CURSOR
CLRSCR

ZEILE
SPALTE

-TEXT
-.BY 0

START: SYS 49152

$ABlE
$E50C
$E544

12
10

JSR
LDX
LDY
JSR
LDA
LDY
JMP

TX

BILDSCHIRM LOESCHEN

CLRSCR
#ZEILE
#SPALTE
CURSOR
#<(TEXT)
#>(TEXT)
STROUT

"DAS IST

= PRINT CHR$(147)
ZEILE IN X
SPALTE IN Y
CURSOR SETZEN
LOW-BYTE IN AKKU
HIGH-BYTE IN Y
TEXTAUSGABE & ENDE

DER TEXT!"
ENDMARKIERUNG FUER STROUT

Listing 2. Die unkomfortable Lösung,
einen Text auszugeben

Listing 3. Die komfortable Lösung
einen Text auszugeben

76

C64 Kurs

Der Bildschirm wird getöscht und in Zeile 12 ab Spalte 10
ein Text ausgegeben. Auch in diesem Programm sollten Sie
zur Übung etwas experimentieren!
e) Kopieren des Textes in den Bildschirmspeicher

Dies ist die schnellste Methode: Der Text wird in den Bild­
schirmspeicher kopiert. Die lange Umwandlung entfälltvöllig,
da der Text als fertiger Bildschirmcode im Speicher abgelegt
wird. Wenn einige Kopfzeilen (zum Beispiel mit Copyright-
Vermerken) an verschiedenen Stellen ausgegeben werden
sollen, ist es ratsam, ein kleines Unterprogramm zu erstellen.
Dieses schreibt dann die Kopfzeilen direkt in den Bildschirm­
speicher, ohne die aktuelle Cursor-Position zu beeinflussen.

Eines müssen Sie aber unbedingt beachten: Die Farbge­
bung ist nur durch Ändern des Farb-RAMs möglich.

Eine Tabelle der Bildschirmcodes finden Sie übrigens im
Anhang des C 64-Handbuchs und am Schluß dieser Aus­
gabe.

Beschäftigen wir uns nun mit Listing 4:
Dieses Programm entspricht in der Wirkung Listing 3, gibt

den Text jedoch nicht über die Betriebssystem-Routinen
CURSOR und STROUT aus, sondern schreibt ihn direkt in
den Bildschirm.

In den Zeilen 310 - 320 steht der Bildschirmcode des
Textes.

Zurück zur Routine STROUT: Diese Routine arbeitet, da sie
sich auf die BASOUT-Routine stützt, auch mit Peripheriegerä­
ten wie Floppy und Drucker, wenn diese über dem CMD-
Befehl als Ausgabegeräte definiert wurden. In »Assembler ist
keine Alchimie« wurde gezeigt, wie man mit der BASOUT-
Routinedie Drucker-Ausgabebetreibt. Dortwurdenallewich-
tigen Routinen bis ins Detail beschrieben.

Listing 5 gibt einen Text zuerst auf dem Drucker und dann
auf dem Bildschirm aus. Daran soll außer dem Druckerbetrieb
auch gezeigt werden, wie man die Parameterübergabe an
STROUT als Makro (Zeilen 230 - 270) definiert und sich
somit einen bequemen Ausgabe-Befehl schafft.

4. Unterprogramme

Ohne die Unterprogramm-Befehle JSR und RTS kommt fast
kein Maschinenprogramm aus. Es ist allerdings ziemlich
unbekannt, daß beide Befehle das Programm starkverlangsa-
men. Grund genug für uns, JSR und RTS näher zu betrachten:

Trifft der Prozessor auf JSR, schiebt er den aktuellen Pro­
grammzähler plus 2 (= Rücksprungadresse - 1) auf den
Stack und springt dann zu der Adresse, die hinter JSR steht.
Trifft er auf RTS, holt er die Adresse vom Stapel zurück, erhöht
sie um 1 und verwendet sie wieder als Programmzähler.

Bemerkenswert ist, daß die Zugriffe auf den Stapel sich in
keiner Weise von den Zugriffen über die Befehle PHA und
PLA unterscheiden. Daher muß jedesmal der Stapelzeiger
neu errechnet werden. Diese vielen Operationen sind schuld
daran, daß JSR und RTS so langsam sind.

Da wir das Problem erkannt haben, können wir damit begin­
nen, unser Wissen anzuwenden.
a) Unterprogrammverschachtelung

Stellen wir uns folgendes Beispiel vor: ein Hauptprogramm
ruft das Unterprogramm 1 auf. Dieses ruft an seinem Ende
das Unterprogramm 2 auf, um dann mit RTS ins Hauptpro­
gramm zurückzukehren.
Alles ziemlich schwierig, oder?

Deshalb gehen wirmit Hilfe einerGrafikvor: In Bild 1 sehen
Sie ein Flußdiagramm nach obigem Aufbau. In der Beschrif­
tung soll »Code« nicht »Kennwort« bedeuten, sondern heißt
einfach »Befehlsnummer«.

Wie an den Pfeilen zu erkennen ist, werden zwei RTS-
Befehle hintereinander abgearbeitet (von Unterprogramm 2
nach Unterprogramm 1 und von dort zum Hauptprogramm).

100 -.LI 1,3,0
110 -;
120 -J TEXT IN VIDEO-RAM SCHREIBEN
130 -5
140 -.BA $C000 ; START: SYS 49152
150 -;
180 -.BL CLRSCR = $E544 ; BILDSCHIRM LOESCHEN
190 -;
200 -.GL ZEILE = 12
210 -.GL SPALTE = 10
220 -;
230 -.GL VIDEORAM = 1024 ; BILDSCHIRMSPEICHER
240 -.GL ADRESSE = VIDEORAM + (40*ZEILE) + SPALTE
250 -;
255 - JSR CLRSCR ; = PRINT CHR$(147)
260 - LDX #0
270 -SCHLEIFE LDA TEXT,X ; BILDSCHIRMCODE LESEN
280 - BEQ ENDE ; =0, DANN ENDE
290 - STA ADRESSE,X ; IN BILDSCHIRMSPEICHER
295 - INX
296 - JMP SCHLEIFE ; NAECHSTES ZEICHEN
300 -ENDE RTS
305 -;
310 -TEXT .BY 4,1,19,“ ",9,19,20," "
311 -.BY4,5,18," ",20,5,24,20,"!"
320 -.BY 0 ; ENDMARKIERUNG DES TEXTES

Listing 4. Die schnellste Lösung, einen Text auszugeben

Listing 5. So gibt man Text auf dem Drucker aus

100 -.LI 1,3,0
110
120 -; DRUCKER-AUSGABE MIT
130 -; DER STROUT-ROUTINE
140
150 — -GL STROUT = $ABlE
160 -.GL SETNAM = $FFBD ; DIE BEDEUTUNG
170 -.BL SETLFS = $FFBA ; DIESER ROUTINEN
180 “.GL OPEN = $FFC0 ; ENTNEHMEN SIE
190 -.GL CHKOUT = $FFC9 ; BITTE DEM KURS
200 -.GL CLRCHN = $FFCC ; "ASSEMBLER IST
210 -.GL CLOSE = $FFC3 ; KEINE ALCHIMIE"
220
230 -.MA PRINT (ADRESSE)
240 LDA #<(ADRESSE)
250 — LDY #>(ADRESSE)
260 — JSR STROUT
270 -.RT
280
290 “.BA $C000 ; START: SYS 49152
300
310 LDA #0 ; KEINEN
320 JSR SETNAM ; FILENAMEN
330
340 LDA #4 5 LOG. FILENUMMER =4
350 TAX ; GERAETEADRESSE 4
360 LDY #0 ; SEKUNDAERADRESSE 0
370 JSR SETLFS ; PARAMETER SETZEN
380
390 — JSR OPEN ; FILE OEFFNEN
400
410 LDX #4 ; FILENUMMER 4
420 — JSR CHKOUT ; AUSGABE AUF DRUCKER LENKEN
430
440 -...PRINT (TEXT) ; TEXT AUSGEBEN
450
460 JSR CLRCHN ; WIEDER BILDSCHIRMAUSGABE
470
480 -...PRINT (TEXT) ; JETZT AUF BILDSCHIRM
490 5
500 — LDA #4 ; LOG. FILENUMMER 4
510 — JMP CLOSE ; FILE SCHLIESSEN
520 PROGRAMM BEENDEN
530 —:
540 —TEXT .TX "DIESER! TEXT WIRD AUF"
550 -.TX " DEN DRUCKER AUSGEGEBEN !"
560 -.BY 13,13,13,0 ; 3 * CAR.RETURN

77

Kurs C64

Dies ist immer ein Indiz dafür, daß das Programm noch opti­
miert werden kann.

Eine »Übersetzung« von Bild 1 in Assembler ist Listing 6:
Wenn Sie dieses über »SYS 49152« starten, ist aus den aus­
gegebenen Texten ersichtlich, welcher Programmteil wann
abgearbeitet wird.

Sobald Sie die Strukturvon Bild 1 beziehungsweise Listing
6 verstanden haben, können wir uns mit der optimierten Form
befassen, die in Bild 2 beziehungsweise Listing 7 zu finden
ist.

Hier wird das ehemalige Unterprogramm 2 ans Ende von
Unterprogramm 1 gehängt (wobei es ebenfalls über JMP
UP2 angesprungen werden könnte). Auf diese Weise muß es
nicht über JSR aufgerufen werden, was auch einen RTS-
Befehl überflüssig macht.

Trotz dieser Änderung kann das Unterprogramm 2 auch
weiterhin als Unterprogramm aufgerufen werden, da bei JSR
UP2 die CPU auf einen RTS-Befehl trifft (Bild 2).

In Listing 7 muß noch der JMP-Befehl in Zeile 480 erläutert
werden:

Dort muß nichtJSR STROUT:RTS stehen, weil am Ende der
STROUT-Routine im ROM ohnehin ein RTS steht. Deshalb
benötigt unser Programm keinen eigenen RTS-Befehl zur
Rückkehr ins Hauptprogramm.

Die folgende Regel gilt für Aufrufe von Betriebssystem­
routinen:

^ Hauptprogramm

Code des Haupt­
programms

Unterprogramm 1
Code des früheren
Unterprogramms 2

Code von Unter­
programm 1

restlicher Code
des Hauptprogramms

^ Programmende ^

Bild 2. Der optimierte Algorithmus
zur Verschachtelung
von Unterprogrammen

Einsprungpunkt, wenn
Unterprogramm 2 ein­
zeln aufgerufen wer­
den soll (also: ohne
daß der Code von
Unterprogramm 1
ausgeführt wird)

JSR $XXXX entspricht JMP $XXXX
RTS_________

Voraussetzung ist, daß im Unterprogramm ab $XXXX keine
Stapelmanipulation erfolgt, wie sie gleich beschrieben wird.
Das geschilderte Verfahren zur Unterprogrammverschachte-

100 -.LI 1,3,0
110 -.BA $C000 5 START: SYS 49152
120
130 -; UNTERPROGRAMMVERSCHACHTELUNG
140 -■ (OPTIMIERTE ASSEMBLERVERSION)
150
160 -.GL STROUT = $ABlE
170
180 -.MA PRINT (ADRESSE)
190 — LDA #<(ADRESSE)
200 — LDY #>(ADRESSE)
210 — JSR STROUT
220 -.RT
230
240 _. -------- --------- HAUPTPROGRAMM
250 — -
260 -...PRINT (TEXT1)
270 —:
280 — JSR UP1
290 — - t AUFRUF VON UNTERPROGRAMM 1
300 — :
310 -...PRINT (TEXT2)
320 — -
330 — JMP $A474 ; WARMSTART
340
350
360 --------- UNTERPROGRAMM 1
370
380 -UP1 NOP ; BELIEBIGER CODE
390 -...PRINT (TEXT3)
400 —:
410
420 — -
430 _. -------- --------- CODE VON UNTERPROGRAMM 2
440
450 -UP2 NOP ; BELIEBIGER CODE
460 — LDA #<(TEXT4) ; LOW-BYTE
470 — LDY #>(TEXT4) ; HIGH-BYTE
480 — JMP STROUT 5 TEXTAUSGABE
490 -; UND RUECKSPRUNG VOM UNTERPROGRAMM,
500 —5 WEIL AM ENDE DER STROUT-ROUTINE
510 —; EIN RTS-BEFEHL STEHT.

100 -.LI 1,3,0

10000-;
10010-;
10020-; ------------------ TEXTE
10030-;
10040-TEXT1 .TX "HIER IST DAS HAUPTPROGRAMM."
10050-.BY 13,13 ; 1 LEERZEILE
10060-.BY 0 ; ENDMARKIERUNG
10070-;
10080-TEXT2 .TX "HIER IST WIEDER DAS HAUPTPROGRAMM."
10090-.BY 13,13,0
10100—5
10110-TEXT3 .TX "HIER IST DAS UNTERPROGRAMM 1."
10120-.BY 13,13,0
10130-;
10140-TEXT4 .TX "HIER IST DAS UNTERPROGRAMM 2."
10150-.BY 13,13,0

Listing 6. Die umständliche Methode,
Unterroutinen aufzurufen

110 -.BA $C000 ; START: SYS 49152
120 -;
130 -; UNTERPROGRAMMVERSCHACHTELUNG IN ASSEMBLER
140 -;
150 -.GL STROUT = *ABlE
160 -;
170 -.MA PRINT (ADRESSE)
180 - LDA #<(ADRESSE)
190 - LDY #>(ADRESSE)
200 - JSR STROUT
210 -.RT
220 -;
230 -; ------------------HAUPTPROGRAMM
240 -;
250 -...PRINT (TEXT1)
260 -;
270 - JSR UP1
280 —; T AUFRUF VON UNTERPROGRAMM 1
290 -;
300 -...PRINT (TEXT2)
310 -;
320 - JMP $A474 ; WARMSTART
330 —5
340 -;
350 -; ------------------UNTERPROGRAMM 1
360 -;
365 -UP1 NOP ; BELIEBIGER CODE
370 -...PRINT (TEXT3)
380 -;
390 - JSR UP2
400 —5 t AUFRUF VON UNTERPROGRAMM 2
410 —5
420 - RTS ; UP1 VERLASSEN
430 — 5
440 -;
450 -; ------------------UNTERPROGRAMM 2
460 —5
465 -UP2 NOP ; BELIEBIGER CODE
470 -...PRINT (TEXT4)
480 -;
490 - RTS ? UP2 VERLASSEN
500 -;
10000-;
10010-; ------------------TEXTE
10020-;
10030-TEXT1 .TX "HIER IST DAS HAUPTPROGRAMM."
10040-.BY 13,13 ; 1 LEERZEILE
10050-.BY 0 ; ENDMARKIERUNG
10060-;
10070-TEXT2 .TX "HIER IST WIEDER DAS HAUPTPROGRAMM."
10080-.BY 13,13,0
10090-;
10100-TEXT3 .TX "HIER IST DAS UNTERPROGRAMM 1."
10110-.BY 13,13,0
10120—5
10130-TEXT4 .TX "HIER IST DAS UNTERPROGRAMM 2."
10140-.BY 13,13,0

Listing 7. Die optimierte Methode,
Unterroutinen aufzurufen

78

C64 Kurs

lung und die entsprechenden Regeln können Sie dann auf
jede (!) Programmiersprache übertragen.

b) Stapelmanipulation
Wenn Sie »Exbasic Level II« kennen, wissen Sie sicher den

Befehl »DISPOSE RETURN« zu schätzen. Er dient dazu, ein
Unterprogramm ohne RETURN abzuschließen. Dadurch
kann dieses zum Beispiel über GOTO verlassen werden.

In Assembler ist dies auch möglich. Die Befehlseingabe
PLA
PLA

entspricht in der Wirkung »DISPOSE RETURN«.
Da die Rücksprungadresse auf den Stapel abgelegt wird

und dort 2 Byte in Anspruch nimmt, kann sie über PLA:PLA
wieder vom Stapel geholt werden. Ein Unterprogramm ist
nach PLA:PLA eigentlich kein Unterprogramm mehr, sondern
Bestandteil des aufrufenden Programms. PLA:PLA findet vor
allem in der Fehlerbehandlung Anwendung. An einem späte­
ren Listing werden wir dies noch sehen. Nach PLA:PLA kann
ein Unterprogramm über JMP verlassen werden. Dies
machen wir uns zunutze, um den Rücksprung an eine belie­
bige Adresse zu simulieren. Dies ist sonst nicht möglich, da
bei RTS immer hinter den Befehl gesprungen wird, der das
Unterprogramm aufgerufen hat.

Ein RTS an eine beliebige Adresse müßte »RTS XXXX« hei­
ßen, doch diesen Befehl gibt es beim 6510 nicht. So wird er
aber simuliert:

PLA ; holt Rücksprungadresse
PLA ; vom Stapel und
JMP $XXXX ; springt nach $XXXX

So sieht ein Makro dazu aus:
-.MA RTS (RUECKSPRUNGADRESSE)

PLA
PLA
JMP RUECKSPRUNGADRESSE

-.RT
Und noch ein Mangel der Unterprogrammbefehle soll

beseitigt werden: Obwohl es JMP (indirekt) gibt, kennt der
6510 keinen Befehl wie JSR (indirekt); über Stapelmanipula­
tion ist dies dennoch möglich (siehe dazu auch im 64’er, Aus­
gabe 1/86: Assembler-Bedienung leicht gemacht).

Nehmen wir an, im Vektor $14/$15 steht die Adresse
$C000. Nun soll über den $14/$15-Vektor ein Unterpro­
gramm aufgerufen werden (also das ab $C000). Bild 3 zeigt,
was im einzelnen geschehen muß.

Die Rücksprungadresse steht zwar in Bild 3 direkt hinter
dem JMP ($0014)-Befehl, kann aber auch anderswo im Pro­
gramm stehen.

Folgendes Makro ermöglicht die Simulation von JSR
(indirekt):

-. MAJSRIND(VEKTOR, RUECKSPRUNGADRESSE)
LDA # > (RUECKSPRUNGADRESSE-1)
PHA
LDA # < (RUECKSPRUNGADRESSE-1)
PHA
JMP (VEKTOR)

-. RT
Diese Simulation von JSR ($XXXX) verwendet auch der

SYS-Befehl (disassemblieren Sie von $E12A bis $E155 und
betrachten Sie dazu Bild 3).

Zuerst holt er die Zahl nach SYS in die Adressen $14/$15,
dann legt er die Rücksprungadresse ($E147) -1 auf dem
Stack ab. Nun holt er die Register P, A, X, Y aus den Adressen
$030F, $030C, $030D, $030E. Es folgt ein indirekter
Sprung über $0014/$0015.

Nach dem Rücksprung werden die Register wieder im
Speicher dort abgelegt, woher sie genommen wurden und
ein Sprung ins Basic wird durchgeführt.

Später werden wir noch eine weitere Möglichkeit für JSR

verzweigt dorthin

Bild 3. Der Algorithmus, um einen JSR (indirekt^
Befehl zu simulieren

(ind) kennenlernen, die aber nicht auf Stapelmanipulation
beruht.
c) Vergleich zwischen Unterprogramm und Makro
bezüglich Geschwindigkeit

Wenn Sie den Hypra-Ass (oder einen anderen Makro-
Assembler) besitzen, haben Sie die Möglichkeit, Befehlsfol­
gen als Makros zu definieren. Makros sind deswegen so
beliebt, wei! sie den größten Vorteil von Unterprogrammen
bieten, nämlich Übersichtlichkeit. Da Makros aber wie »nor­
male« Befehle im Speicher stehen, entfällt der Aufruf über
JSR und RTS. Dies ist der Grund, weshalb Makros etwas
schneller (wenige Taktzyklen) als Unterprogramme sind. Das
Problem, wann Makros und wann Unterprogramme vorteilhaft
sind, wird später noch aufgegriffen.

5. Tabellen

lm allgemeinen Sprachgebrauch werden Tabellen als »geord­
nete Zusammenstellungen von Daten« verstanden. Diese
Funktion haben sie auch in Computerprogrammen, wo man
sie daran erkennt, daß Tabellen keinen Befehlscharakter
haben.

SMON-Benutzer können mit »FT« ein Programm nach Tabel­
len durchsuchen lassen; dann sucht SMON im Programm
nach Bytes, die nicht zu Maschinensprachebefehlen ge­
hören.

Wozu werden nun Tabellen verwendet?
In der Regel dienen Tabellen einem Computerprogramm als

»elektronischer Rechenschieber«. So wie das Kopfrechnen
durch einen Rechenschieber ersetzt werden kann, weil man
nur in einer geordneten Zusammenstellung von Ergebnissen
das richtige suchen muß, kann ein Programm aus seinen
Tabellen denselben Nutzen ziehen: die Berechnungen entfal­
len, die Programmierung wird einfacher.

79

Kurs C64

Aus den weniger erforderlichen Berechnungen entsteht
ein deutlicher Geschwindigkeitszuwachs, der Hauptvorteil
von Tabellen. Wie man Tabellen einsetzt, erfahren Sie im
folgenden.
a) Tabellen aus Rechenergebnissen

Noch einmal zum Rechenschieber. Es geht beim Kopfrech­
nen viel schneller, 4x10 auszurechnen als 4x7. Bei einem
Rechenschieber besteht kaum ein Unterschied in der
»Rechenzeit«.

Dementsprechend existiert fast kein Algorithmus, dessen
Ausführungszeit bei unterschiedlichen Parametern immer
gleich bliebe. Wer den Artikel »Dem Klang auf der Spur (5)«
(64’er, Ausgabe 5/85, Seite 152 ff.) gelesen hat, weiß, welch
grobe Differenzen bei Multiplikationen auftreten können.

Ersetzt (beziehungsweise unterstützt) man einen Algorith­
mus durch eine Multiplikationstabelle, fällt eine einheitlichere
(und kürzere) Ausführungszeit an.

Für das Rechnen mit einzelnen Bits in einem Byte werden
oft die Zweierpotenzen benötigt; es empfiehlt sich, diese als
Tabelle anzulegen:

1000 -; Zweierpotenzen als Tabellle
1010 -; im DOS der Floppy 1541 ab $EFE9
1020 -; zu finden
1030 -; ZWEIPOT.BY2tO, 2t1, 2t2, 2t3, 2t4,

2t5, 2t6, 2t7
Folgende Unterroutine legt im Akkumulator den Wert 2tA
ab, wobei mit A der Inhalt des Akkumulators bei Aufruf der
Routine gemeint ist:

10000 -;
10010 -; SubroutinezurBerechnungvon
10020 -; 21A(ErgebniskommtindenAkku)
10030 -;
10040 - TAX ; Akku in Indexregister
10050 - LDAZWEIPOT,X;ausTabelleeinlesen
10060 - RTS ; Das war’s schon! Wer ein

schnelleres und zugleich so einfaches
Verfahren kennt, möge sich melden...

10070 - ZWEIPOT
.BY2t0,2t1,2t2,2t3,2t4,2t5,2t6,2t7

Wenn A größerals 7 ist, liefert das Programm falsche Werte.
Sie können es noch erweitern, wenn Sie es für nötig halten.

108
110

-.LI 1,3,0
-.BA $C000 ; START: SYS 49152

120
130 -; RECHNUNG MIT FLIESSKOMMAWERTEN
140
150
160
170
180
190
200

-.GL MEMFAC = $BBA2
-.GL FACOUT = $AABC
-.GL SQRFAC = $BF71
-.GL LOGNAT = $B9EA

-.MA HOLE (ADRESSE) ; MAKRO-DEF.
210 LDA #<(ADRESSE); HOLT MFLPT-ZAHL
220 LDY #>(ADRESSE); VON ADRESSE IN
230 JSR MEMFAC ; DEN FAC
240
250
260
270
280
290

-.RT

-...HOLE (BSPZAHL)

JSR FACOUT ; AUSDRUCKEN
300
310
320
330

-...HOLE (BSPZAHL)

JSR SQRFAC ; QUADRATWURZEL
340
350 JSR FACOUT ; AUSDRUCKEN
360
370
380
390

-...HOLE (BSPZAHL)

JSR LOGNAT ; LOGARITHMUS NATURALIS
400
410 JMP FACOUT ; AUSDRUCKEN
500
510
520
530
540

—; BEISPIELZAHL 1.23456
—; IM MFLPT-FORMAT

-BSPZAHL .BY $Bl,$lE,$06, $0F,TE5
550 —;

Listing8. Fließkommazahlen in Assembler verarbeiten

b) Tabellen aus Fließkommawerten
Zu den zeitraubendsten Operationen gehörtdie Rechnung

mit Fließkommazahlen. Daß diese selbst in Maschinenpro­
grammen lähmend wirkt, sehen Sie am HiRes-3-Befehl
»FUNKT« (64’er, Ausgabe 3/85, Grafikkurs-Anwendung).
Daher sollte man nurdann auf die Fließkommaroutinen zugrei­
fen, wenn es unvermeidbar ist. Berechnen Sie soviele Werte
wie möglich voraus, hierfür eignet sich der Direktmodus des
Basic-Interpreters besonders gut! Wie Sie einen auf diese
Weise berechneten Wert ins MFLPT-(Floating Point)Format
umwandeln können, zeigt Ihnen der folgende Kasten.

Verfahren zur Umwandlung einer Zahl ins
MFLPT-Format
1. SMON (oder anderen Monitor) laden
2. RESET auslösen oder NEW eingeben
3. »XX = Fließkommazahl« eingeben, zum Beispiel

»XX = 1.23456«
4. Monitor starten (SYS 49152)
5. »M 0805 0809« eingeben
Sie sehen nun in den Adressen $0805 - $0809 die
MFLPT-Darstellung der Zahl, mit der Sie die Variable XX
belegt haben.

Damit wir uns unter Zuhilfenahme präziser Fachausdrücke
und Abkürzungen verständigen können, sollten Sie den
Abschnitt in »Assembler ist keine Alchimie« aufmerksam
lesen, der sich mit Fließkommazahlen befaßt. Nach dem Stu­
dium dieses Abschnitts sollten Ihnen Begriffe wie »MFLPT«,
»FAC« oder »ARG« geläufig sein.
Im Falle der Zahl 1.23456 erhalten wir als Ergebnis:

:0805 81 1E06 0FE5...
Diese Werte legen wir folgendermaßen als Tabelle ab:

540 -BSPZAHL .BY $81, $1E, $06, $0F, $E5
Wie wir nun diese Zahl verarbeiten, zeigt Ihnen Listing 8.

Das Makro (200 - 240) stützt sich auf die Interpreter-Routine
MEMFAC, die eine Zahl (Adresse wird in Akku/Y-Register
übergeben) vom Speicherformat MFLPT in den FAC als FLPT-
Zahl schreibt und dabei die erforderliche MFLPT-—FLPT-
Umwandlung durchführt.

In der Tabelle in Zeile 540 können Sie beliebige Fließkom­
mawerte (sofern Sie diese wie angegeben berechnet haben)
einsetzen, das Programm rechnet dann mit der jeweiligen
Fließkommazahl, die ab BSPZAHL im MFLPT-Format steht.

Diese Zahl wird zunächst nur in den FAC geladen und der
FAC wird dann ausgedruckt (270 - 290), dann wird die Zahl
wieder geholt, die Wurzel berechnet und ausgegeben (310-
350). Schließlich wird die Zahl wieder in den FAC geholt, der
natürliche Logarithmus errechnet und auch ausgegeben
(370-410).

Zur Routine FACOUT sind, außer daß sie den Inhalt des FAC
ausgibt, noch zwei Bemerkungen zu machen:
1. Nach der Zahl wird noch ein CARRIAGE RETURN aus­

gegeben.
2. Nach dem Aufruf von FACOUT hat sich der Inhalt des FAC

aufgrund mehrerer Divisionen durch Zehnerpotenzen
verändert.

Auf das Thema »Fließkommaarithmetik« geht Texteinschub
1 noch näher ein. Dort werden auch weitere Interpreter-
Routinen vorgestellt.
c) Sprungtabelle

Beim Thema »Unterprogramme« wurde Ihnen eine
Methode vorgestellt, um JSR (ind) zu simulieren. Diese
erweistsich in Verbindung mit einerTabelle, in der die Sprung­
adressen gespeichert sind, als sehr nützlich. So kann bei­
spielsweise eine Parallele zum Basic-Befehl ON...GOSUB
ZIEL1,ZIEL2.... geschaffen werden.

80

C64 Kurs

Ein Beispiel: Wenn der Basic-Interpreter auf einen Basic-
Befehl trifft, holt er aus der Tabelle $AOOC - $A09D die
Adresse der zugehörigen Routine. Diese springt er dann
durch Stapelmanipulation an.

Der SMON arbeitet genauso: Seine Sprungtabelle liegt im
Bereich $C02B - $C06B.

Die Anwendung von Sprungtabellen werden wir noch aus­
führlich im folgenden Abschnitt d) sowie bei der Besprechung
von Listing 11 behandeln.
d) Vergleichstabellen

Weder der SMON noch der Basic-Interpreter benutzen
zum Suchen der zum jeweiligen Befehl gehörenden Routine
eine Reihe von CMP-Abfragen mit BRANCH-Befehlen. Auch
für die Vergleichswerte (in diesem Fall die Befehlswörter) gibt
es eine Tabelle: Beim SMON liegt sie im Bereich $COOB -
$C02A, beim Basic-Interpreter $A09E - $A327.

Sprung- und Vergleichstabellen sind in gleicher Befehls­
folge angeordnet; wird der Befehl an einer bestimmten Stelle
in der Vergleichstabelle gefunden, erfolgt ein Sprung an die
Adresse, die an gleicher Stelle in der Sprungtabelle steht.
So sehen die Befehls- und Vergleichstabellen im SMON aus:

Spalte Nr.
Befehl
Sprungadr. $

1
/

CADB

2

C920

3
$

C908

4
%

C91C

Die Sprungadressen sind wegen der Stapelmanipulation in
derTabelleab $C02B um 1 dekrementiertgespeichert; in der
Darstellung sehen Sie aber das tatsächliche Sprungziel.

Wir werden jetzt anhand des SMON die Verwendung einer
Vergleichs-Sprungtabelle in Assembler erläutern.

Wenn wir die zum Befehl » # « gehörende Sprungadresse
finden wollen, gehen wir folgendermaßen vor:
1. Wir suchen in Reihe 2 das # -Zeichen.
2. Wir gehen (in derselben Spalte) eine Reihe nach unten und

finden dort die Sprungadresse ($C92C).
Der Computer hat nicht die Möglichkeit, direkt eine Reihe

weiter unten die Suche fortzusetzen. Er muß einen Umweg
wählen und sich die Spalte merken. Ein Beispiel:
1. Der SMON sucht unter den Elementen aus Reihe 2 das

»#«. In einem Zähler merkt er sich die Spalte, in der der
Befehl gefunden wurde.

2. Nun sucht er in Reihe 3 in der Spalte, die im Zähler steht,
die zugehörige Sprungadresse.

Wie ähnlich beide Suchvorgänge sind, erkennen Sie daran,
daßjedesmal die Hauptschritte 1. und 2. vorkommen.

Nach so viel Theorie sehen wir uns nun umso ausführlicher
die Routine im SMON an, die für die Steuerung der
Vergleichs-Befehlstabelle verantwortlich ist. Dazu können
Sie »D C303 C323« eingeben.

Bei Adresse $C303 steht im Akku der ASCII-Code des
Kommandos, das der SMON ausführen soll (zum Beispiel
$40, wenn ein M-Befehl eingegeben wurde).

C303LDX#$20 32-1 Befehle müssen durchsucht
werden. Weshalb »-1« erforderlich
ist, liegtan derSchleifenstruktur und
ist unbedeutend.

C305 CMP $C00A,X Akku (enthält Befehl) mit X-tem Ele­
ment der Befehlstabelle verglei­
chen; $C00A = Befehlstabelle -1,
weil Adresse $C00A nie zum Ver­
gleich herangezogen wird.

C308 BEQ $C30F Vergleich positiv; im X-Registersteht
jetzt die Spalte.

C30A DEX

C308 BNE $C305

C30D BEQ $C2D1

C30FJSR $C315

C312JMP$C2D6

Zähler wird dekrementiert; es han­
delt sich hier um eine »Dekremen-
tierschleife« (dieses Thema wird
noch behandelt).
Wenn der Zähler noch nicht gleich 0
ist, folgt ein Sprung zum Schleifen­
beginn.
Wenn X=0, dann wurde die ganze
Tabelle durchsucht, und der Befehl
nicht gefunden! Deshalb wird in
die SMON-Fehlerbehandlung ge­
sprungen.
Diese Stelle wird von $C308 aus
angesprungen; hier wiederum steht
ein Aufruf des Unterprogramms ab
$C315, das etwas weiter unten
besprochen wird.
Nachdem nun der Befehl durch die
Subroutine $C315 abgearbeitet
wurde, folgt ein Sprung zur Eingabe
des nächsten Befehls.

C315TXA

C316 ASL

C317TAX

C318INX

C319 LDA $C029, X

C31C PHA

C31DDEX

C31ELDA$C029,X

C321 PHA
C322 RTS

Das ist sie, die Subroutine! Weil im
X-Register die Nummer des Befehls
(= Spalte in Tabelle) steht, kommt
das X-Register ins Hauptrechen­
register.
Die Befehlsnummer wird mit 2 multi­
pliziert ...
und kommt wieder ins X-Register.
Die Multiplikation mit 2 ist erforder­
lich, weil in der Sprungtabelle ein
Element doppelt so lang ist, wie in
der Vergleichstabelle, nämlich
2 Byte. Die Sprungadressen be­
legen deshalb 2 Byte, weil sie aus
Low- und High-Bytes bestehen.
Das X-Register wird um 1 erhöht, da
das High-Byte eine Position hinter
dem Low-Byte steht.
High-Bytewirdgelesen. DieSprung-
tabelle beginnt zwar 2 Byte nach
$C029, aber weil es keine Spalte 0
gibt, muß der Speicherbedarf einer
Sprungadresse (=2) abgezogen
werden.
Das High-Byte der Adresse wird auf
den Stapel gelegt.
-1, weil Low-Byte eine Adresse vor
High-Byte steht.
Nun wird auch das Low-Byte der
Adresse
auf den Stapel geschoben.
Der Befehl RTS wird hier zur Simula­
tion von JMP (ind) verwendet. Auf
dieses (unpraktische) Verfahren soll
nicht weiter eingegangen werden,
weil der 6510 den Befehl JMP (ind)
kennt. Wichtig ist für uns nur, daß
jede SMON-Routine mit einem RTS
abgeschlossen wird, dann erfolgt
ein RücksprungzurAdresse $C312.

Kurs C64

Damit haben wir SMONs Schleife zum Suchen eines
Befehls und dessen Routine durchleuchtet. Sofern Sie ein
ROM-Listing zur Verfügung haben, können Sie sich zusätz­
lich die entsprechenden Stellen im Basic-Interpreter an|se-
hen. Dieser aber benötigt wegen seiner unterschiedlich lan­
gen Befehle einen etwas komplizierteren Suchalgorithmus,
was wiederum zu erheblich höherer Ausführungszeit bei­
trägt.

6. Vergleiche von Prüfsummen

Nun lernen wir ein besonders raffiniertes Vergleichsverfahren
kennen:

Wie gesagt, benötigen Vergleiche mit Wörtern, die aus
unterschiedlich vielen Zeichen bestehen, mehr Taktzyklen.
Dies wäre nicht so, wenn wir alle Zeichen auf eine einheitliche
Länge bringen würden. Genau dies tut der Basic-Interpreter:
Bei Eingabe einer Zeile wandelt er alle Basic-Befehlswörter in
Token um. Jedes Token vertritt einen Befehl und kann, da es
nur ein Byte benötigt, schnelleTerkannt werden, als es bei
mehreren Bytes möglich wäre.

Ein Nachteil ist jedoch der Speicherplatzaufwand; für die
Umwandlung müssen die Befehle irgendwo im Speicher in
Langform vorhanden sein.

Es gibt aber noch ein anderes Verfahren, einer Zeichen­
kette einen Wert zuzuweisen: Die Prüfsummenberechnung.
Dieseführen zum Beispiel die Eingabehilfen »Checksummer«
und »MSE« durch: Aus 8 Byte Programmcode und 2 Byte
Adresse errechnet der MSE eine 1 Byte Prüfsumme.

In Bild 4 sehen Sie einen sehr zuverlässigen Algorithmus
zur Berechnung von Prüfsummen (insofern zuverlässig, als er
sehr unterschiedliche Prüfsummen ermittelt). Listing 9 stellt
ein Hilfsprogramm dar, das zu einer Eingabe die Prüfsumme
nach dem Algorithmus aus Bild 4 errechnet.

In Listing 9 ist Ihnen eventuell die Routine NUMOUT nicht
bekannt. Daher eine Kurzbeschreibung: NUMOUT gibt eine
positive Integerzahl, die im Akkumulator (High-Byte) und im X-
Register (Low-Byte) übergeben wird, aus. NUMOUT wird
zum Beispiel von der LIST-Routine bei der Ausgabe einer
Zeilennummer aufgerufen.

Die Routine BASIN soll ebenfalls erklärt werden, da sie in
allen folgenden Programmen verwendet werden wird. Wenn
die Routine BASIN zum ersten Mal aufgerufen wird, erwartet
das Betriebssystem eine Eingabe (normalerweise von Tasta­
tur), die der Eingabe einer Basic-Zeile entspricht. Nach der
Eingabe wird das erste eingegebene Byte in den Akku gela­
den, jeder weitere Aufruf von BASIN holt das nächste Zeichen
in den Akku. Wurden alle Bytes eingelesen, wird im Akku der
Wert 13 ($0D, RETURN) übergeben. Danach führt ein weite­
rer Aufruf von BASIN zu erneuter Eingabe von Tastatur.

Ein großer Vorteil von Prüfsummen ist, daß die Vergleiche
mit nur einem Byte, nämlich der Prüfsumme, durchgeführt
werden müssen.

Wie man in den Genuß dieses Vorteils kommt, zeigt Listing
10. Wenn Sie den Namen eines Computers (C 64, VC 20, PC
128 oder AMIGA) eingeben, nennt das Programm den in die­
sem Computer installierten Mikroprozessor. Bei der Eingabe
der Computernamen kann man aufgrund der Zeilen 230 und
248 beliebig viele Leerzeichen eingeben. Bei der Errech­
nung der Prüfsummen mit Listing 9 dürfen allerdings keine
eingegeben werden, da Listing 9 diese nicht überliest und
somit ein falsches Ergebnis liefern würde.

Der Programmteil, der die Prüfsumme der Eingabe berech­
net, ist mit Ausnahmen der Zeilen 230/240 aus Listing 9
übernommen worden. Nach Zeile 450 wird die ermittelte
Prüfsumme mit der Tabelle »PRÜFSUMMEN« (Zeile 2060)
verglichen.

Bei »WEITER2« (Zeile 620) steht im X-Register die Spalte,

100 -.LI 1,3,0
110 -.BA $C000 ; START: SYS 49152
120
130 -.GL BASIN = *FFCF
140 -.8L NUMOUT = $BDCD
150 -.GL STROUT = $ABlE
160
170 -ANFANG LDA #<(TEXT1)
180 LDY #>(TEXT1)
190 - JSR STROUT
200
210 LDX #0
220 -SCHLEIFE1 JSR BASIN
230 CMP #13 ; 13 = RETURN
240 - BEQ WEITER
250 — STA STORE,X
260 — INX
270 — JMP SCHLEIFE1
280
290 -WEITER STX LAENGE
300 — LDA #<(TEXT2)
310 LDY #>(TEXT2)
320 — JSR STROUT
330 LDA #0
340 -; 0 = AUSGANGSWERT DER PRUEFSUMME
350 — TAX ; ZAEHLER = 0
360 -SCHLEIFE2 ROL ; PRUEFSUMME * 2
370 — EOR STORE,X
380 — INX ; ZAEHLER ERHOEHEN
390 — CPX LAENGE
400 BNE SCHLEIFE2
410 — CLC
420 — ADC LAENGE ; LAENGE ADDIEREN
430 — TAX ; PRUEFSUMME
440 LDA #0 ; AUSGEBEN
450 — JSR NUMOUT
460 — JMP ANFANG S NOCH EINMAL
1000
1010 -; TEXTE
1020
1030 -TEXT1 .BY 13
1040 -.TX "----- __-_______________________ 11
1050 -.TX “EINGABE ? "
1060 -.BY 0
1070
1080 -TEXT2 .BY 13
1090 -.TX "PRUEFSUMME "
1100 -.BY 0
2000 “?
2010 —; ZWISCHENSPEICHER
2020
2030 -LAENGE .BY 0 ; ZWISCHENSPEICHER
2040 -STORE .BY 0
2050 -; 1 AB STORE WIRD DIE EINGABE ABGELEGT

Listing 9. Die Berechnung von Prüfsummen

Bild 4. Das Flußdiagramm zur Prüfsummenberechnung

82

C64 Kurs

in der die Prüfsumme gefunden wurde. Listing 10 numeriert,
im Gegensatz zum SMON die Spalten mit 0 (statt mit 1) begin­
nend. Außerdem wurde die Adressentabelle in »LOWTAB«
(Tabelle der Low-Bytes) und »HIGHTAB« (High-Bytes) zerlegt,
was die Programmierung stark erleichtert.

Wir würden zwar Spalten von 1 an numerieren, für den
Computer ist es aber besser, mit Spalte 8 zu beginnen. Wenn
im X-Register die Spalte (0: VC 20,1: C 64, 2: PC 128,
3: AMIGA) steht, lesen die Zeilen 620/630 aus einer Tabelle
die Adresse, ab der die ASCII-Darstellung des Prozessors zu
finden ist. Weil jede der Tabellen »LOWTAB« und »HIGHTAB«
gleich viele Elemente wie die Tabelle »PRUEFSUMMEN« hat,
muß keine komplizierte Umwandlung über Multiplikation mit
2 oder ähnliches erfolgen wie beispielsweise beim SMON.

Auf eine akute Gefahr bei der Verwendung von Prüfsum­
men soll jetzt hingewiesen werden: die »Überschneidung von
Prüfsummen«:

So wie unterschiedliche Basic-Zeilen beim Checksummer
eine gleiche Prüfsumme haben können, sind Prüfsummen nie
eindeutig.

Wenn Sie bei Listing 10 etwas herumprobieren, werden Sie
sicher feststellen, daß auch eigentlich nicht vorgesehene
Eingaben Wirkung zeigen. Dies liegt daran, daß diese Einga­
ben die gleiche Prüfsumme wie die Taste »VC 20«. »C 64«,
»PC 128« oder »AMIGA« haben. Daher sollte man immer dar­
auf achten, daß sich die vorgesehenen Eingaben nicht in
ihren Prüfsummen überschneiden (das heißt, die gleichen
Prüfsummen haben). Wenn man dies aber beachtet, so ist
das Arbeiten mit Prüfsummen, vor allem bei kleineren Daten­
mengen, eine angenehme Sache.
e) Beispielprogramm für Tabellen

Wenden wir uns jetzt einem etwas größeren (aber keines­
wegs komplizierteren) Programm zu. Es heißt schlicht und
einfach »TABELLEN-BEISPIEL«, womit schon einiges über
die Funktion ausgesagt ist: ein reines Beispielprogramm, das
nicht den Anspruch erhebt, etwa als Anwendersoftware nütz­
lich zu sein. In Listing 11 finden Sie den kommentierten Quell­
text.

Zuerst soll die Bedienung des Programms erläutert wer­
den. Gestartet wird »TABELLEN-BEISPIEL« durch SYS
49152, worauf man sich in folgendem Menü befindet:

ZAHLINZAHLWORTWANDELN (0)
BILDSCHIRMFARBE (1)
RESETAUSLOESEN (2)
PROGRAMMENDE UEBER RTS (3)
BITTE AUSWAEHLEN!

Die Zahlen in Klammern sehen Sie nicht, diese zeigen nur die
interne Numerierung der Menüpunkte an.

Der jeweils angewählte Menüpunkt (unmittelbar nach dem
Start: 0) wird im Gegensatz zu den anderen revers hervor­
gehoben.

Der angewählte Menüpunkt kommt durch Drücken von
F1,RETURN, »—« - oder »=«-Taste zur Ausführung.

Wollen Sie einen anderen Menüpunkt anwählen, drücken
Sie einfach CRSR DOWN,»D«,F5 oder»+«, um den invertier­
ten Bereich nach unten zu bewegen. Weiter nach oben gelan­
gen Sie über CRSR UP,»U«,F3 oder»-«.

Wenn Sie von »3« aus nach unten wollen, geht es wieder bei
»0« los; von »0« nach oben führt auf Punkt »3«.

Auf Punkt »0« (Ausgangseinstellung) kommen Sie über
HOME,»0« oder Klammeraffe.

Sicher würden Sie Ihre Programme auch gerne mit einem
solch komfortablen Menü aufwerten. Wenn Sie die Beschrei­
bung des Quelltextes gut durchlesen, wird dies keine
Schwierigkeiten bereiten.

Nun zu den einzelnen Menüpunkten.
»2« (Reset auslösen) springt in die RESET-Routine ab

$FCE2. »3« (Programmende über RTS) bewirkt einen Rück­
sprung ins Basic. Wenn Sie aber »TABELLEN-BEISPIEL« vom

100 -.LI 1,3,0
110 -.BA $C000 ; START: SYS 49152
120 -;
130 -.GL BASIN = $FFCF
140 -.GL NUMOUT = $BDCD
150 -.GL STROUT = $ABlE

2060 -PRUEFSUMMEN .BY 228,83,149,136
2070 -; REIHENFOLGE: VC20,C64,PC128,AMIGA
3000 -;
3010 -; ZWISCHENSPEICHER
3020 -;
3030 -LAENGE .BY 0 : ZWISCHENSPEICHER
3040 -STORE .BY 0
3050 -; t AB STORE WIRD DIE EINGABE ABGELEGT

160 5
170 -ANFANG LDA #<(TEXT1)
180 — LDY #>(TEXT1)
190 — JSR STROUT
200
210 — LDX #0
220 -SCHLEIFE1 JSR BASIN
230 — CMP #" " ; SPACE?
240 — BEQ SCHLEIFE1 ; DANN UEBERLESEN
250 — CMP #13 ; 13 = RETURN
260 — BEQ WEITER1
270 — STA STORE,X
280 — INX
290 — JMP SCHLEIFE1
300 — :
310 -WEITER1 STX LAENGE
320 — LDA #<(TEXT2)
330 — LDY #>(TEXT2)
340 — JSR STROUT
350 — LDA #0
360 -; 0 = AUSGANGSWERT DER PRUEFSUMME
370 - TAX ; ZAEHLER = 0
380 -SCHLEIFE2 ROL ; PRUEFSUMME * 2
390 EDR STORE,X
400 INX ; ZAEHLER ERHOEHEN
410 CPX LAENGE
420 — BNE SCHLEIFE2
430 — CLC
440 ADC LAENGE ; LAENGE ADDIEREN
450 —; HIER STEHT IJIE PRUEFSUMME IM AKKU
460
470 LDX #0
480 —SCHLEIFE3 CMP PRUEFSUMMEN ,X
490 — BEQ WEITER2
500 INX
510 — CPX #4
520 BNE SCHLEIFE3
530 -; PRUEFSUMME tJICHT GEFUNDEN
540
550 — PLA
560 — PLA
570 LDA #<(TEXT3)
580 — LDY #>(TEXT3)
590 — JSR STROUT
600 — JSR ANFANG ; VON VORNE
610
620 -WEITER2 LDA LOWTAB,X ; LOW-BYTE
630 LDY HIGHTAB,X ; HIGH-BYTE
640 JSR STROUT
650 JMP ANFANG ; NOCH EINMAL!
660
1000
1010 -; TEXTE
1020 —:
1030 -TEXT1 .BY 13
1040 _ TV II—_____■ 1 A
1050 -.TX "COMPUTER . •>
1060 -.BY 0
1070 —:
1080 -TEXT2 .BY 13
1090 -.TX "PROZESSOR: "
1100 -.BY 0
1110
1120 -TEXT3 .TX "WEISS ICH NICHT!
1130 -.BY 0
1140
1150 —:
1160 -T6502 .TX "MOS 6502"
1170 -.BY 0
1180
1190 -T6510 .TX "MOS 6510"
1200 -.BY 0
1210 —:
1220 -T8502 .TX "MOS 8502 & Z80"
1230 -.BY 0
1240
1250 -T68000 .TX "MOTOROLA 68000"
1260 -.BY 0
1270
2000
2010 -; NUMERISCHE FABELLEN
2020
2030 -LOWTAB .BY <(T6502),<(T6510) ,<(T8502),<(T68000)
2040 -HIGHTAB .BY >(T6502),>(T6510) ,>(T8502),>(T68000)
2050

Listing 10. Eine Anwendung
der Prüfsummenberechnung

83

Kurs C64

Hypra-Ass aus gestartet haben, finden Sie sich im »AUTO-
NUMBER«-Modus wieder. Dies ist weder ein Fehler von
»TABELLEN-BEISPIEL« noch von Hypra-Ass, sondern liegt
daran, daß beide Programme eine bestimmte Adresse ver­
wenden, die Hypra-Ass dann als Aufforderung zur automati­
schen Zeilennumerierung wertet. Am besten starten Sie
»TABELLEN-BEISPIEL« nur vom normalen Basic aus.

Punkt »0« bittet Sie um Eingabe einer Zahl von 0 bis 9 und
gibt zur eingegebenen Zahl das Zahlwort aus. Beispiel: Ein­
gabe »0«, Ausgabe »NULL«.

Danach müssen Sie eine Taste drücken, um ins Hauptmenü
zu kommen.

Punkt »1« schließlich bietet die Möglichkeit, die Hinter­
grundfarbe besonders elegant einzustellen: Sie geben ein­
fach die Farbe als Wort ein, zum Beispiel SCHWARZ.

Folgende Eingaben sind vorgesehen:
SCHWARZ,WEISS,ROTTUERKISyiOLETT,GRUEN,BLAU,
GELB,ORANGE,BRAUN,HELLROt,GRAU 1,GRAU 2,
HELLGRUEN,HELLBLAU,GRAU 3

Aufgrund der Überschneidung von Prüfsummen zeigen
jedoch auch andere Eingaben Wirkung, zum Beispiel:
SCH,HYPRAASS,PRINT,COMPUTER-GRAPHIK,
TAGESSCHAU

Nun wollen wir uns mit dem Quelltext befassen.
AbZeile 1OOOOfinden SiedieTabellen. UndweilunserPro-

gramm ein Beispiel für die Verwendung von Tabellen sein soll,
sind es derer recht viele. Die wichtigsten davon sind jedoch
analog der internen Numerierung der Menüpunkte aufge­
baut, da sie Daten für die Menüsteuerung beinhalten. Diese
Tabellen sind auch mit 0 - 3 numeriert und grafisch in Bild 6
dargestellt.

Sehen wir uns wieder den Quelltext, beginnend mit der
ersten Zeile, an.

Auf die Symboldefinitionen (210 - 260) folgt die Initialisie­
rung der Hauptschleife (280 - 310). Diese Initialisierung
löscht Bildschirm (280) und Tastaturpuffer (290 - 300).
Außerdem wird der aktuelle (= derzeit invers dargestellte)
Menüpunkt (immer in der Adresse »MPT« enthalten) auf 0
gesetzt (310). Zeile 310 ist also dafür verantwortlich, daß
nach dem Start über SYS 49152 das Inversfeld ganz oben
steht (auf Punkt 0).

Die Texte, die der Beschreibung der Menüpunkte dienen,
werden in der Hauptschleife »HSCHLEIFE« (350 - 550) aus­
gegeben. Mit dieser wollen wir uns nun eingehend auseinan­
dersetzen.

Zunächst wird die Tabelle »RVSTAB« gelöscht (350 - 400).
Diese Tabelle enthält die Information, ob der erläuternde Text
zu einem Menüpunkt inversausgegeben wird. Wenn nein, so
enthält das entsprechende Byte eine »0«, andernfalls eine
»18« (= REVERS-ON-Code für Betriebssystem). Das ent­
sprechende Byte aus »RVSTAB« braucht nur vor dem
Menüpunkt-Text ausgegeben werden (470- 480). DieZeilen
410- 430 sorgen dafür, daß das Byte in »RVSTAB«, welches
sich auf den aktuellen Menüpunkt bezieht, den RVS-ON-
Code erhält.

In der Hauptschleife muß das X-Register in »XSAVE« gesi­
chert werden, weil die Routine »STROUT« den Inhalt des
X-Registers ändert.

Mit »TASTE« (610) beginnt dann die Tastaturabfrage im
Menü. Die Routine »GET« holt ein Zeichen von der Tastatur als
ASCII-Code in den Akku. Wurde keine Taste gedrückt, erhält
der Akku den Code 0. In diesem Fall wartet 620 auf eine neue
Eingabe. Beachten Sie bitte, daß der Akku nach der Zeile 620
NIE den Wert 0 haben kann (dies wird sich bald als nützlich
erweisen)!

Wurde nun eine Taste gedrückt, sucht »SCHLEIFE« (630 -
680)inderTabelle»TASTEN«, die im Quelltextab Zeile 10210
steht, nach dem eingegebenen Zeichen (wird es nicht gefun­
den, erfolgt in 690 der Sprung zur neuen Eingabe).

100 -.BA $C000 ; START: SYS 49152
110 — 5
120 -; *************************
130 —; * *
140 -; * TABELLEN - BEISPIEL *
150 -; * =================== *
160 -; * *
170 —; * BY FLORIAN MUELLER *
180 -; * *
190 -; *************************
200 -;
210 -.BL STROUT = $ABlE
220 -.GL CURSORHOME = $E566
230 -.GL GET - $FFE4
240 -.GL BASIN = fFFCF
250 -.GL BASOUT = $FFD2
260 -.GL RESET = $FCE2 ; SOFTWARE-RESET
270 -;
280 -START JSR $E544 ; = PRINT CHR$(147)
290 - LDA #0 ; TASTATURPUFFER
300 - STA 198 ; LOESCHEN
310 - STA MPT
320 -; T SETZT AKTUELLEN MENUEPUNKT AUF 0
330 -HSCHLEIFE JSR CURSORHOME
340 -; t HSCHLEIFE = HAUPTSCHLEIFE
350 - LDA #0
360 - TAX
370 -SCHLEIFEI STA RVSTAB,X
380 - INX
390 - CPX #4
400 - BNE SCHLEIFE1
410 - LDX MPT
420 — LDA #18 ; 18 = REVERS EIN
430 - STA RVSTAB,X
440 - LDX #0
450 —5 t SCHLEIFENZAEHLER INITIALISIEREN
460 -SCHLEIFE2 STX XSAVE ; X RETTEN
470 - LDA RVSTAB,X
480 - JSR BASOUT
490 - LDA TEXTLO,X ; ERKLAERUNG
500 - LDY TEXTHI,X ; ZUM MENUEPUNKT
510 - JSR STROUT ; AUSGEBEN
520 - LDX XSAVE ; X WIEDER HOLEN
530 - INX
540 - CPX #4
550 -
560 -;
570 -;

BNE SCHLEIFE2

580 -; HIER IST DAS MENUE BEREITS AUF
590 -; DEN BILDSCHIRM AUSGEGEBEN WORDEN.
600 -;
610 -TASTE JSR GET 5 TASTATURABFRAGE
620 - BEQ TASTE ; WARTEN AUF TASTENDRUCK
630 - LDX #0
640 -SCHLEIFE3 CMP TASTEN,X
650 - BEQ WEITER1
660 - INX
670 - CPX #16
680 - BNE SCHLEIFE3
690 - JMP TASTE
700 -WEITER1 TXA
710 - LSR ; DIVIDIERT AKKU-
720 - LSR ; MULATOR DURCH 4
730 - TAX
740 - LDA SPlLO,X
750 - STA SPRUNG
760 - LDA SPlHI,X
770 -
780 —;

STA SPRUNG+1

790 -.EQ RUECKSPRUNG = HSCHLEIFE-1
800 —; T LEGT RUECKSPRUNGADRESSE DES
810 —; UNTERPROGRAMMS FEST.
820 -;
830 - LDA #>(RUECKSPRUNG)
840 - PHA
850 - LDA #< (RUECKSPRUNG)
860 - PHA
870 - JMP (SPRUNG)
880 -;
890 -;
900 -HOME LDX #0
910 - STX MPT
920 -ENDE
930 -;

RTS ; ENDE DES UNTERPRG

940 -DOWN LDX MPT ; MENUEPUNKT
950 - INX ; UM 1 ERHOEHEN
960 - CPX #4 ; GROESSER ALS 3?
970 - BEQ HOME ; DANN =0
980 - STX MPT ; SONST UEBERNEHMEN
990 - RTS ; ZUR HAUPTSCHLEIFE
1000 -;
1010 -UP LDX MPT ; MENUEPUNKT
1020 - DEX ; DEKREMENTIEREN
1030 - BPL ENDUP ; > 0?
1040 - LDX #3 ; NEIN, DANN =3
1050 -ENDUP STX MPT ; UND UEBERNEHMEN
1060 -
1070 -;
1080 -;

RTS ; ZUR HAUPTSCHLEIFE

1090 -EXEC PLA ; STAPELMANIPULATION
1100 - PLA
1110 - LDX MPT

Listing 11. »Tabellen-Beispiel«, ein Beispiel zur
Verwendung von Tabellen

84

C64 Kurs

1120 - LDA SP2L0,X
1130 STA SPRUNG
1140 LDA SP2HI,X
1150 — STA SPRUNG+1
1160 JMP (SPRUNG)
1170 -;
1180
1190
1200 -ZAHLWORT LDA #<(TZAHL) ; AUFFORDERUNG
1210 LDY #>(TZAHL) ; ZUR EINGABE
1220 — JSR STROUT ; AUSGEBEN
1230 — JSR BASIN ; HOLT ZEICHEN
1240 — SEC ; IN BINAERZAHL
1250 — SBC #"0" ; UMWANDELN
1260 TAX ; INS X-REGISTER
1270
1280 — ; JETZT STEHT IM X-REGISTER
1290 — ; DIE EINGEBEBENE ZAHL
1300
1310 CMP #10 ; > 10?
1320 BCC ZAHLWORT1 ; NEIN=> WEITER
1330 JMP ZAHLWORT ; NEUEINGABE
1340
1350 -ZAHLWORT1 STX XSAVE ; X RETTEN
1360 LDA #<(TWORT) ; AUFFORDERUNG
1370 LDY #>(TWORT) ; ZUR EINGABE
1380 JSR STROUT ; AUSGEBEN
1390 LDX XSAVE ; X WIEDER HOLEN
1400 LDA ZWLO,X ; ADRESSE DES
1410 LDY ZWHI,X ; ZAHLWORTES HOLEN
1420 JSR STROUT ; UND Z.WORT DRUCKEN
1430
1440 -WAIT JSR GET ; WARTET AUF
1450 BEQ WAIT 5 TASTENDRUCK
1460 JMP START ; ZUM HAUPTMENUE
1470
1480
1490
1500 -FARBE LDA #<(TFARBE)
1510 LDY #>(TFARBE)
1520 JSR STROUT
1530 — LDX #0
1540 -FARBE1 JSR BASIN 5 HOLT EINGABE
1550 CMP #" " ; SPACE ?
1560 — BEQ FARBE1 ; JA=>UEBERLESEN
1570 — CMP #13 ; ENDE DER EINGABE?
1580 BEQ FARBE2 ; JA, DANN WEITER
1590 STA FARBWORT,X ; EINGABE SPEICHERN
1600 INX ; ZAEHLER ERHOEHEN
1610 JMP FARBE1 ; ZUR SCHLEIFE
1620 -FARBE2 STX 2 ; LAENGE MERKEN
1630 LDX #0
1640 TXA
1650 -FARBE3 ROL
1660 EOR FARBWORT,X
1670 — INX
1680 — / CPX 2 ; SCHON FERTIG?
1690 BNE FARBE3 ; NEIN,ZUR SCHLEIFE
1700 — CLC ; LAENGE
1710 ADC 2 ; ADDIEREN
1720 ~5
1730 —; HIER STEHT][M AKKU DIE PRUEFSUMME
1740 —:
1750 — LDX #0
1760 -FARBE4 CMP PRUEFSUMMENl,X
1770 — BEQ FARBE5 ; GEFUNDEN
1780 — INX
1790 — CPX #16
1800 — BNE FARBE4
1810 — JMP FARBE ; NEUE EINGABE
1820 -FARBE5 STX 53280 ; BILDSCHIRM-
1830 — STX 53281 ; FARBE SETZEN
1840 — JMP START ; ZUM MENUE
1850
10000-;
10010-; TABELLEN
10020-; ========
10030-;
10040-; TEXTE:
10050-;
10060-PUNKT0 .TX "ZAHL IN ZAHLWORT UMWANDELN"
10070-.BY 13,13,0
10080-;
10090-PUNKT1 .TX "BILDSCHIRMFARBE"
10100-.BY 13,13,0
10110-;
10120-PUNKT2 .TX "RESET AUSLOESEN"
10130-.BY 13,13,0
10140-;
10150-PUNKT3 .TX "PROGRAMMENDE UEBER RTS"
10160-.BY 13,13,13
10170-.TX "BITTE AUSWAEHLEN !"
10180-.BY 0
10190-;
10200-;
10210-TASTEN .BY 133,13,"*","="; 133=Fl,13=RETURN
10220-.BY 19,"0","@",0 ; 19=HOME,0=DUMMY
10230-.BY 17,"D",135,"+" ; 17=CRSR D0WN,135=F5
10240-.BY 145,"U",134,"-" ; 145=CRSR UP,134=F3
10250-;
10260-;
10270-TZAHL .BY 147 ; CLEAR HOME

10700-.TX "WELCHE FARBE ?

10280-.TX "ZAHL (0-9) ? "
10290-.BY 0
10300-;
10310-TWORT .TX " IN WORTEN
10320-.BY 0
10330-;
10340-;
10350-; Z AHLWOERTER (0-9)
10360-;
10370-;
10380-NULL .TX "NULL"
10390-.BY 0
10400-;
10410-EINS .TX "EINS"
10420-.BY 0
10430-;
10440-ZWEI .TX "ZWEI"
10450-.BY 0
10460-;
10470-DREI .TX "DREI"
10480-.BY 0
10490-;
10500-VIER .TX "VIER"
10510-.BY 0
10520-;
10530-FUENF .TX "FUENF"
10540-.BY 0
10550-;
10560-SECHS .TX "SECHS"
10570-.BY 0
10580-;
10590-SIEBEN .TX "SIEBEN"
10600-.BY 0
10610-;
10620-ACHT .TX "ACHT"
10630-.BY 0
10640-;
10650-NEUN .TX "NEUN"
10660-.BY 0
10670-;
10680-;
10690-TFARBE .BY 147 ; CLEAR HOME

10710-.BY 0
10720-;
10730-;
10740-RVSTAB .BY 0,0,0,0 ; 4 BYTES RESERVIEREN
10750-;
10760-;
10770-; ZAHLEN:
10780-;
10790-; ADRESSEN DER TEXTE, DIE DIE
10800-; MENUEPUNKTE BESCHREIBEN
10810-;
10820-TEXTLO .BY <(PUNKT0),<(PUNKT1)
10830-.BY <(PUNKT2),<(PUNKT3)
10840-;
10850-TEXTHI .BY >(PUNKT0),>(PUNKT1)
10860-.BY >(PUNKT2),>(PUNKT3)
10870-;
10880-;
10890-; ADRESSEN DER ZAHLWOERTER
10900-;
10910-ZWLO .BY <(NULL),<(EINS),<(ZWEI),<(DREI)
10920-.BY <(VIER),<(FUENF),<(SECHS),<(SIEBEN)
10930-.BY <(ACHT),<(NEUN)
10940-;
10950-ZWHI .BY >(NULL),>(EINS),>(ZWEI),>(DREI)
10960-.BY >(VIER),>(FUENF),>(SECHS),>(SIEBEN)
10970-.BY >(ACHT),>(NEUN)
10980-;
10990-;
11000-; ADRESSEN DER UNTERROUTINEN
11010-; FUER DIE MENUESTEUERUNG
11020-;
11030-SP1LO .BY <(EXEC),<(HOME),<(DOWN),<(UP)
11040-;
11050-SP1HI .BY >(EXEC),>(HOME),>(DOWN),>(UP)
11060-;
11070-;
11080-; ADRESSEN DER EINZELNEN
11090-; MENUEPUNKTE
11100-;
11110-SP2LO .BY <(ZAHLWORT),<(FARBE)
11120-.BY <(RESET),<(ENDE) ; BEI ENDE STEHT
11130-SP2HI .BY >(ZAHLWORT),>(FARBE)
11140-.BY >(RESET),>(ENDE) ; EIN RTS-BEFEHL
11150-;
11160-; PRUEFSUMMEN DER FARB-WDERTER
11170-;
11180-PRUEFSUMMEN .BY 41,158,137,212,159,101
11190-.BY 3,2,33,69,201,116,113,121,127,114
11200-;
11210-;
11220-; ZWISCHENSPEICHER
11230-;
11240-MPT .BY 0 ; 1 BYTE RESERVIEREN
11250-XSAVE .BY 0
11260-SPRUNG .WO 0 ; 2 BYTES FREIHALTEN
11270-FARBWORT .BY 0
11280-; t AB 'FARBWORT' WIRD DIE EINGABE
11290-; DER FARB-BEZEICHNUNG ABGELEGT.

READY.

85

C64 Kurs

Spalte 0 1 2 3
TEXTLO 0 1 2 3

I Adressen der Text-Tabellen, die
1 die Menüpunkte beschreiben

TEXTHI 0 1 2 3

zeigen als
Vektoren auf:

V
PUNKTO PUNKT 1 PUNKT2 PUNKT 3 ^Text-Tabellen

) enthält Information, ob Text zu
J Menüpunkt invertiert werden soll/ RVSTAB 0 1 2 3

SP2L0 0 1 2 3 I enthält die Adressen der
| Routinen zu den MenüpunktenI I

SP2HI 0 1 2 3

zeigen als
Vektoren auf:

Routine
ZAHLWORT

Routine
FARBE

V
Routine
RESET

V
Routine
ENDE

Bild 5. So verwendet man Tabellen zur Realisierung eines Menüs

Diese Tabelle »TASTEN« enthält alle vorgesehenen Tasten­
drücke zur Menüsteuerung, die in 4er-Blockweise angeord­
net sind (Bild 5). Nach der Suchschleife steht im X-Register
die Position der gedrückten Taste innerhalb der Tabelle
»TASTEN« (zum Beispiel 0 = F1 gedrückt, 4 = HOME
gedrückt). Diese Position wird - ohne Berücksichtigung des
Divisions-Restes - durch 4 dividiert (700 - 730), um festzu­
halten, von welchem Tastenblock eine Taste gedrückt wurde.

Dadurch ist eindeutig bestimmt, welche Befehlsgruppe
aufgerufen werden muß.

Steht nach 730 im X-Register 0, wurde eine der ersten vier
in »TASTEN« enthaltenen Tasten gedrückt, die die Ausführung
des aktuellen Menüpunktes veranlassen (Zeile 10210 und
Bild 5). Ist X=1, so wurde eine Taste aus Zeile 10220

gedrückt. In 10220 stehtals letztes Byte eine 0. Diese dient,
da für die Funktion »Inversfeld in HOME-Position« nur drei
Tastendrücke vorgesehen wurden, zum Auffüllen auf vier
Tasten. 0 kann hier bedenkenlos als Dummy (Füllbyte ohne
wirkliche Bedeutung) stehen, da der Akku aufgrund von 620
nie den Wert 0 annehmen wird.

Beinhaltet X nach der Division durch 4 den Wert2, wird das
Inversfeld nach unten bewegt, istX=3, dann nachoben. Dies
können Sie sich an Bild 6 veranschaulichen.

An den Zeilen 740 - 870 sehen wir nun die Verwendung ei­
ner Sprungtabelle. Unsere Sprungtabelle ist »SP1LO/SP1HI«.
»SP1LO« beinhaltet die Low-, »SP1HI« die High-Bytes der
anzuspringenden Routinen. In den Vektor »SPRUNG« wird
einfach die Zieladresse geschrieben (740 - 770).

X = 0 21

TASTEN

3

1024010210 1023010220in Zeile

dazugehörige
Routine: EXEC HOME DOWN UP

Wirkung: angewählter
Menüpunkt

wird ausgeführt
(Sprung in 1160)

aktueller
Menüpunkt

wird auf
0 gesetzt

Inversfeld
wird nach

unten bewegt

Inversfeld
wird nach

oben bewegt

MPT = 0 3
ZAHLWORT FARBE RESET ENDE Bild 6. Die Tastaturabfrage aus Listing 11

86

C64 Kurs

Die Zuweisungszeile 790 errechnet die Rücksprung­
adresse des aufzurufenden Unterprogramms. Bei einem RTS
soll nämlich zur »HSCHLEIFE« gesprungen werden.

Diese Rücksprungadresse »RUECKSPRUNG« wird auf
den Stapel gelegt (830 - 860), zuletzt erfolgt der indirekte
Sprung (870). Die über die soeben beschriebene Simulation
von JSR (ind) angesprungenen Routinen finden Sie ab Zeile
900. Es wird einfach der aktuelle Menüpunkt »MPT« entspre­
chend dem Tastendruck geändert, dann wird zur
»HSCHLEIFE« gesprungen, die auch die Tabelle »RVSTAB«
entsprechend anpaßt.

»EXEC« (1090) holt die Rücksprungadresse vom Stapel
(1090 - 1100), da diese Routine nicht als Unterprogramm
behandelt werden soll.

Die Zeile 1110 holt den angeforderten Menüpunkt ins X-
Register. Dann wird aus »SP2LO/SP2HI« die Adresse der
zum Menüpunkt gehörenden Routine geholt und diese über
einen gewöhnlichen indirekten Sprung aufgerufen (1160).

Als Routine zu »2« wird einfach die RESET-Routine des
Betriebssystems angesprungen, für »3« eignet sich jeder
RTS-Befehl, also auch der bei »ENDE« (920).

»ZAHLWORT«, die Routine zu 0, holt eine Zahl als ASCII-
Code (1230) und wandelt sie in einen numerischen Wert um
(1240 -1250), indem der ASCII-Code von 0 abgezogen wird.
Das Ergebnis landet im X-Register (1260). Ob auch eine Zahl
eingegeben wurde, prüfen die Zeilen 1310 - 1330. Bei
»ZAHLWORT« (1350) wird das Resultat der Subtraktion in
»XSAVE« gesichert, der Text »IN WORTEN« ausgegeben und
das X-Register wieder geholt.

Die Tabelle »ZWLO/ZWHI« enthält die Adressen, ab denen
die Texte der Zahlwörter als ASCII-Code stehen. Aus
»ZWLO/ZWHI« wird dann diese Adresse geholt (1400 -
1410) und der dort stehende Text ausgegeben (1420).
Danach erwartet das Programm noch einen Tastendruck
(1440-1450), bevor ins Hauptmenü verzweigt wird (1460).

Als letzte Routine wird »FARBE« besprochen (1500-1850):
Hierzu istjedoch aufgrund derÄhnlichkeitzu Listing 10 nicht
viel zu erläutern. Bei 1820 steht im X-Register der Code der
eingegebenen Farbe (= Position der Prüfsumme innerhalb
der Tabelle »PRUEFSUMMEN«). Dieser muß nur noch in die
entsprechenden VIC-Register geschrieben werden
(1820-1830). Ab Zeile 10000 stehen dann die Tabellen.
Wenn Sie die Tabellen angesehen haben, sollten Sie durch­
aus noch einmal den Quelltext bis 10000 betrachten und die
hier endende Beschreibung des Programms lesen. Denn
wenn Sie das Programm »TABELLEN-BEISPIEL« ganz ver­
standen haben, sind Sie einen großen Schritt in der Assem­
blerprogrammierung weitergekommen I

Ich könnte mir übrigens vorstellen, daß Sie in Ihren eigenen
Programmen jetzt auch eine Menüsteuerung wie die in
»TABELLEN-BEISPIEL« einbauen; wie das geht, können Sie
dem Programm »TABELLEN-BEISPIEL« entnehmen.

Eine Anmerkung ist wichtig: »TABELLEN-BEISPIEL« kann
noch weiter verbessert werden. Sie werden sehen, daß viele
Stellen noch optimiert werden können. Insbesondere der
Speicherplatzbedarf kann verringert werden.
f) Weitere Anregungen zur Anwendung von Tabellen

Auch die bisherigen Erläuterungen und das Beispielpro­
gramm können die Kreativität des Programmierers nicht
ersetzen, sondern nur die Programmierung erleichtern. Aus
diesem Grund möchte ich Ihnen noch einige Beispiele nen­
nen, wie sich Tabellen sinnvoll verwerten lassen.
- Ein Anwenderprogramm, das aus Menüs und Untermenüs

besteht, sollte in einer Tabelle die Adressen der
Menüs/Untermenüs speichern.

- Spiele müssen oft viele Spritebewegungen, die immer
gleich sind, durchführen. Es empfiehlt sich, die Spritebe­
wegungen als Koordinaten in einerTabelle abzulegen.

- Bei Software-Interfaces müssen viele Umrechnungen

erfolgen. Durch eine Umwandlungstabelle können diese
stark beschleunigt werden.

- Naturwissenschaftlich orientierte Programme müssen ver­
schiedene Maße umrechnen. Die Umrechnungswerte
können in einer Tabelle untergebracht werden.

Dies soll nur eine Anregung sein. Ich wüßte aber kein komple-
xesProgramm, dassich nichtdurch dengezielten Einsatzvon
Tabellen vereinfachen und beschleunigen ließe.

Texteinschub #1: Fließkommazahlen
lm Text wurde ein Verfahren vorgestellt, um eine Zahl ins
MFLPT-Fbrmat (MELPT=Memory floating point) umzu­
wandeln. Das 5 Byte lange Ergebnis dieser Umwandlung
kann man dann als KONSTANTE handhaben. Konstanten
sind feste, vorausberechnete Werte, die man mit Hilfe der
Routine »MEMFAC« in den FAC (Flieskomma-AKKU)
kopieren kann. Für viele Werte ist es jedoch überflüssig,
die Umwandlung durchzuführen und eine entsprechende
Tabelle anzulegen, da sie schon im ROM vorhanden sind.
Im Kurs »Assembler ist keine Alchimie« wurden solche
Konstanten mitsamt ihrer Adressen schon in einer Tabelle
vorgestellt.

Um mit Konstanten (für die Rechenroutinen macht es
keinen Unterschied, ob diese im RAM oder im ROM ste­
hen) zu rechnen, kann man diese wie gesagt, in den FAC
kopieren und alle weiteren Operationen auf diesen bezie­
hen. Dies war in Listing 8 bei den Funktionen SQR und
LOGNAT ausreichend.

Oft möchte man aber den Inhalt des FAC nicht mit einer
Funktion wie SQR behandeln, sondern mit anderen Kon­
stanten addieren, multiplizieren und so weiter.

Dafür möchte ich Ihnen im folgenden weitere
Interpreter-Routinen vorstellen, die das Rechnen mit Kon­
stanten ermöglichen. Da fast immer in den Akku das Low-,
ins Y-Register das High-Byte der Adresse, ab der die Kon­
stante abgelegt ist, geladen werden muß, definieren wir
noch vorher folgende Makro:
- .MA LDAY (ADRESSE)

LDA#<(ADRESSE)
LDY#>(ADRESSE)

-.RT
Nun zu den Routinen, bei deren Parameterübergabe wir
uns auf das Makro LDAY stützen wollen:

ADDMEM FAC+Konstante - FAC ... LDAY (KONSTANTE)
JSR$B867

ADD0,5 FAC+0.5 - FAC JSR $B849
SUBMEM Konstante-FAC - FAC ...LDAY(KONSTANTE)

JSR $B850
MULMEM Konstante*FAC - FAC ...LDAY(KONSTANTE)

JSR $BA28
MULT10 FAC*1O-FAC JSR $BAE2
DIVMEM Konstante/FAC - FAC ...LDAY(KONSTANTE)

JSR $BBOF
DIVS10 FAC/10 - FAC JSR $BAFE
CMPMEM vergleicht Konstante mit FAC

FAC<Konstante: Akku=$FF
FAC=Konstante: Akku=$OO
FAC>Konstante: Akku=$O1

... LDAY (KONSTANTE)
JSR $BC5B

POTMEM Konstante tFAC - FAC ...LDAY(KONSTANTE)
JSR $BF78

POTE etFAC-FAC JSR $BFED
MEMFAC holt Konstante in FAC ...LDAY(KONSTANTE)

JSR $BBA2
FACMEM FAC ab Konstante als

MFLPT-Zahl ablegen
LDX#<(KONSTANTE)
LDY#>(KONSTANTE)
JSR$BBD7

FACOUT gibt FAC aus JSR $AABC

Kurs C64

7. Die Initialisierung

»Initialisierung« nennt man eine Routine, die vor einem Pro­
grammteil (meist einer Schleife) steht und diese vorbereitet.
Die Initialisierung wird nur einmal, eine Schleife aber mehr­
fach durchlaufen. Deshalb bringt es einen Geschwindigkeits­
zuwachs, wenn die Initialisierung der Schleife Arbeit
abnimmt.

Ein Beispiel: Wenn ein Basic-Programm mit »RUN« gestar­
tet wird, werden alle Variablen gelöscht, Files geschlossen
und die Adressen, ab denen die Variablen abgelegt werden
dürfen, errechnet. Dies ist die Initialisierung der Interpreter­
schleife. Dann wird Byte für Byte des Basic-Programms ein­
gelesen und bearbeitet.

Muß im gerade übersetzten Befehl ein Sprung (GOTO 500
oder ähnliches) durchgeführt werden, kostet dies bekannt­
lich viel Zeit, wenn das Sprungziel am Ende eines langen Pro­
gramms steht. Dies ist darauf zurückzuführen, daß der Inter­
preter, beginnend mit der ersten Zeile, das ganze Programm
nach der Sprungzeile durchsucht, bis er sie gefunden hat.

Diese Berechnung der Adressen wird bei jedem »GOTO«
oder »GOSUB« neu durchgeführt.

Viel besser und schneller wäre folgende Vorgehensweise:
Bei »RUN« wird zunächst eine Tabelle angelegt, in der die
Adressen aller Zeilen enthalten sind. Diese Tabelle könnte
zum Beispiel als Array definiert werden. Folgt nun ein Sprung,
kann aus der Tabelle die Adresse der Zeile im Speicher geholt
werden.

Damit haben wir noch ein wesentliches Merkmal der Initiali­
sierungsroutinen gefunden: Die Initialisierung kann Tabellen
anlegen, die dann von der Hauptschleife verarbeitet werden.

Aber nicht nur Tabellen können generiert werden, auch die
Berechnung von Flags ist sinnvoll. So merkt sich die
»LOAD/VERIFY«-Routine ($FFD5), ob ein Verifizieren oder
Laden gewünscht wird. Die Ladeschleife liest dann ein Zei­
chen von der Floppy oder der Datasette ein und entscheidet
erst anschließend, ob das Byte im Speicher abgelegt oder mit
dem Speicher verglichen werden soll.

Halten wir also fest, daß Initialisierungsroutinen Schleifen
entlasten können. Näher werden wir uns damit beim Thema
»Schleifen« beschäftigen.

8. Die Nutzung der Zeropage

ln jedem Assembler-Lehrbuch werden die Vorteile der
Zeropage-Adressierung gepriesen. Speicherplatzersparnis
und hohe Verarbeitungsgeschwindigkeit sind nicht die einzi­
gen Vorzüge; die indirekt-indizierte Adressierung kann nur
aufZeropage-Adressen zugreifen, nichtauf absolute 16-Bit-
Adressen. Damit wird der Leser aber schon alleine gelassen.
Er erfährt nicht, welche Adressen in der Zeropage für die
Praxis geeignet sind. Das wird nun nachgeholt.

Fast die ganze Zeropage wird durch Basic-Interpreter und
Betriebssystem belegt. Deshalb führen bestimmte Werte in
Zeropage-Adressen oft zum Absturz oder sonstigem Fehl­
verhalten des Computers.

Wie dies im einzelnen aussieht, erfahren Sie in der Serie
»Memory Map mit Wandervorschlägen«, die im 64’er Stamm­
heft erscheint. Nicht nur in Zweifelsfällen stellt diese Serie
das optimale Nachschlagewerk dar.

Ich möchte Ihnen nun zeigen, welche Adressen Sie als
(Zwischen-)Speicher ohne Schwierigkeiten verwenden
können, beziehungsweise was Sie bei Verwendung von
Zeropage-Adressen beachten müssen.
a) Adressen, die problemlos verwendet werden können

Auf die Adressen $02 und $FB - $FE wird weder vom

Listing 12

,6000 A2 00 LDX #00
,6002 B5 02 LDA 02,X
,6004
,6007

9D 00 6F
E8

STA 6F00,X
INX

,6008 E0 FE CPX #FE
,600A D0 F6 BNE 6002

Listing 13

, 6000 A2 FE LDX #FE
,6002 B5 01 LDA #01
,6004 9D FF 6E STA 6EFF,X
,6007 CA DEX
,6008 D0 F8 BNE 6002

Listing 14

6000 A2 FE LDX #FE
6002 BD FF 6E LDA 6EFF,X
6005 95 01 STA #01
6007 CA DEX
6008 D0 F8 BNE 6002

,6000 A2 34 LDX #34
,6002 B5 16 LDA 16,X
,6004 9D 00 6F STA 6F00,X
,6007 CA DEX
,6008 10 F8 BPL 6002
Listing 15

,6000 A2 34 LDX #34
,6002 BD 00 6F LDA 6F00,X
,6005 95 16 STA 16,X
,6007 CA DEX
,6008 10 F8 BPL 6002
Listing 16

,6000 A2 FF LDX #FF
,6002 BD 00 01 LDA 0100,X
,6005 9D 00 6F STA 6F00,X
,6008 CA DEX
,6009 D0 F7 BNE 6002
,600B AD 00 01 LDA 0100
,600E 8D 00 6F STA 6F00
,6011 BA TSX
,6012 8E 00 70 STX 7000
Listing 17

Listing 18

,6000 A2 FF LDX #FF
,6002 BD 00 6F LDA 6F00,X
,6005 9D 00 01 STA 0100,X
,6008 CA DEX
,6009 D0 F7 BNE 6002
,600B AD 00 6F LDA 6F00
,600E 8D 00 01 STA 0100
,6011 AE 00 70 LDX 7000
,6014 9A TXS

88

C64 Kurs

Basic-Interpreter noch vom Betriebssystem zugegriffen.
Lediglich bei Initialisierung der Arbeitsspeicher (RESET)
werden Sie auf 0 gesetzt.

Für die Praxis heißt das, daß Ihnen die genannten Adressen
völlig zur Verfügung stehen.
b) Adressen, die in keiner Weise verwendet werden
sollten

Von anderen Adressen hingegen müssen wir unsere Fin­
ger lassen. Diese haben entweder elementare Funktionen für
Betriebssystem oder CPU, oder werden von beiden dauernd
geändert, so daß die Datensicherheit in Frage gestellt ist.
Genauer soll hier nicht unterschieden werden.

Belassen Sie die Adressen $00 und $01 unverändert, da
sie (siehe Memory Map) für die CPU wichtige Informationen
beinhalten und außerdem einige Bits nur durch externe Vor­
gänge geändert werden.

Das Betriebssystem und der Basic-Interpreter beanspru­
chen alle bislang ungenannten Adressen.

Von Bildschirmeditor und Tastaturabfrage werden die
Adressen $C6 - $F6 beeinflußt. Die Adressen $90 - $C2
dienen der Ein-/Ausgabe-Steuerung mit Peripheriegeräten
und der Verwaltung offener Files. Einzige Ausnahme: $A0 -
$A2 (interne Uhr). Wenn ein Maschinenprogrammm in ein
Basic-Programm eingebaut ist, sind die Adressen $03 - $56
sowie $73 - $8B tabu.
c) Bedingt einsetzbar

Der Vektor $C3/$C4 wird durch RUN/STOP-Restore,
RESET oder LOAD beeinflußt. Ansonsten kann mit $C3/$C4
frei verfahren werden.

Ganz Vorsichtige können diesen Vektor auf seinen Aus­
gangswert $FD30 setzen, sobald das Programm die Adres­
sen $C3/$C4 nicht mehr für eigene Zwecke benötigt.
d) Adressen, die unter Verzicht auf Kassettenbetrieb ver­
wendet werden können

Die folgenden Adressen können verwendet werden, wenn
nicht auf RS232 oder Datasette zugegriffen wird.

$9E/$9F, $A5-$A7, $A9-$AB, $B0-$B6, $F7-$FA
Bei anderen Adressen, die sich auf den RS232- oder Kas­

settenbetrieb beziehen, ist Vorsicht angebracht.
e) Geeignete Zwischenspeicher

Die Adressen $22-$2A und $57-$60 sind sogenannte
»verschieden genutzte Arbeitsbereiche«. Sie werden vom
Basic-Interpreter vor allem bei arithmetischen Operationen
als Zwischenspeicher verwendet. Als solche Zwischenspei­
cher können wir sie auch verwenden. Sobald allerdings
bestimmte Interpreterroutinen aufgerufen werden, können
die Inhalte dieser Adressen verlorengehen. Eine länger­
fristige Aufbewahrung von Daten in diesen Adressen ist zwar
nicht möglich, andererseits können wir aber durch Schreib­
zugriffe auf diese Adressen das Betriebssystem oder den
Basic-Interpreter nicht stören.

Zu sagen wäre noch, daß die Adressen $57 - $60 den
wichtigen Routinen BLTUC und UMULT (siehe »Assembler ist
keine Alchimie«) als Zwischenspeicher dienen.
f) Zeropage kopieren

Zum Abschluß dieses Abschnittes über die Nutzung der
Zeropage möchte ich Ihnen noch einen kleinen Trick verra­
ten, der von einigen professionellen Programmen angewandt
wird.

Wir sichern die Zeropage-Inhalte in einem anderen
Bereich, zum Beispiel von $6F00 an.

Dann können wir viele Adressen in der Zeropage nutzen,
sofern wir keine Interpreter- oder Betriebssystemroutine auf­
rufen. Danach schreiben wir die Zeropage wieder von der
Kopie, zum Beispiel von $6F00, zurück und können wie
gewöhnlich fortfahren.

Die Adressen 0 und 1 kopieren wir nicht, weil diese nach
wie vor für solche Zwecke nutzlos sind. Ebenso könnten wir

,600» A9 D2 LDA #D2
,6002 85 14 STA 14
,6004 A9 3F LDA #3F
,6006 85 15 STA 15
,6008 A0 00 LDY #00
,600A 81 14 LDA (14),Y
,600C 49 FF EOR #FF
,600E 91 14 STA (14),Y
,6010 E6 14 INC 14
,6012 D0 02 BNE 6016
,6014 E6 15 INC 15
,6016 A5 14 LDA 14
,6018 C9 60 CMP #60
,601A A5 15 LDA 15
,601C E9 47 SBC #47
,601E 90 EA BCC 600A

Listing 19

Listing 20

,6000 A9 5F LDA #5F
,6002 85 14 STA 14
,6004 A9 47 LDA #47
,6006 85 15 STA 15
,6008 A0 00 LDY #00
,600A Bl 14 LDA (14),Y
,600C 49 FF EOR #FF
,600E 91 14 STA (14),Y
,6010 A5 14 LDA 14
,6012 D0 02 BNE 6016
,6014 C6 15 DEC 15
,6016 C6 14 DEC 14
,6018 A5 14 LDA 14
,601A C9 D2 CMP #D2
,601C A5 15 LDA 15
,601E E9 3F SBC #3F
,6020 B0 E8 BCS 600A

,6000 A9 00 LDA #00
,6002 85 14 STA 14
,6004 A9 20 LDA #20
,6006 85 15 STA 15
,6008 A0 00 LDY #00
,600A Bl 14 LDA (14),Y
,600C 49 FF EOR #FF
,600E 91 14 STA (14),Y
,6010 C8 INY
,6011 D0 F7 BNE 600A
,6013 E6 15 INC 15
,6015 A5 15 LDA 15
,6017 C9 40 CMP #40
,6019 D0 EF BNE 600A

Listing 21

Kurs C64

,6000 A9 00 LDA #00
,6002 85 14 STA 14
, 6004 A8 TAY
,6005 A9 20 LDA #20
,6007 85 15 STA 15
,6009 AA TAX
,600A Bl 14 LDA (14),Y
,600C 49 FF EOR #FF
,600E 91 14 STA (14),Y
,6010 C8 INY
,6011 D0 F7 BNE 600A
,6013 E6 15 INC 15
,6015 CA DEX
,6016 D0 F2 BNE 600A

Listing 22

nur einzelne Bereiche kopieren (zum Beispiel die Zeiger für
Basic-Programme$16 - $4A). Dann dürfen wiraberauch nur
diesen Bereich verändern.

Wenn wir nun den Bereich $02 - $FF kopieren, stehen uns
folgende Adressen zur Verfügung:

$03-$06, $14-$86, $71-$8A, $C3/$C4, $FB-$FF
Diese Adressen können Sie nur so lange verwenden, bis

eine Routine des Betriebssystems oder Basic-Interpreters
aufgerufen wird. Davor muß die alte Zeropage zurückge­
schrieben werden.

Da Sie auf diese Weise viel Speicherplatz in der Zeropage
gewonnen haben, ist es sogar möglich, eine Tabelle aus
Geschwindigkeitsgründen in die Zeropage zu verlegen.
Damit steigt auch der Wert der indiziert-indirekten Adressie­
rung erheblich.

Dennoch ist der Speicherplatz in der Zeropage begrenzt.
Überlegen Sie sich also, auf welche Werte besonders schnell
zugegriffen werden muß und schreiben Sie vorzugsweise
diese in die Zeropage.

70 -.BA $C000 710 LDA #<(ANFANGSADRESSE)
80 -.LI 1,3,0 720 STA ZAEHLER
90 730 LDA #>(ANFANGSADRESSE)
100 —; ******************************* 740 STA ZAEHLER+1
110 -; * QUELLTEXTE (HYPRA-ASS) * 750 LDY #0
120 -; * ========================== * 760 -SCHLEIFE4 LDA (ZAEHLER),Y
130 -; * * 770 EOR #$FF
140 -; * FUER VERSCHIEDENE SCHLEIFEN * 780 STA(ZAEHLER),Y
150 — : * * 790 INC ZAEHLER
160 -; * 28.08.85 BY FLORIAN MUELLER * 800 BNE WEITER
170 — s * * 810 INC ZAEHLER+1
180 —; ******************************* 820 -WEITER LDA ZAEHLER
190 830 CMP #<(ENDADRESSE+1)
200 840 LDA ZAEHLER+1
210 -; QUELLTEXT ZU LISTING 1 850 SBC #>(ENDADRESSE+1)
220 — 8 ====================== 860 BCC SCHLEIFE4
230 870
240 -.EQ ANFANGSADRESSE = $02 880
250 -.EQ ENDADRESSE = $FF 890 -; QUELLTEXT ZU LISTING 10
260 -.EQ ZIELBEREICH = $6F00 900
270 910 — ■
280 LDX #0 920 -.EQ ANFANGSADRESSE = $2000
290 -SCHLEIFEI LDA ANFANGSADRESSE,X 930 -.EQ ENDADRESSE = $3FFF
300 STA ZIELBEREICH,X 940 -.EQ ZAEHLER = $14
310 INX 950
320 CPX #(ENDADRESSE+l-ANFANGSADRESSE) 960 LDA #<(ANFANGSADRESSE)
330 BNE SCHLEIFE1 970 STA ZAEHLER
340 980 LDA #>(ANFANGSADRESSE)
350 990 STA ZAEHLER+1
360 -; QUELLTEXT ZU LISTING 2 1000 LDY #0
370 ! ====================== 1010 -SCHLEIFE5 LDA (ZAEHLER),Y
380 1020 EOR #$FF
390 -.EQ ANFANGSADRESSE = $02 1030 STA (ZAEHLER),Y
400 -.EQ ENDADRESSE = $FF 1040 INY
410 -.EQ ZIELBEREICH = $6F00 1050 BNE SCHLEIFE5
420 1060 INC ZAEHLER+1
430 LDX #(ENDADRESSE+l-ANFANGSADRESSE) 1070 LDA ZAEHLER+1
440 -SCHLEIFE2 LDA ANFANGSADRESSE-l,X 1080 CMP #>(ENDADRESSE+1)
450 STA ZIELBEREICH-1,X 1090 BNE SCHLEIFE5
460 DEX ; DEKREMENTIERBEFEHL 1100 “S
470 BNE SCHLEIFE2 1110 — s
480 1120 -; QUELLTEXT ZU EINER SCHLEIFE,
490 1130 -; DIE DEN BEREICH $3FD2-$47D1
500 -; QUELLTEXT ZU LISTING 4 1140 -; KOMPLEMENTIERT
510 —• ====================== 1150
520 1160 -.EQ ANFANGSADRESSE = $3FD2
530 -.EQ ANFANGSADRESSE - $16 1170 -.EQ ENDADRESSE = $47D1
540 -.EQ ENDADRESSE = $4A 1180 -.EQ ZAEHLER = $14
550 -.EQ ZIELBEREICH = $6F00 1190 — •
560 1200 LDA #<(ANFANGSADRESSE)
570 LDX #(ENDADRESSE-ANFANGSADRESSE) 1210 STA ZAEHLER
580 -SCHLEIFE3 LDA ANFANGSADRESSE,X 1220 LDA #>(ANFANGSADRESSE)
590 STA ZIELBEREICH,X 1230 STA ZAEHLER+1
600 DEX 1240 LDX #>(ENDADRESSE+l-ANFANGSADRESSE)
610 BPL SCHLEIFE3 ; PRUEFT N-FLAG 1250 LDY #0
620 ~5 1260 -SCHLEIFE6 LDA (ZAEHLER),Y
630 1270 EOR #$FF
640 -; QUELLTEXT ZU LISTING 8 1280 STA (ZAEHLER),Y
650 —■ ====================== 1290 INY
660 1300 BNE SCHLEIFE6
670 -.EQ ANFANGSADRESSE = $3FD2 1310 INC ZAEHLER+1
680 -.EQ ENDADRESSE = $475F 1320 DEX
690 -.EQ ZAEHLER = $14 1330 BNE SCHLEIFE6
700 “5 1340

Listing 23 1350 -; ENDE VON LISTING 12

90

C64 Kurs

9. Schleifenprogrammierung

Zunächst befassen wir uns mit Schleifen, die maximal
256mal durchlaufen werden.
Typ a: Schleifen mit maximal 256 Durchläufen

Da 256 verschiedene Zahlen mit einem 8-Bit-Prozessor
dargestellt werden können, verwendet man hier das X- (oder
Y-) Register als Schleifenzähler. In Listing 12 sehen Sie
die einfachste Form einer Schleife, die die Zeropage-Adres-
sen $02 - $FF nach $6F00 kopiert.

Da der Schleifenzähler X in Listing 12 INKREMENTIERT
wird, haben wir es mit einer INKREMENTIERSCHLEIFE zu
tun. Nach dem Inkrementieren (»6007 INX«) wird durch
»6008 CPX # FE« überprüft, ob die Schleife beendet werden
kann. Eine eingehendere Beschreibung des Programm­
ablaufs erübrigt sich.

Für Schleifen des Typs a (maximal 256 Durchläufe) ist es
aber meist vorteilhaft, eine DEKREMENTIERSCHLEIFE zu
verwenden. Wie eine solche Schleife programmiert wird,
sehen wir an Listing 13.

Listing 13 unterscheidet sich in der Wirkung nicht von
Listing 12, obwohl man dies nicht unbedingt auf den ersten
Blick erkennt. Deshalb soll dieses Listing näher besprochen
werden. In Zeile 6000 erhält das X-Register den Inhalt $FE.
Durch »6002 LDA 01,X« wird damit das letzte Byte der Zero­
page, nämlich $FF, zuerst gelesen und nach $7OFE
geschrieben. Dann wird X dekrementiert. Ist X noch nicht 0,
so wird die Schleife erneut durchlaufen.

Der niedrigste X-Wert innerhalb der Schleife ist folglich 1;
aufgrund von »6002 LDA 01,X« ist $02 die niedrigste
Zeropage-Adresse, die kopiert wird. In Listing 12 ist 0 der
niedrigste X-Wert. Die niedrigste Adresse aufgrund von
»6002 LDA 02,X« ist also auch $02 (stimmt auffällig). Warum
$FF die höchste kopierte Zeropage-Adresse ist, können Sie
nun selbst den Listings 12 und 13 entnehmen.

Listing 14 ist eine Dekrementierschleife, die die Kopie der
Zeropage wieder von $6F00 nach $02 zurückholt.

Der Vorteil von Dekrementierschleifen beim Typ a ist, daß
zum Erkennen der Abbruchbedingung (X=0) kein Ver­
gleichsbefehl erforderlich ist, weil nach dem DEX-Befehl
automatisch das Z-Flag gesetzt wird, wenn X Null wird.

Das Entfallen des Vergleichsbefehls »CPX #« bringt eine
Ersparnis von 2 Byte Speicherplatz sowie insgesamt 508
Taktzyklen Rechenzeit. Dajedoch bei 6004 eine Seitenüber­
schreitung (eine Seite entspricht 256 Byte) vorliegt,
schrumpft der Zeitgewinn auf 254 Taktzyklen (dies ließe sich
aber vermeiden, indem wir die Zeropage nach $6F01 kopie­
ren, womit durch »6004 STA $6F00,X« keine Seitenüber­
schreitung auftreten würde).

Nun wollen wir noch einen Sonderfall behandeln:
Dekrementierschleifen vom Typ a, bei denen der Aus­

gangswert für X < 129 ist.
In Listing 15 sehen Sie eine Schleife, die den Bereich $16

- $4A nach $6F00 kopiert, Listing 16 schreibt die Werte von
$6F00 zurück nach $16. Selbstverständlich hätten wir das
Problem auch so lösen können wie in Listing 13. Wir wollen
aber noch eine andere Konstruktion von Dekrementierschlei­
fen kennenlernen, die in diesem Sonderfall möglich ist.
Besprechen wir also Listing 15.

Bei 6000 wird ins X-Register die Zahl geladen, die man zu
$16 addieren muß, um $4A zu erhalten. Dadurch wird
zunächst bei 6002 die Adresse $4A gelesen und nach
$6F34 geschrieben. Bei 6007 wird dekrementiert. Neu ist
der Verzweigungsbefehl: es wird das N-Flag überprüft. Ist
X = $FF, wird das N-Flag gesetzt und »6008 BPL 6002«
beendet die Schleife. Der niedrigste Wert von X, der inner­
halb der Schleife vorkommt, ist demnach $00.

Der BPL-Befehl funktioniert nur, wenn der Ausgangswert

,6000 A0 00 LDY #00
,6002 B9 00 20 LDA 2000,Y
,6005 49 FF EOR #FF
,6007 99 00 20 STA 2000,Y
,600A C8 INY
,600B D0 F5 BNE 6002
,600D EE 04 60 INC 6004
,6010 EE 09 60 INC 6009
,6013 AD 09 60 LDA 6009
,6016 C9 40 CMP #40
,6018 D0 E8 BNE 6002
Listing 24

,6000 A0 00 LDY #00
,6002 B9 00 40 LDA 4000,Y
,6005 49 FF EOR #FF
,6007 99 00 40 STA 4000,Y
,600A C8 INY
,600B D0 F5 BNE 6002
,600D EE 04 60 INC 6004
,6010 EE 09 60 INC 6009
,6013 AD 09 60 LDA 6009
,6016 C9 40 CMP #40
,6018 D0 E8 BNE 6002
Listing 25

,6000 A9 00 LDA #00
,6002 8D 13 60 STA 6013
,6005 8D 18 60 STA 6018
,6008 A9 20 LDA #20
,600A 8D 14 60 STA 6014
,600D 8D 19 60 STA 6019
,6010 A0 00 LDY #00
,6012 B9 FF FF LDA FFFF,Y
,6015 49 FF EOR #FF
,6017 99 FF FF STA FFFF,Y
,601A C8 INY
,601B D0 F5 BNE 6012
,601D EE 14 60 INC 6014
,6020 EE 19 60 INC 6019
,6023 AD 19 60 LDA 6019
,6026 C9 40 CMP #40
,6028 D0 E8 BNE 6012
Listing 26

von X <129 ist. Andernfalls wäre nämlich nach dem Dekre-
mentieren X>127 und damit das N-Flag gesetzt. Dies aber
hätte zur Folge, daß die Schleife nur 1mal durchlaufen würde.

Zur soeben behandelten Schleifenkonstruktion sind noch
zwei Dinge zu sagen; erstens, daß sie nur in diesem Sonder­
fall (X<129) möglich ist, und zweitens, daß sie nicht effekti­
ver als eine Lösung wie in Listing 13 ist.

Allgemeine Gültigkeit hat aber folgende Regel für Schleifen
vom Typ a:

Bei Schleifen vom Typ a ist Dekrementieren effektiver
als Inkrementieren, solange die Durchlaufzahl nicht
255 überschreitet.
Bei 256 Durchläufen erweist sich Inkrementieren oft
als besser.

91

Kurs C64

An Listing 17 sehen wir ein Beispiel für den letzten Satz der
Regel. Listing 17 kopiert die letzten 256 Speicherplätze des
Stapels ($0100 - $01FF) und den Stapelzeiger nach $6F00
- $7000. Listing 18 schreibt den Stapel wieder zurück.

Die Dekrementierschleife (6000 - 600A) kopiert nun den
Bereich $0101 - $O1FF, $0100 wird nicht übertragen. Dies
geschieht in 600B - 600F. Eine andere Möglichkeit wäre ein
zeitraubender CPX #FF-Befehl nach »6008 DEX«.

6011 - 6013 sichert schließlich noch das SP-Register.
Hier ist in der Tat eine Inkrementierschleife besser. Ändern

wir Listing 17 also in Listing 17a:

LDX #00
- LOOP LDA 0100,X
- STA 6F00,X

INX ;(!!)
- BNE LOOP
- TSX
- STX 7000

Analog ergibt sich Listing 18a:

LDX #00
- LOOP LDA 6F00,X
- STA 0100,X

INX ;(!!)
— BNE LOOP
- LDX 7000
- TXS

In den Listings 17a und 18a habe ich diejenigen Befehle,
die sich in der symbolischen Darstellung nicht von den
Listings 17 und 18 unterscheiden, mit einem »-« markiert.
Typ b: Schleifen mit mehr als 256 Durchläufen

Während Schleifen des Typs a meist so schnell abgearbei­
tet werden, daß man es gar nicht bemerkt, dauern Typ-b-
Schleifen oft eine oder mehrere Sekunden.

Deswegen wollen wir hier versuchen, den Zeitbedarf von
Typ-b-Schleifen zu verringern.

Unsere erste Typ-b-Schleife (Listing 19) soll den Bereich
von $3FD2 bis $475F invertieren (= EOR # FF-verknüpfen,

,6000 A9 D2 LDA #D2
,6002 8D 11 60 STA 6011
,6005 8D 16 60 STA 6016
,6008 A9 3F LDA #3F
,600A 8D 12 60 STA 6012
,600D 8D 17 60 STA 6017
,6010 AD 00 00 LDA 0000
,6013 49 FF EOR #FF
,6015 8D 00 00 STA 0000
,6018 EE 11 60 INC 6011
,601B EE 16 60 INC 6016
,601E D0 06 BNE 6026
,6020 EE 12 60 INC 6012
,6023 EE 17 60 INC 6017
,6026 AD 11 60 LDA 6011
,6029 C9 60 CMP #60
,602B AD 12 60 LDA 6012
,602E E9 47 SBC #47
, 6030 90 DE BCC 6010

Listing 27

ausjeder 1 wird eine 0 und umgekehrt). Da hierfür ein 8-Bit-
lndexregister nicht ausreicht, benötigen wir einen 16-Bit-
Zähler, nämlich$14/$15. DiesersollimmerdieAdressebein-
halten, die invertiert wird. In diesen Zähler schreibt die Initiali­
sierung der Schleife den Startwert $3FD2 (siehe $6000 -
$6007).

Da es beim 6510 keine indirekte Adressierung für LDA/STA
gibt, sbndern nur die indirekt-indizierte oder indiziert­
indirekte, müssen wir auf eine dieser Adressierungen aus­
weichen und den Index auf 0 setzen (»6008 LDY #00«),

Bei $600A beginnt die Schleife: der Wert wird eingelesen,
mit $FF EOR-verknüpft und zurückgeschrieben. Nun wird
der 16-Bit-Zähler $14/$15 erhöht (6010 - 6015). Dann wird

,6000 A2 00 LDX #00
,6002 8E 11 60 STX 6011
,6005 8E 14 60 STX 6014
,6008 A2 A0 LDX #A0
,600A 8E 12 60 STX 6012
,600D 8E 15 60 STX 6015
,6010 AE 00 00 LDX 0000
,6013 8E 00 00 STX 0000
,6016 EE 11 60 INC 6011
,6019 EE 14 60 INC 6014
,601C D0 F2 BNE 6010
,601E EE 12 60 INC 6012
,6021 EE 15 60 INC 6015
,6024 AE 12 60 LDX 6012
,6027 E0 C0 CPX #C0
,6029 D0 E5 BNE 6010

Listing 28

80 -.BA $6000
90
100

-.LI 1,3,0
~5

110 —5 HYPRA-ASS-QUELLTEXT ZU EINER
120 SELBSTMODIFIZIERENDEN SCHLEIFE
130
140

-; (ARBEITET WIE LISTING 5)

150
160
170

-; 1985 BY

“5

FLORIAN MUELLER

180 -.GL START = $A000
190
200

-.GL ENDE
— 5

= SBFFF

210 LDX #<(START)
220 — STX MODl+1
230 — STX M0D2+l
240 — LDX #>(START)
250 - STX M0Dl+2
260 - STX MOD2+2
270 -MODI LDX $FFFF
280 -M0D2 STX $FFFF
290 INC MODl+1
300 — INC M0D2+l
310 — BNE MODI
320 INC MQDl+2
330 _ INC M0D2+2
340 — LDX MQDl+2
350 CPX #>(ENDE+1)
360 -
Listing 29

BNE MODI

92

C64 Kurs

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070

-.BA $0801
-.OB "LOADER-MAKER 64,P,W"

* L 0 A D E R - M A K E R *

* EIN PROGRAMMGENERATOR *

* VON FLORIAN MUELLER *

-.GL BASIN = $FFCF
-.GL SETPAR = $FFBA
-.GL SETNAM = $FFBD
-.GL LOAD = $FFD5
-.GL READY = $A474
-.GL NUMOUT = $BDCD
-.GL TASTPF = 631 ; TASTATURPUFFER
-.GL ANZAHL = 198 ; ENTHAELT ANZAHL

DER ZEICHEN IM
— 5 TASTATURPUFFER
-.GL KASSPF = 828 ; KASSETTENPUFFER

5

-.MA PRINT (TEXT)
— LDA #<(TEXT) ; MAKRO
— LDY #>(TEXT) ; FUER
— JSR $ABlE ; TEXTAUSGABE
-.RT
— 5

— 5
— :
-.WO LINK+ 1 ; LINKPOINTER
-.WO 1985 ; ZEILENNUMMER
-.BY $9E ; TOKEN FUER "SYS"
— .TX "2061"
-LINK .BY 0,0,0 ; ENDMARKIERUNG

DER BASIC-ZEILE

-SYSTEM LDX #0 ; FLAG FUER SYSTEM-
- STX $9D ; MELDUNGEN SETZEN

LDX #$49 ; DEKR.-ZAEHLER
-SCHLEIFE1 LDA ABLAGE,X ; LADEROUTINE
— STA KASSPF,X ; VON ABLAGE IN
— DEX ; DEN BEREICH
— BPL SCHLEIFE1 ; KOPIEREN, IN

DEM SIE LAEUFT

~5
JMP KASSPF ; & STARTEN

-; ES FOLGT DIE LADEROUTINE, DIE HIER
-; AN FALSCHER STELLE ABGELEGT IST UND
-; VON DER "SCHLEIFEI" (600-640) IN
-; DEN ORIGINALBEREICH GESCHRIEBEN WIRD.

-ABLAGE LDA #1 ; FILENUMMER #1
— TAY ; SEKUNDAERADRESSE #1
-GERAETENR LDX #0 ; GERAETEADRESSE #?
- JSR SETPAR ; PARAMETER SETZEN

-LAENGE LDA #0 ; LAENGE DES FILENAMEN
— LDX #<($35C) ; ADRESSE DES
— LDY #>($35C) ; FILENAMEN: $035C
- JSR SETNAM ; NAMEN SETZEN

LDA #0 ; FLAG FUER "LADEN"
— JSR LOAD

-FEHLER BCS LOADERROR ; LADEFEHLER?
-START JMP 0 ; ZUR STARTADRESSE
-LOADERROR LDX #$lD ; "LOAD ERROR"
- JMP ($300) ; AUSGEBEN

-NAME .BY 0,0,0,0 ; 16 BYTES
— .BY 0,0,0,0 ; FUER FILENAMEN
— .BY 0,0,0,0 ; RESERVIEREN
- .BY 0,0,0,0

-BASIC STX $2D ; POINTER FUER
— STY $2E ; PROGRAMMENDE SETZEN
— JSR $E544 ; = PRINT CHR$(147)
— LDX #3 ; 3 BYTES IN
- STX ANZAHL ; TASTATURPUFFER

-SCHLEIFE2 LDA $0383,X j AUS DER TABELLE
— STA TASTPF,X ; IN ZEILE 1100
— DEX ; KOPIEREN
— BPL SCHLEIFE2

1080 - JMP READY ; WARMSTART
1090 -;
1100 -.BY "R",$D5,13 ; "R",SHIFT U,RETURN
1110 -;
1120 -; HIER ENDET DER PROGRAMMTEIL,
1130 -; DER MODIFIZIERT WIRD.
1140 -; ES FOLGT DIE MODIFIKATIONSROUTINE:
1150 -;
1160 -MDFIKATOR JSR $E544 ; = PRINT CHR$(147)
1170-...PRINT (TEXT1)
1180 -; STARTADRESSE HOLEN
1190 -;
1200 - JSR $AEFD j PRUEFT AUF KOMMA
1210 - JSR $AD8A ; HOLT PARAMETER
1220 - JSR $B7F7 ; NACH $14/$15
1230 -;
1240 - LDX $14 ; STARTADRESSE
1250 - LDA $15 ; HOLEN,
1260 - STX START+1 ; IM PROGRAMM
1270 - STA START+2 ; ABLEGEN UND
1280 - JSR NUMOUT ; UND AUSGEBEN
1290 -;
1300 -;
1310 -; NUN WIRD NOCH DER ZU MODIFIZIERENDE
1320 —5 PROGRAMMTEIL IN DEN AUSGANGSZUSTAND
1330 -; GEBRACHT:
1340 -;
1350 - LDX #15 ; NAMEN MIT NULL-BYTES
1360 - LDA #0 ; BELEGEN
1370 -SCHLEIFE3 STA NAME,X ; DURCH EINE
1380 - DEX ; DEKREMENTIER-
1390 - BPL SCHLEIFE3 ; SCHLEIFE
1400 -;
1410 - STA SYSTEM+1 ; KEINE SYSTEMMELDUNGEN
1420 -;
1430 - LDA #3 ; SPRUNGWEITE = 3
1440 - STA FEHLER+1
1450 -;
1460 - LDA #$A2 ; OPCODE FUER "LDX #"
1470 - STA GERAETENR
1480 —;
1490 -;
1500 -; AN DIESER STELLE IST DAS "GERUEST"
1510 -; (DER ZU MODIFIZIERENDE TEIL)
1520 -; IM AUSGANGSZUSTAND
1530 -;
1540 -;
1550 -; EINGABE DES FILENAMEN

1570 -;
1580 -...PRINT (TEXT2)
1590 - LDX #0 ; ZAEHLER AUF 0
1600 -SCHLEIFE4 JSR BASIN
1610 - CMP #13 ; ENDE DER EINGABE?
1620 - BEQ WEITER1 5 JA=>WEITER
1630 - STA NAME,X ; BYTE ABLEGEN
1640 - INX
1650 - CPX #16 ; 16 ZEICHEN MAX.
1660 - BNE SCHLEIFE4 ; NAECHSTES ZEICHEN
1670 -;
1680 -; WENN DIESE STELLE DURCHLAUFEN WIRD,
1690 -; HAT DAS X-REGISTER DEN WERT 16.
1700 -;
1710 -; BEI "WEITER1" HINGEGEN KANN ES AUFGRUND
1720 -; DES BRANCH-BEFEHLS "BEQ WEITER1"
1730 -; UNTERSCHIEDLICHE WERTE HABEN.
1740 -;
1750 -WEITER1 STX LAENGE+1
1760 -;
1770 -;
1780 -; EINGABE DER GERAETEADRESSE
1/7u —;
1800 -;
1810 -.
1820 -
1830 -
1840 -
1850 —;
1860 —;
1870 -
1880 -
1890 -;
1900 -;
1910 -;
1920 -;
1930 -;
1940 -;
1950 -;
1960 -
1970 -
1980 -
1990 -
2000 — 5
2010 -;
2020 -;
2030 -;
2040 -;
2050 -Wl

..PRINT (TEXT3)
JSR BASIN ; HOLT ZEICHEN
SEC ; VOR SUBTRAKTION
SBC #"0" ; IM AKKU STEHT JETZT

DIE ZAHL

STA GERAETENR+1; ABLEGEN
BNE WEITER2 ; GERAET<>0 : WEITER

DA ALS GERAETENUMMER 0 EINGEGEBEN
WURDE, MUSS DER GESAMTE BEFEHL
"LDX #GERAET" IN "LDX $BA"
UMGEWAENDELT WERDEN, DAMIT DAS
NACHLADEN VON DEM GERAET ERFOLGT,
VON DEM DER LADER EINGELESEN WIRD.

LDA #$A6 ; OPCODE FUER "LDX ZP"
STA GERAETENR
LDA #$BA ; "LDX $BA"
STA GERAETENR+1; GENERIEREN

MASCHINENPROGRAMM (J/N)?

EITER2 ... PRINT(TEXT4)
Listing 30

93

Schaffen Sie si<h ein interessantes Nachsdilaqewerk
und gleichzeitig ein wertwIles Ardiiv!
Kennen Sie alle Ausgaben von 64’er? Suchen Sie einen ganz bestimmten Testbericht? Oder haben Sie einen Tbil
eines interessanten Kurses versäumt? Suchen Sie nach einer spezieUen Anwendung?
Damit Sie jetzt fehlende Hefte mit »Ihrem« Artikel nachbesteUen können, finden Sie auf diesen Seiten eine
ZusammensteUung aller wesentiichen Artikel von Ausgabe 4/84 bis Ausgabe 3/85.
Und so kommen Sie schneU an die noch lieferbaren Ausgaben: Prüfen Sie, welche Ausgabe in Ihrer Sammlung
noch fehlt, oder welches Thema Sie interessiert. Tragen Sie die Nummer dieser Ausgabe und das Erscheinungs­
jahr (z.B, 2/85) auf dem BesteUabschnitt der hier eingehefteten Bestell-ZaMkarte ein. Die ausgefüUte ZaHkarte ein­
fach heraustrennen und Rechnungsbetrag beim nächsten Postamt einzahlen. Ihre BesteUung wird nach Zahlungs­
eingang umgehend zur AusUeferung gebracht.
Stichwort Titel Seite Aus­

gabe

Computer
AktueU
Die neuen — 264 und 364 (von der CES in Las Vegas) 9 4/84
Heiße Messe in der Wüste: CES (PC 128, PC 10,
Commodore LCD) 8 3/85

DFÜ Datex-P und ausländische Netzwerke 59 10/84
Interessant bis brisant — die elektronischen Brief­ 10 12/84
kästen
Internationaler Chaos Communiction Congress 15 3/85
Kreatives Chaos (Interview mit dem CCC) 12 10/84
MCI Mail: die schnelle Post 8 2/85

Floppy Neues 1451-Laufwerk 14 3/85
SFD 1002 8 9/84

Messen Consumer Electronics Show in Chicago 10 8/84
Musik Musikneuigkeiten aus den USA — MIDI 44 9/84

Abtippen

Listings zum Abtippen
Anwendung
Checksummer (C 64 und VC 20) 72 1/85
Checksummer (C 64 und VC 20) 65 2/85
MSE — Abtippen sicher und leicht gemacht 68 2/85
MSE — Abtippen sicher und leicht gemacht 78 3/85
Neuer Checksummer 64 — blitzschnell und kürzer 68 3/85

DFU Mailboxprogramm für den C 64 114 9/84
EPROM Datenbrennerei: Wie programmiere ich EPROMs? 162 9/84
Familie Familienplanung mit dem VC 20 (AdM) 52 2/85
Finanzen Abgerechnet wird mit dem C 64 (AdM) 68 8/84

Menügesteuerte Finanzmathematik (AdM) 68 10/84
Floppy Drucker/Floppy ein- oder ausgeschaltet? 77 8/84

Hypra-Load: Schnelles Laden von Diskette QdM) 67 10/84
Kalender Elekronisches Notizbuch fVC 20) 50 4/84
Maske Bildschirmasken schnell erstellt 78 9/84
Mathematik Mathematical-Basic: Das Super-Basic für den 50 12/84

Monitor
VC 20 (LdM)
Ohne gutes Werkzeug geht es nicht: SMON (Teil 2) 61 12/84
Ohne gutes Werkzeug geht es nicht: SMON fTeil 3) 69 1/85
Ohne gutes Werkzeug geht es nicht: SMON fTeil 4) 72 2/85

Musik Die Musik macht der C 64: Elektronikorgel (AdM) 70 9/84
Musik, Musik, Musik: Synthesizer (AdM) 51 12/84

Sport Computer und Sport — Auswertung von 56 4/84
DMM-Ereignissen
Der C 64 als HandbaUtrainer (AdM) 52 1/85
Gut Ziel mit dem C 64 (AdM) 52 3/85
Ohne Organistaion kein Tor: Ligatab (LdM) 50 3/85

Super 8 VC 20 steuert Super8-Kamera 70 2/85
User-Port Analoger Meßwert rein — analoger SteUwert raus 78 8/84

Kopplung über den User-Port fVC 20) 73 8/84
Video Video-Vorspann mit dem VC 20 80 10/84
Zeichensatz Deutscher Zeichensatz für den VC 20 79 9/84

Algorithmus
Grafik
Ein schneller Drawüne-Algorithmus 65 4/84

Axiometrie Von allen Seiten betrachtet (SB) 69 12/84
Befehls­ Screen Change 94 9/84
erweiterung
Elektro­ Elektrotechnisches Zeichnen mit dem VC 20 71 3/85
technik
Funktionen Kudiplo erfüllt Schülerträume 0Curvendiskussion auf 80 8/84

Grafik
dem VC 20)
Bewegte Grafik und Text mischen 66 12/84

Hardcopy 1520-Hardcopy mit dem VC 20 87 9/84
Der VC 1525/MPS 802 als Grafikdrucker 83 10/84
Die mehrfarbige Hardcopy mit dem 1520-Plotter 84 10/84
Hardcopy Epson FX-80 88 10/84
Hardcopy Gemini-10X 85 10/84
Hardcopy MPS 801/VC 1515 82 10/84
Hardcopy für den Sieger (FX-80 mit Görlitz-Interface) 83 8/84

Schnitt­ Olympia compact 2: ein Centronics-Interface 86 10/84
stellen
Sprites Der Super-Sprite-Editor 89 9/84

Sprites schneller bewegen 70 4/84
Vier Pseudo-VICs mit 32 Sprites 76 1/85

Zeichnen HI-EDDI: Ein fantastisches Zeichen und 50 1/85

Abenteuer

Malprogramm (LDM)

Spiel
Castle of Doom — Adventure (LdM) 66 8/84
Das Grab des Pharao (LdM) 51 2/86

Action Apocalypse now 106 10/84
Q + Bert^C20) 78 2/85

Arcade Invaders 74 4/84

Stichwort Titel Seite Ans­
gabe

Denkspiel 3D-Vier gewinnt — Spielen in der dritten Dimension 96 12/84
Mastermind als Vierzeiler 81 12/84

Generator Spring Vogel, spring QxiM) 68 9/84
Pacman Pac-Boy — die Herausforderung 89 8/84
Reaktion Escape fVC 20) 86 8/84

Rennfahrer ohne Sturzhelm fVC 20) 86 4/84
Strategie Schiebung fVC 20) 77 9/84
Taktik Epedemic jvC 20) 112 10/84

Gehirntraining mit Supermemory 81 2/85
Kämpfe wie im alten Rom — Caesar 78 4/84

Wettbewerb Notlandung 156 2/85

Tips & Tricks
Auto Automatische Zeilennumerierung 84 12/84
Autoboot Autoboot beim C 64 86 3/85
Autostart Autostart für den VC 20 98 8/84
Basic Basic-Zeilen genau betrachtet 87 2/85
Basic- PRINT AT und RESTORE N 0/C 20) 101 8/84
Erweiterung

Stringy: C 64-Erweiterung 86 12/84
Buchstaben Große Buchstaben 89 1/85
Datasette Fast Tape — die schneUe Kassette 0/C 20) 80 12/84

Musik aus der Datasette 84 12/84
Direktmodus Programmierter Direktmodus 82 12/84
Floppy 22 Read Error — Theorie und Praxis 41 3/85

Auf das " I" kommt es an 92 12/84
Disk Copy 92 4/84
Diskette intern ^isk-Dump) 95 10/84
Disketten-Organisation 0/C 20) 97 10/84
Floppy-Lister 82 3/85
Hypra-Load mal vier 82 1/85
Kopieren mit Komfort: Super Copy 102 10/84
Maschinenprogramme auf Diskette speichern 91 2/85
View BAM 99 8/84

Funktionen Kudiplo auf für den C 64 (Kurvendiskussion) 91 10/84
Grafik Tips und Erweiterungen zu Hi-Eddi und Simons 88 3/85

Basic
Joystick Cursorsteuerung leicht gemacht (mit Joystick) 86 2/85
Listing Der große Überblick: formatiertes Listing 90 10/84

Fehlersuche leicht gemacht: LIST-STOP 97 9/84
Progranfmiertes LISTing: LIST X-Y 100 10/84

Listschutz List- und Löschschutz leicht gemacht 85 12/84
Maschinen­ Maschinenprogramme auf Tastendruck 80 12/84
sprache DATA-Wandler 102 9/84
Merge Kleben per Software — Merge 94 4/84
Monitor Besseres Monitorbild beim C 64 90 2/85
Opcodes Hex-ereien: undefinierte Opcodes beim 6502 84 3/85
POKEs Durch POKEs zum Erfolg — Die Spiele-Trickkiste 83 3/85

POKE mal wieder: diverse POKEs 91 10/84
Parameter Parameterübergabe an Programme in Maschinen­ 88 1/85

sprache
Reset Resetschalter am C 64 34 8/84
Restore Restore für Unterprogramme 90 1/85
Retten Erste Hilfe 0/C 20) 88 4/84

Erste Hilfe für den C 64: RENEW 102 9/84
Schnitt­ Die RS232-Schnittstelle am VC 20 100 9/84
stellen Verbindungsfreundlich fVC 20) 91 3/85
ScroUen Als die Bilder laufen lernten ... (Scrollen) 88 2/85
Basic Haben Sie den Bogen raus? (ARC bei Simons Basic) 98 9/84

Simons Basic: Befehle die nicht im Handbuch stehen 103 9/84
Speicher RAM-Floppy 92 2/85
Synthetische Die Suche nach den Synthetischen 104 9/84
Tastatur User-Port-Tastatur (Zehnertastatur) 93 10/84
Tips & Tricks Diverse 89 10/84

Lösung von Dallas Quest 90 1/85
Trace Trace und Single Step für Maschinenprogramme 76 12/84

Der C 64 als PET 87 1/85
Die Software-Vielfalt der CBMs für den C 64 nutzen 102 8/84
Von den Kleinen auf die Großen (C 64 - CBM) 96 8/84

User-Port User-Pprt-Display 97 8/84
User-Port-Tastatur (Zehnertastatur) 93 10/84

Hardware*Test
80-Zeichen- Mehr Übersicht am Bildschirm 0/C 20) 20 10/84
karten
Computer Generationswechsel — Test C 16 6 1/85

Plus und Minus beim Plus/4 14 2/85
Drucker Adcomp X100 — farbig plotten und drucken 22 10/84

Brother HR-5C: fast nicht zu hören 24 10/84

Stichwort Titel Seite Aus­
gabe

Ein Drucker für alle Fälle: Epson FX-80 23 10/84
Ein Star der es in sich hat (delta-10) 25 10/84
Olympia electronic compact 2: Schreibmaschine für
den C 64

28 10/84

Roland DXY-101 — ein Flachbettplotter im 27 10/84
DIN-A3-Format
Seikoshas Größter: Test GP-550A 26 10/84

EPROM EPROM-Brenner: Vergleichstest 36 8/84Expansions Expansions über alle Grenzen hinaus 34 4/84
Floppy Floppy mit Nachbrenner (Speeddos, Turboaccess,

Computing)
26 12/84

Interface Das macht den Kleinen größer (64-KByte-Karten)
0/C20)

112 9/84

Digitalisierte Bilder mit dem C 64 24 1/85
Speichertuning für VC 20: MR 64 26 1/85

Joystick Joystick-Vielfalt (20 Joysticks im Test) 34 12/84
Monitore Die Scharfmacher (Cable, Taxan, BMC) 20 12/84
Schnitt­ Card/Print + G — Das Allround-Interface (Centronics) 20 3/85
stellen Das Interface mit Weitblick GVW-92000/G:

Centronics) 18 3/85
Hardware-Interface ganz weich: EC-64 23 1/85

Sprachaus­ Die Stimme des Meisters: Voice Master 19 2/85
gabe Sprachausgabe mit dem SDP 120 22 8/84

Hardware
Bauanleitung 16-KByte-Erweiterung umschaltbar fVC 20) 20 2/85

Commodore im neuen Kleid 30 8/84
Das 30-Mark-Interface (RS232) 29 3/85
Ihr Akustikkoppler wird zum Modem: Automodem 114 9/84
Joystick im Selbstbau 33 3/85
Resetschalter am C 64 34 8/84
Richtig verbunden — Video/Audio-Kabel für den
C64

22 2/85

DFÜ Akustikkoppler und Modems: Marktübersicht 28 8/84
Drucker MPS 801 — Ein Erfahrungsbericht 20 8/84

Marktübersicht: Drucker (Teil 1) 29 10/84
EPROM Nichts ist ewig (ROM-Change, verbessertes Betriebs-

sytem)
30 12/84

Monitor Richtig verbunden — Video/Audio-Kabel für den
C64

22 2/85

Musik MIDI — Glarus und Elend eines Interfaces 46 9/84
Reparatur Geheimnissen auf der Spur: 1541 reparieren 24 8/84
Schnitt­ Erst ein IEC-Bus öffnet Tür und Tor fMarktübersicht 24 3/85
stellen und Test)

Gute Connections fRS232-, Centronics-
Marktübersicht)

21 3/85

Kurse
Assembler Assembler ist keine Alchimie (Teil 1) 138 9/84

Assembler ist keine Alchimie (Teil 2) 150 10/84
Assembler ist keine Alchimie (Teil 4) 134 12/84
Assembler ist keine Alchimie (Teil 5) 142 1/85
Assembler ist keine Alchimie fTeil 6) 134 2/85
Assembler ist keine Alchimie fTeil 7) 124 3/85

Codes Alle Tasten-, Zeichen- und Steuercodes (Teil 4) 151 8/84
Comal Comal — Eine Einführung (Teil 2) 145 12/84

Comal — Eine Einführung (Teil 3) 130 2/85
Eff. Prog. Finden mit System — Eine neuartige Suchmethode

fTeil3)
148 3/85

Müllabfuhr im Computer: Die Garbagge Collection
(Teil 1)

122 1/85

Stringprogrammierung in Maschinensprache (Teil 2) 147 2/85
Floppy In die Geheimnisse der Floppy eingetaucht fTeil 1) 153 10/84

In die Geheimnisse der Floppy eingetaucht (Teil 3) 139 12/84
In die Geheimnisse der Floppy eingetaucht fTeil 4) 148 1/85
In die Geheimnisse der Floppy eingetaucht fTeil 5) 130 3/85

Grafik Hires 3 (Teil 1) 123 2/85
Hires 3 fTeil 2) 136 3/85
Reise durch die Wunderwelt der Grafik fTeil 5) 142 8/84
Reise durch die Wunderwelt der Grafik fTeil 6) 144 9/84
Reise durch die Wunderwelt der Grafik fTeil 7) 146 10/84

Grundlagen Geschwindigkeit durch Maschinencode — so
arbeiten Compiler

39 2/85

Musik Dem Klang auf der Spur fTeiI 1) 131 12/84
Dem Klang auf der Spur fTeil 2) 136 1/85

Stichwort Titel Seite Aus­
gabe

Precompiler
Dem Klang auf der Spur (Teil 3)
Strubs — ein Precompiler für Basic-Programme
(Teil 1)

152
110

2/85
4/84

Speicher Memory Map mit Wandervorschlägen (Teil 2) 132 12/84
Memory Map mit Wandervorschlägen (Teil 3) 127 1/85
Memory Map mit Wandervorschlägen (Teil 4) 150 2/85
Memory Map mit Wandervorschlägen (Teil 5) 144 3/85

VC20 Der gläserne VC 20 (Teil 1) 155 9/84
Der gläserne VC 20 CTeil 2) 157 10/84
Der gläseme VC 20 fTeil 4) 130 1/85
Der gläserne VC 20 (Teil 5) 141 2/85
Der gläserne VC 20 (Teil 6) 155 3/85

Spiele-Test
Abenteuer Die Lösung von Hobbit 49 2/85

Gordon Saga 48 2/85
Gruds in Space 137 8/84
House of Usher 37 10/84
Lösung von Dallas Quest 90 1/85
Lösung von Enchanter 44 3/85
Lösung von The Blade of Blackpool 34 10/84
The Quest 47 1/85

Action Flip and Flop 48 4/84
Impossible Mission 46 2/85
QX 9, Catastrophes 48 12/84
Save New York und Survivor 46 4/84
Tom + Zaga 48 1/85
Wizard 49 12/84

Arcade Fire Galaxy fVC 20) 37 10/84
Schnellboot — Rettung aus der grünen Hölle 109 9/84

Flipper Slamball — der ellenlange Flipper 105 9/84
Grundlagen Fantasy-Spiele 106 9/84
Sport One on One 136 8/84

Spiel des Jahres: International Soccer 46 12/84
Summer Games — Los Angeles läßt grüßen 138 8/84

Taktik Taktik- und Strategiespiele 46 3/85

So machen’s andere
Amateurfunk
Datenbank
Finanzen
Landwirt­
schaft
Lichttelefon

Funkende Computer
Klein aber oho — der VC 20
Geregelter Zahlungsverkehr
Der Computer im Kuhstall

132
136
164
156

4/84
4/84
9/84
8/84

Mit vier Baud über den Balkon 166 10/84

Software-Test
Assembler Assembler im Test (AS-64, MAE, T.EX.AS., ASSI/M) 34 1/85

Assembler im Test: Mastercode, Profimat, Profisoft, 30 2/85
Maschine 64
Assembler? Assembler! 32 1/85

Basic- GBasic 28 1/85
Erweiterung
CP/M Erste Erfahrungen mit dem CP/M-Modul 18 4/84
Compiler Basic-Programme auf Trab gebracht: Austro-Speed, 34 2/85

DFÜ
BASS, Exbasic, Petspeed
Terminal 64 — Schwer auf Draht 24 2/85

Datenbank ISM 64 — ohne Fleiß kein P/eis 117 8/84
Finanzen Lohnsteuerjahresausgleich leicht gemacht 46 10/84
Floppy Ex-DOS und Disk Doctor 48 10/84

Quickcopy — das schnelle Kopierprogramm 28 9/84
Grafik Elektronische Aquarelle: Paint Magic 114 8/84

Graphics-Basic (HES) 38 12/84
Lern­ Melodienschreiber und Musik-Synhthesizer 43 12/84
programme

Nachhilfe auf Knopfdruck (Mathematik) 26 2/85
SoftLearning — die weiche Welle des Lernens 40 1/85
Vokabeltraining mit dem Computer 39 3/85
Was bringt die Lern-Software? 42 12/84

Mathematik Nachhilfe auf Knopfdruck (Mathematik) 26 2/85
Musik Gute Noten für gute Noten: Extendend Synthesizer 24 9/84

System
Melodienschreiber und Musik-Synthesizer 43 12/84
Music-Composer — Komponieren leicht gemacht 42 9/84
Musicalc — oder was wirklich im C 64 steckt 29 9/84
Synthimat — Das Piano für den Aktenkoffer 38 9/84

Sprachen Die Turbo-Pascal-Story 40 12/84
Forth ohne Floppy (C 64 und VC 20) 50 10/84
Oxford-Pascal für den Commodore 39 12/84
Pascal — leistungsfähiger und eleganter als Basic 44 8/84
(Teil 2)
Sechs Pascal-Versionen im Vergleich 50 8/84

Tabellenkal­ Calc Result — Dreidimensionale Kalkulation 21 9/84
kulation
Textverarbei- Homeword — Textverarbeitung zu Hause 36 3/85
tung Textomat — Büroanwendung zum kleinen Preis 34 9/84

Totl-Text — Flexibilität ist Trumpf 38 3/85
Vizawrite 64 — Der C 64 wird zum PC 43 10/84

Vokabeln Vokabeltraining mit dem Computer 39 3/85

Basic
Software
Fehlersuche in Basic-Programmen (Teil 2) 67 9/84

Compiler Geschwindigkeit durch Maschinencode — so 39 2/85

DFÜ
arbeiten Compiler
Datex-P und ausländische Netzwerke 59 10/84
MaiIboxprogramm für den C 64 114 9/84

EPROM Datenbrennerei: Wie programmiere ich EPROMs? 162 9/84
Floppy 22 Read Error — Theorie und Praxis 41 3/85
Grafik Neues vom Video-Chip beim VC 20 56 8/84
Grundlagen Datenkreislauf: Die sequentieUe Datenspeicherung 63 8/84

Die index-sequentieUe Datei 54 9/84
Flußdiagramme 20 9/84
So macht man Basic-Programme schneUer (Teil 2) 44 12/84
Tips für den Umgang mit Sinnbildern (Fluß­ 14 9/84
diagrammen)
Tips für sauberes Programmieren 38 4/84

Musik Hard und Soft: eine kleine Marktübersicht 58 9/84
Klangsynthese und Synthesizertechnik 62 9/84
Markübersicht der Musikprogramme 27 9/84

Sprachen Basic ist out — Es lebe Forth 43 1/85
Pascal — leistungsfähiger und eleganter als Basic 44 8/84
Was ist Comal? 41 8/84

Textverarbei­ Von der Schreibmaschine zum Textsystem 34 3/85
tung
Tips

(AuswahIhUfe)
DOS 5.1 (Teil 2) 16 9/84

Wettbewerbe
Einzeiler Einzeiler-Wettbewerb: Die nächsten 14
Kreuz- Kreuzworträtsel selber machen
worträtsel
Unter- Formatierte Eingabe
programm Sieger mit Maske — Maskenerstellungsprogramm

157 1/85
151 12/84

156 1/85
172 10/84

Alle Beiträge sind in der Regel für den C 64, sofern nicht anders
gekennzeichnet (VC 20).
Folgende Abkürzungen wurden verwendet: LDM = Listings des Monats,
AdM = Anwendung des Monats, SB = Simons Basic.

TIPS&TRICKS
(1. Programm-Sonderheft)
Eine wahre Fundgrube an
Ideen und Programmen
für Computer-Profis und
aUe, die es werden
wollen.
BESTELLCODE: Tips&Tips

ABENTEUERSPIELE
(2. Programm-Sonderheft)
Auf mehr als 100 Seiten
viele interessante Adven­
tures, die Sie lange Zeit
fesseln werden. Mit ab­
geschlossenem Kurs zur
Programmierung eigener
Abenteuerspiele und zahl­
reichen Lösungen profes-
sioneUer Adventures.
BESTELLCODE:
Abenteuerspiele

SPIELE
(3. Programm-Sonderheft)
Heiße Listings für alle
Spiele-Fans: Sportspiele,
Schießspiele, Denkspiele,
Spielegeneratoren, Aben­
teuerspiele, Brettspiele,
Taktikspiele, Geschick­
lichkeitsspiele und eine
Marktübersicht aller in
Deutschland erhältlichen
professioneUen Spiele
bringen alles, was das
Herz der Spiele-Fans
höher schlagen läßt.
BESTELLCODE: Spiele

GRAFIK&DRUCKER
(4. Programm-Sonderheft)
Randvoll mit Informationen:
Rund 28 Listings der Spit­
zenklasse. Darunter Top-
Listings zur räumlichen
Darstellung von Körpem
aus beliebigen Betrach­
tungsrichtungen.
Weiters: Prüfsummenli­
stings, Drucker-Anwen-
dung, Basic-Erweiterung,
Hardcopy-Routinen, Zei­
chengenerator, Grundla­
gen, Tips & Tricks.
BESTELLCODE:
Grafik & Drucker

FLOPPY/DATASETTE
(S. Programm-Sonderheft)

Ahes zum Thema Massen­
speicher: So steUt man die
Datasette ein. FMON 1541:
Das Werkzeug für werden­
de Floppy-Spezialisten.
Disk-Basic 64: Fast 50 neue
Befehle für komfortablen
Floppy-Betrieb. Turbo Tape
de Luxe: Datasette 10mal
schneUer als Floppy 1541.
5fach schneUer laden mit
Hypra-Copy.
BESTELLCODE: Floppy

Am besten
gleich mitbestellen:
Die64'e^Sammelbox
Füralle Leser, die »64’er« regelmä­
ßig kaufen, sammeln oder im
Abonnement beziehen, gibt es
jetzt ein interessantes Service-An­
gebot: die 64’er-Sammelbox!
Mit dieser Sammelbox bringen
Sie nicht nur Ordnung in Ihre
wertvollen Hefte, sondern schaf­
fen sich gleichzeitig ein interes­
santes und attraktives Nachschla­
gewerk.
Übrigens: Die Sammelbox ist
nicht nur ein praktisches
Aufbewahrungsmittel: Sie J|
eignet sich auch her­
vorragend als Ge­
schenk für Freun­
de und Bekannte
zu vielen
Anlässen.

Kurs C64

2060 -
2070 -
2080 -
2090 -
2100 -
2110 -
2120 -;
2130 -;
2140 —;
2150 -;
2160 -;
2170 -;
2180 -;
2190 -Wl
2200 -
2210 -
2220 -
2230 -
2240 -;
2250 -;
2260 -;

JSR JANEIN ;
BEQ WEITER3 ;
LDA #$6C ;
LDY #$03 ;
STA START+1 ;
STY START+2 ;

SYSTEMMELDUNGEN (J/N)?

(JA/NEIN)?
JA=>WEITER
SPRUNG AUF $036C
VERBIEGEN
BEI S36C STEHT
EINE ROUTINE,
DIE DEN "RLIN"-
BEFEHL SIMULIERT

10070-
10080-
10090-;
10100-TEXT2
10110-
10120-
10130-;
10140-TEXT3
10150-
10160-
10170-;
10180-TEXT4
10190-
10200-
10210-;
10220-TEXT5
10230-
10240-
10250-;
10260-TEXT6
10270-
10280-
10290-;
10300-TEXT7
10310-
10320-
10330-
10340-
10350-
10360-;
10370-TEXT8
10380-
10390-
10400-;
10410-TEXT9
10420-
10430-;
10440-;
20000-;
20010-; UNTERPf

_. —-----

.TX

.BY

.BY

.TX

.BY

.BY

.TX

.BY

.BY

.TX

.BY

.BY

.TX

.BY

.BY

.TX

.BY

.BY

.TX

.BY

.TX

.TX

.BY

. BY

.TX

. BY

"STARTADRESSE : "
0

13,13
"FILENAME x "
0

13,13
"GERAETENR. (1-9;0=UEBERNEHMEN)
0

13,13
"MASCHINENPROGRAMM"
0

13,13
"SYSTEMMELDUNGEN"
0

13,13
"LOAD ERROR AUSGEBEN"
0

13,13,18
"*** LOADER GENERIERT ***"
13,13
"MIT 'SAVE' SPEICHERN,"
" MIT 'RUN' STARTEN"
0

13,13,18
"*** PROGRAMMENDE • ***"
13 13 0

EITER3
JSR
BNE
LDA
STA

LOAD ERROR

PRINT(TEXT5)
JANEIN ; (JA/NEIN)?
WEITER4 ; NEIN=>WEITER
#$80 ; FLAG FUER
SYSTEM+1 ; SYSTEMMELDUNGEN

AUSGEBEN (J/N)
xz/B — ;-----
2280 -;
2290 -;
2300 -WEITER4 ... PRINT(TEXT6)
2310 - JSR JANEIN ;
2320 - BEß WEITER5 ;
2330 - LDA #0 ;
2340 - STA FEHLER+1 ;
2350 -;
2360 -;
2370 -; PROGRAMMENDE

(JA/NEIN)?
NEIN=>WEITER
FEHLERMELDUNGEN
UNTERDRUECKEN

2390 -;
2400 -;
2410 -WEITER5
2420 -;
2430 -; VEKTOR
0 7101 _ . ------

FUER

PRINT(TEXT7)

BASIC-ENDE SETZEN

.TX

.BY
" (J/N)? "
0

2450 -;
2460 -;
2470 -
2480 -
2490 -
2500 -
2510 -
2520 -;
2530 -;
10000-;
10010-;

^OGRAMM FUER "J/N?"

ASCII—

LDA #<(MDFIKATOR)
STA $2D ;
LDA #>(MDFIKATOR)
STA $2E ;
JMP READY ;

TABELLEN

LOW-BYTE

HIGH-BYTE
SPRUNG INS BASIC

20030-?
20040-;
20050-JANEIN ... PRINT(TEXT9)
20060- JSR BASIN ; EINGABE HOLEN
20070- CMP #"^"
20080- BNE JANEIN1
20090- PLA ; SIEHE STAPEL-
20100- PLA ; MANIPULATION
20110-...PRINT(TEXT8)

DCAnV . TMQ DACTP,------
10030-;
10040-;
10050-TEXT1
10060-

.TX

.BY
"LOADER-MAKER
13,13

I 64"

20130-JANEIN1
20140-
20150-;
20160-.EN

CMP
RTS

#"J" ; VERGLEICH MIT "J"
; RUECKKEHR VOM
UNTERPROGRAMM

Listing 30 (Schluß)

überprüft, ob die nächste Adresse schon mit der ersten
Adresse nach der Endadresse ($475F), also $4760, über­
einstimmt (siehe $6016 - $601D). Dieser 16-Bit-Vergleich
wurde bereits im SMON vorgestellt. Bei $601E wird schließ­
lich die Schleife beendet, falls die Abbruchbedingung (C=1)
erfüllt ist

Listing 20 isteine Dekrementierschleife, die sich in derWir-
kung nicht von Listing 19 unterscheidet. Da das Dekremen-
tieren einer 16-Bit-Adresse beim 6510 langsamer und spei­
cherplatzaufwendiger ist als das Inkrementieren, ist Listing
20 weniger effektiv als Listing 19.

Grundsätzlich können Sie an den Listings 19 und 20
sehen, wie man eine Typ-b-Schleife programmiert. Diese
arbeitet jedoch nicht besonders schnell. Der Grund ist, daß
der Bereich von $3FD2 - $475F nicht restlos in ganze Sei­
ten (256-Byte-Bl0cke)aufgeteilt werden kann. Daher sollte
man sich immer überlegen, ob die Schleifendurchlaufzahl
nicht auf ganze 256-Byte-Blöcke »aufgerundet« werden
kann. In unserem Fall würde dies heißen, daß mit einer
schnelleren Schleife der exakt 8 x 256 Byte lange Bereich
$3FD2 - $47D1 invertiert wird, anstelle des »ungeraden«
Bereichs $3FD2 - $475F. An einfacheren Zahlen wollen wir
nun eine solche Schleife für ganze Seiten programmieren.
Der 32 x 256 Byte umfassende Bereich von $2000 bis
$3FFF (einschließlich) soll invertiert werden. Mit einer sol­
cher Routine könnte das gerade sichtbare Bild bei Hi-Eddi
invertiert werden.

Die einfachste Form finden Sie in Listing 21. Zuerst wird die
Anfangsadresse in $14/$15 abgelegt. Ins Y-Register kommt
der Wert 0. Dann wird der Wert invertiert und das Y-Register,
der Low-Zähler, erhöht. Ist der Wert noch nicht 0, wird die
Schleife neu durchlaufen. Andernfalls wurde gerade eine
Seite abgearbeitet. Der High-Zähler ($15) wird erhöht. Ist der
Inhalt des High-Zählers = $40, wird die Schleife abgebro­
chen. Zu bemerken ist, daß während der Schleife die Adresse
$14 unverändert 0 bleibt. Die Adresse, die invertiert wird,
ergibt sich folgendermaßen:

(Y+Inhalt von $14)+256*(lnhalt von $15)
Da wir auf die Adresse über das Prozessor-Register Y Ein­

fluß nehmen können und die Adresse $14 nicht verändert
werden muß, ist die Verarbeitungsgeschwindigkeit gegen­
über der »Normalform« (Listing 20) gestiegen. Das High-Byte
müssen wir aber weiterhin in $15 belassen. Neu führen wir
den High-Zähler X ein. Im X-Register merken wir uns, wieviele
Seiten invertiert werden. Diesen Wert verwenden wir als
Dekrementierzähler. In unserem Fall werden $20 Seiten
invertiert. Weil $20 zufälligerweise auch das High-Byte der
Anfangsadresse ($2000) ist, wird dieser Wert in Listing 22
nur einmal (6005) in den Akku geladen und dann bei 6009
ins X-Register übertragen.

Beachten Sie bitte, daß in Listing 22 die Befehle »6004
TAY« und »6009 TAX« nur bei den Werten dieses Beispiels
verwendet werden können. In der Regel sind eigene »LDX
«- oder »LDY #«-Befehle erforderlich. Wenn wir zum Bei-

96

C64 Kurs

spiel den Bereich $3FD2 - $47D1 invertieren wollen, muß
die Initialisierung so aussehen:

LDA # D2 Lx>w-Byte der ersten Adresse
STA 14
LDY #00 Index-Register
LDA #3F High-Byte der ersten Adresse
STA 15
LDX #08 High-Zähler

... Schleife wie ab 600C in Listing 22
Damit hätten wir eine Schleife, die den Bereich # 3FD2 -

$475F (siehe Listings 19 und 20) invertiert und wesentlich
schnellerals die Listings 19 und 20 arbeitet. Dawiraber »auf­
gerundet« haben, wird zusätzlich der Bereich $4760 -

programm : loader—maker 0801 0a38

0801 - Ob 08 cl 07 9e 32 30 36 Oa
0809 31 00 Q0 00 a2 00 86 9d ba
0811 - a2 49 bd lf 08 9d 3c 03 Of
0819 ca 10 f7 4c 3c 03 a9 01 f7
0821 : a8 a2 00 20 ba ff a9 00 71
0829 : a2 5c aO 03 20 bd ff a9 c5
0831 00 20 d5 ff bO 03 4c 00 Ob
0839 OO a2 ld 6c OO 03 00 00 77
0841 00 OO 00 00 00 00 00 00 42
0849 00 OO 00 00 00 00 86 2d be
0851 - 84 2e 20 44 e5 a2 03 86 09
0859 c6 bd 83 03 9d 77 02 ca 72
0861 10 f7 4c 74 a4 52 d5 Od 5d
0869 20 44 e5 a9 21 aO 09 20 d5
0871 le ab 20 fd ae 20 8a ad 9e
0879 - 20 + 7 b7 a6 14 a5 15 8e 37
0881 38 08 8d 39 08 20 cd bd 7c
0889 a2 Of a9 00 9d 3f 08 ca a7
0891 - 10 fa 8d Oe 08 a9 03 8d 38
0899 36 08 a9 a2 8d 22 08 a9 ef
08al : 42 aO 09 20 le ab a2 00 44
08a9 : 20 cf ff c9 Od fO 08 9d 9e
08bl : 3f 08 e8 eO 10 dO fl 8e b7
08b9 : 28 08 a9 50 aO 09 20 le 69
08cl : ab 20 cf ff 38 e9 30 8d lf
08c9 23 08 dO Oa a9 a6 8d 22 bO
08dl ■ 08 a9 ba 8d 23 08 a9 74 10
08d9 aO 09 20 le ab 20 lb Oa 06
08el - + 0 Oa a9 6c aO 03 8d 38 97
08e9 08 8c 39 08 a9 88 aO 09 fa
08+1 - 20 le ab 20 lb Oa dO 05 5f
08f9 a9 80 8d Oe 08 a9 9a aO 81
0901 ■ 09 20 le ab 20 lb Oa fO fc
0909 05 a9 00 8d 36 08 a9 bl 42
0911 aO 09 20 le ab a9 69 85 ba
0919 - 2d a9 08 85 2e 4c 74 a4 2e
0921 4c 4f 41 44 45 52 2d 4d 24
0929 41 4b 45 52 20 36 34 Od 4a
0931 Od 53 54 41 52 54 41 44 7a
0939 52 45 53 53 45 20 3a 20 ec
0941 ■ 00 Od Od 46 49 4c 45 4e 7d
0949 41 4d 45 20 3a 20 00 Od 45
0951 Od 47 45 52 41 45 54 45 b8
0959 : 4e 52 2e 20 28 31 2d 39 93
0961 : 3b 30 3d 55 45 42 45 52 ce
0969 4e 45 48 4d 45 4e 29 20 cl
0971 3a 20 00 Od Od 4d 41 53 44
0979 - 43 48 49 4e 45 4e 50 52 a9
0981 4+ 47 52 41 4d 4d 00 Od 8a
0989 Od 53 59 53 54 45 4d 4d 40
0991 45 4c 44 55 4e 47 45 4e 89
0999 00 Od Od 4c 4f 41 44 20 3d
09al 45 52 52 4f 52 20 20 41 b7
09a9 55 53 47 45 42 45 4e 00 aa
09bl Od Od 12 2a 2a 2a 20 4c lc
09b9 - 4f 41 44 45 52 20 47 45 30
09cl 4e 45 52 49 45 52 54 20 e8
09c9 2a 2a 2a Od Od 4d 49 54 3e
09dl 20 27 53 41 56 45 27 20 ee
09d9 53 50 45 49 43 48 45 52 ff
09el ■ 4e 2c 20 4d 49 54 20 27 fd
09e9 52 55 4e 27 20 53 54 41 cf
09fl 52 54 45 4e 00 Od Od 12 49
09f9 - 2a 2a 2a 20 50 52 4f 47 2a
OaOl 52 41 4d 4d 45 4e 44 45 53
0a09 - 20 21 20 2a 2a 2a Od Od 49
Oall 00 20 28 4a 2f 4e 29 3f fd
0al9 20 00 a9 12 aO Oa 20 le fd
0a21 ab 20 cf ff c9 5f dO Oc c3
0a29 68 68 a9 f6 aO 09 20 le le
0a31 ab 4c 74 a4 c9 4a 60 5c dd

Listing 31

$47D1 invertiert, obwohlwirdasgarnichtwollen. Esgibtnun
mehrere Möglichkeiten, dies zu verhindern:

1. Wir verwenden die Schleife aus Listing 19, müssen aber
eine deutlich höhere Arbeitsdauer hinnehmen.

2. Wir verwenden die Schleife aus Listing 22 mit obiger
Initialisierung. Dann invertiert eine Typ-a-Schleife den Rest­
bereich $4760 - $47D1 ein weiteres Mal. Damit wären -
eine Besonderheit der EOR # FF-Verknüpfung - im Restbe­
reich die alten Inhalte wiederhergestellt. Diese Lösung eignet
sich aber (fast) nur bei dieser logischen Verknüpfung und hilft
bei den meisten anderen Typ-b-Schleifen nicht weiter.

3. Dies dürfte wohl die beste Lösung sein: Wir schreiben
eine »gemischte« Schleife, die aus einer Typ-a-Schleife und
einer Typ-b-Schleife besteht. Dieses Verfahren ist immer (!)
möglich und wird von der BLTUC-Routine ($A3BF) des
Basic-Interpreters angewandt. Diese Verschiebe-Routine
zerlegt den Bereich, der verschoben werden soll, in einen
Bereich der aus 256-Byte-Blöcken besteht und in einen
Restbereich. Beide Bereichewerden dann getrenntverscho-
ben.

Folgendermaßen sieht die optimale Invertierroutine für den
Bereich $3FD2 - $475F aus:

a) Der exakt 7 Seiten umfassende Bereich 3FD2 - $46D1
wird mit einer Typ-b-Schleife wie in Listing 22 komplemen­
tiert.

b) Der Restbereich $46D2 - $475F wird mit einer Typ-a-
Schleife wie in Listing 13 komplementiert.

Wir haben nun viele verschiedene Schleifenkonstruktio­
nen in Theorie und Praxis behandelt. Was uns noch fehlt, sind
Formeln, nach denen Sie die einzelnen Parameter (zum Bei­
spiel den Startwert für X in einer Dekrementier-Schleife vom
Typ a) errechnen können. Als Zusammenfassung finden Sie
in Form von Listing 23 ein Hypra-Ass-Assemblerlisting zu
mehreren Schleifenkonstruktionen. An den Quelltext-Aus-
drücken können Sie sehen, wie einzelne Parameter errech­
net werden können.

Merke: Sofern es der Programmablauf zuläßt, sollten Sie
Inkrementierschleifen verwenden.

Bei Verschiebeschleifen ist aber oft eine Dekrementier-
schleife erforderlich.

Noch etwas zum Schleifen-Inhalt: Wenn mehrere Schleifen
einen gleichen Innenteil haben (zum Beispiel einen Invertier­
befehl), definieren Sie diesen unbedingt als Makro und nicht
als Unterprogramm! JSRs sollten Sie nur beim Aufruf von
ROM-Routinen verwenden.

Damit wäre das Thema »Schleifen« erst einmal abgeschlos­
sen. Im nächsten Abschnitt(überSelbstmodifikation) werden
wir uns aber wieder mit Schleifen auseinandersetzen.

10. Selbstmodifikation

Bevor wir uns mit dieser Programmiertechnik beschäftigen,
die zwar nicht strukturiert, aber sehr trickreich ist, soll der
Begriff geklärt werden.

Unter Modifikation versteht man »eine Änderung, Anpas­
sung«. Wenn Sie bei einem Spiel einen der vielen POKE-
Befehle, die im 64’erschon vorgestellt wurden, eingeben, so
wird dadurch das Spiel »modifiziert«. Die Änderung ist zum
Beispiel eine Erhöhung der Spielfigurenanzahl.

Selbstmodifikation bedeutet, daß ein Programm sich selbst
programmgesteuert verändert. Dies wäre der Fall, wenn im
Spielprogramm eine Passage stünde, die den POKE aus­
führt.

Wenn Sie sich für die Selbstmodifikation von Basic-
Programmen interessieren, finden Sie in der Zeitschrift
»Happy-Computer« (Ausgabe 8/85) unter der Überschrift
»Lernen Sie Ihren Commodore 64 kennen« alles, was Sie wis-

97

Kurs C64

sen müssen. Auf simulierten Direktmodus wurde im 64’er
schon mehrfach eingegangen, unter anderem in der
»Memory Map mit Wandervorschlägen«.

Wir werden uns an dieser Stelle ausschließlich mit der
Selbstmodifikation von Maschinenprogrammen befassen.
Als erstes Beispiel nehmen wir Listing 24.'

Es handelt sich um eine selbstmodifizierende Schleife, die
den Bereich $2000 - $3FFF komplementiert.

TRACEn Sie doch einmal Listing 24 mit dem SMON und
vergleichen Sie die disassemblierten Befehle mit den
ursprünglichen Werten, die Sie in Listing 24 finden. Sie wer­
den erkennen, daß die Befehle »6002 LDA 2000,Y« und
»6007 STA 2000,Y« aufgrund der INC-Befehle immer auf
andere Adressen zugreifen. Besagte INC-Befehle erhöhen
jeweils das High-Byte des Operanden. Ist dieses schon $40,
so wird die Schleife beendet. In Listing 25 sehen Sie, wie
unsere Schleife aus Listing 24 aussieht, wenn sie fertig
durchlaufen wurde. Ein weiterer Start bewirkt, daß das Pro­
gramm sich früher oder später selbst invertiert und darum
abstürzt.

Was nämlich unserem Listing 24 fehlt, damit es mehr als
einmal arbeitet, ist eine Initialisierung, diejedesmal den Aus­
gangswert ($2000) in die LDA/STA-Befehle einsetzt. In
Listing 26 sehen Sie eine solche Initialisierung (6000 -
600F). Die Adresse $FFFF (bei 6012 und 6017) ist ein
Dummy-Wert, das heißt er dient nur zum vorläufigen Ausfüllen
von Adressen und hat keine programmtechnische Bedeu­
tung. Der Dummy-Wert wird ohnehin von der Initialisierung
überschrieben; wir hätten also statt $FFFF auch $040C
oder andere verwenden können. Wichtig ist nur, daß »LDA
DummyY« 3 Byte belegt.

Ein besonderer Vorteil der Selbstmodifikation ist es, daß
selbstmodifizierende Schleifen keine Zähler in der Zeropage
benötigen, weil der Zähler praktisch im Programm selbst
liegt. In puncto Geschwindigkeit sind selbstmodifizierende
Schleifen den herkömmlichen aber oft unterlegen.

Ein weiterer Vorteil von ihnen ist aber, daß man außer mit
weniger Zeropage-Speicherplätzen auch mit weniger Regi­
stern auskommen kann (sofern man hier Einsparungen vor­
nehmen will). Listing 27 beispielsweise invertiert den
Bereich $3FD2 - $475F. X- und Y-Register sowie die Zero­
page bleiben unverändert, lediglich der Akkumulator fungiert
als Arbeitsregister.

Listing 28 kopiert den Basic-Interpreter ($A000 - $BFFF)
ins RAMan gleicher Adresse, wobei nur das X-Register ver­
wendet wird (!).

Nun wollen wir sehen, wie man bei der Entwicklung selbst­
modifizierender Programme unter Zuhilfenahme eines guten
Assemblers (Hypra-Ass) vorgehen muß.

Zunächst einmal müssen diejenigen Stellen, an denen
Modifikationen vorgenommen werden, mit Label definiert
werden. Von diesen Label aus können die Stellen im Speicher
die geändert werden sollen, leicht berechnet werden.

Befehlscode = LABEL + 0 = LABEL
Low-Operand = LABEL + 1
High-Operand = LABEL + 2

Bei 2-Byte-Befehlen wird der Parameter wie der Low-
Operand eines 3-Byte-Befehls errechnet.

Als Beispiel finden Sie in Form von Listing 29 einen Quell­
text (Assembler: Hypra-Ass) für Listing 28. Während in
Listing 28 der Ausgangswert bei 6010 »LDX 0000« und bei
6013 »STX 0000« ist, wurde im Quelltext $FFFF verwendet
(270, 280), um den Assembler zu zwingen, den Dummy-
Wert als 16-Bit-Adresse abzulegen (und nicht als Zeropage-
Adresse, wodurch der Befehl nur 2 statt 3 Byte belegen
würde).

Die Stellen, die modifiziert werden, wurden mit »MOD1«
und »MOD2« definiert. MOD1 ist zugleich der Schleifen­
beginn.

Nachdem Sie jetzt den Eingang gefunden haben, möchte
ich einige Anregungen liefern, wie Sie die Vorteile der Selbst­
modifikation nutzen können. Wir werden hier die Anwendung
nach den verschiedenen Adressierungsarten unterteilen.
a) Anwendung auf absolute Adressierung

Bei der Stapelmanipulation haben wir schon ein Verfahren
kennengelernt, den Befehl JSR (indirekt), der im normalen
6510-Befehlssatz nicht existiert, zu simulieren.

Folgendermaßen kann über Selbstmodifikation ein Unter­
programm ab ADRESSE aufgerufen werden.

LDA # <ADRESSE
STASPRUNGBEFEHL+1 ; Low-Operand
LDA # >ADRESSE
STASPRUNGBEFEHL+2;
High-Operand

SPRUNGBEFEHL
JSR $FFFF ; $FFFF=Dummy

Genauso kann man mit dem JMP-Befehl verfahren. Sogar
bei den Schieber-, Dekrementier- und Inkrementierbefehlen,
die im Gegensatz zu JMP die indirekte Adressierung nicht
haben, ist auf diese Weise eine Simulation der indirekten
Adressierung möglich.

Wird eine Sprungtabelle per Selbstmodifikation verarbei­
tet, müssen die Sprungadressen in der Tabelle nicht (!)
dekrementiert werden.
b) Anwendung auf lmmediate-Befehle

Oft müssen Werte, die berechnet werden, auf dem Stapel
oder im Speicher abgelegt und dann, wenn sie gebraucht
werden, wieder aufgenommen werden.

Ein Beispiel hierfür ist der »Basic-Start-Generator« (64’er,
7/85, Seite 74). Bei Erwähnung dieses Programms taucht
natürlich die Frage auf, ob es sich hier noch um ein selbst­
modifizierendes Programm handelt oder ob der »Basic-Start-
Generator« nicht eher zu den Programmgeneratoren zählt.
Diese Frage ist voll berechtigt. Deshalb wollen wir darauf kurz
eingehen.

Der »Basic-Start-Generator« ist eindeutig den Programm­
generatoren zuzuordnen, da der generierte Programmteil nie
angesprungen wird und somit ein eigenständiges Programm
darstellt. Das Programm modifiziert also nicht sich selbst,
sondern vielmehr ein zweites Programm, welches dann vom
Benutzer gespeichert werden kann.

Die Programmierung ist aber bei Programmgeneratoren
nicht anders als bei selbstmodifizierenden Programmen. Auf
den Unterschied Programmgeneration/Selbstmodifikation
werden wir an späterer Stelle näher eingehen.

Zunächst wollen wir aber ein praktisches Beispiel für die
Anwendung der Modifikation von lmmediate-Befehlen
behandeln. Oft steht man vor dem Problem, ein Register zu
sichern und später wieder zu holen. Im Falle des Akkumula­
tors sieht das so aus:

PHA ; Akku sichern
; weiteres Programm

PLA ; Akku wieder holen
Beim X-Register wird’s schon ungünstiger:

TXA ; X-Register in Akku
PHA ; Akku sichern
..... ; weiteres Programm

PLA ; Akku wieder holen
TAX ; Akku ins X-Register

Hier wird also zusätzlich der Akku beeinflußt. Wenn dies
vermieden werden muß, wird folgender Weg gewählt:

STX $02 ; $02 = Zwischenspeicher
; weiteres Programm

LDX $02 ; X wieder holen
Für die Sicherung des X-Registers gibt es aber noch eine
weitere Lösung, die den X-Wert im Programm ablegt und

C64 Kurs

dadurch nicht den Stapel oder einen Zwischenspeicher
außerhalb des Programms benötigt.

STX GETX+1 ; X direkt in lmmediate-Befehl
schreiben

; weiteres Programm
GETX LDX #$OO ; $00 = Dummy-Wert
Obiges Beispiel kann sehr leicht auf Akkumulator oder Y-
Register umgeschrieben werden.
Folgendermaßen kann das X-Register mit dem Akkumulator
verglichen werden:

STX VGL+1 ; in Vergleichsbefehl ablegen
(....... ; evtl, weitere Programme)

VGL CMP #$00 ; $00 = Dummy
Als letztes Beispiel für die Anwendung auf lmmediate-
Befehle soll das Y-Register zum Akkumulator addiert werden:

STY ADD+1 ; in Arithmetikbefehl ablegen
(........ ; evtl, weiteres Programm)
CLC ; Carry vor Addition

ADD ADC #$FF ; $FF = Dummy
Die Anwendungsmöglichkeiten sind hier unbegrenzt.

c) Anwendung auf komplette Befehle
Bisher haben wir nur die Parameter einzelner Befehle modi­

fiziert. Es ist selbstverständlich auch möglich, die Befehlsco­
des oder die kompletten Befehle zu modifizieren.

Wenn nur der Befehlscode geändert wird (zum Beispiel ein
ORA #- in einen EOR #-Befehl) bleiben die Parameter er­
halten. Es könnte ferner ein impliziter Befehl (SEI,CLI,CLD,
DEX,INX....) geändert werden, um beispielsweise zwischen
In- und Dekrementieren umzuschalten. Außerdem könnte bei
einem BRANCH-Befehl die Sprungbedingung (CS,CC,VS,
VC,NE,EQ) geändert werden. Aus BCS könnte also leicht
BCC werden.

Weil man hier die Opcodes der Befehle kennen muß, emp­
fehle ich das erste 64’er Extra (Ausgabe 9/85) oder die
Tabelle am Ende dieser Ausgabe.

Nun lösen wir noch das häufig auftretende Problem, wie die
Ausführung eines Unterprogramms verhindert wird. Dazu
werden wir drei Lösungen (I - III) entwickeln.

I. Die Adresse FLAG wird auf 0 gesetzt, wenn das Unter­
programm ausgeführt werden soll; auf einen anderen Wert,
wenn es nicht ausgeführt werden soll.

LDA # 0 ; Flag für Ausführung
STA FLAG ; Flag setzen
(....... ; evtl, weiteres Programm)
LDA FLAG ; Flag testen
BNE NEIN ; Flag < > 0, also nicht ausführen
JSR UNTER­
PROGRAMM ; Aufruf

NEIN weiteres Programm
Das Flag könnte auch am Beginn des Unterprogramms

abgefragt und dann (wenn FLAG < > 0) das Unterprogramm
verlassen werden.

II. Als ersten Befehl des Unterprogramms verwenden wir
NOP:
UP NOP ; Beginn des Unterprogramms

..... ; Fortsetzung des Unterprogramms
So wird die Ausführung des Unterprogramms gestattet:

LDA # $EA ; Opcode für NOP
STA UP ; an Anfang des Unterprogramms

schreiben
Und so wird sie verhindert:

LDA #$60 ; Opcode für RTS
STA UP ; an Anfang des Unterprogramms

schreiben
Wer noch einen NOP-Befehl und damit 1 Byte sparen

möchte, kann den NOP-Befehl entfallen lassen. Dann muß
auch der Opcode $EA beim Erlauben des Unterprogramms
in den Opcode des ersten Byte im Unterprogramm geändert

werden. Weil dies ziemlich mühselig ist, ziehe ich die
ursprüngliche Lösung II trotz des um 1 Byte erhöhten Spei­
cherbedarfs vor.

III. Das beste Verfahren. Wir schalten den JSR-Befehl aus,
indem wir ihn in einen BIT-Befehl abändern.
AUFRUF JSR Unterprogramm
JSR ausschalten:

LDA # $2C ; Opcode für BIT
STA AUFRUF

JSR wieder erlauben:
LDA #$20 ; Opcode für JSR
STA AUFRUF

Der JSR-Opcode kann auch mit $0C überschrieben wer­
den. $0C ist ein illegaler Opcode für ein 3-Byte-NOP und
arbeitet mit allen mir bekannten Versionen des C 64. Ob er
ebenfalls auf dem C 128 läuft, konnte ich noch nicht prüfen.

Im übrigen können mit dem soeben beschriebenen Verfah­
ren auch andere Befehle ausgeschaltet werden, zum Bei­
spiel JMP, LDA, STA und so weiter. Wenn aber der JSR-
Opcode mit $2C (BIT) überschrieben wird, ist darauf zu ach­
ten, daß bei der Ausführung des BIT-Befehls die Prozessor­
flags gesetzt werden.

Sicherlich gibt es noch mehr Problemlösungen als I - III,
aber III dürfte wohl kaum zu übertreffen sein.

d) Anwendung auf mehrere Befehle
Selbstverständlich können ganze Befehlsfolgen, also grö­

ßere Programmteile gegeneinander ausgetauscht werden.
Zu beachten ist nur, daß die Routinen, die gegeneinander
ausgetauscht werden, auch in dem Bereich, in den sie vom
Programm aus geschrieben werden, lauffähig sind. Dies ist
vor allem dann gegeben, wenn nur die relative Adressierung
verwendet wird und dadurch die Routine im Speicher frei
verschoben werden kann.
e) Anwendung auf Tabellen

Dieser Anwendungsfall würde auch zum Abschnitt über
»Tabellen« passen.

Wir bleiben hier bei der Theorie, denn die Umsetzung in ein
Programm ist nicht mehr schwer. Vielmehr soll Ihre Kreativität
nicht durch Unmengen von Beispielen gehemmt werden.

Zunächst wollen wir uns ein wenig mit dem SMON befas­
sen. Wenn Sie den Disk-Monitor einschalten, kopiert das Pro­
gramm einen Floppy-Befehl («U1 ..«) vom Ende des SMON in
einen Bereichzwischen $02A0 und $02FF. Dieser Lesebe­
fehl wird nach Bedarf modifiziert, zum Beispiel wird beim
Schreiben der »U1«- in einen »U2«-Befehl umgewandelt oder
die Angabe des einzulesenden Blocks wird geändert. Dies
wäre ein typisches Anwendungsbeispiel für Selbstmodifika­
tion, wenn der Lesebefehl nicht erst in einen Bereich außer­
halb des Programms kopiert würde (worin ich keinen Sinn
sehe), sondern am Ende des SMON (etwa bei $CFF0) bliebe
und dort modifiziert würde.

Im Hi-Eddi liegt eineTabelle, die die High-Byte der Bit-Map-
Anfangsadressen beinhaltet. Diese Tabelle wird von Hi-Eddi
bei jedem Bildwechsel umgerechnet.

Nach den vorausgegangenen zwei Beispielen an Spitzen­
programmen aus dem 64’er möchte ich noch andere Anwen­
dungsbeispiele nennen.

Besonders flexible Programme erlauben Eingriffe des
Anwenders in die Befehls- oder Text-Tabellen. So können
Bildschirmmasken editiert oder Eingabemasken erstellt wer­
den.

Ein solches Programm braucht sich nach den Modifikatio­
nen nur selbstabzuspeichern. Weil hier unter Umständen ein
erheblicher Teil des Programmschutzes verlorengeht, wer­
den dann lediglich die Tabellen gespeichert.

Ein Adventure-Generator modifiziert in der Regel auch nur
die Tabellen eines fertigen Adventureprogramms, das eigent­
liche Programm bleibt unverändert. In diesen Tabellen sind
die einzelnen Spielsituationen enthalten.

99

Kurs C64

Bei diesen (theoretischen) Fällen wollen wir es belassen.
Letztendlich muß ja der Programmierer entscheiden, inwie­
weit er die Selbstmodifikation auf Tabellen anwenden kann.
f) Das Beispielprogramm »Loader-Maker 64«

Wie aus dem Namen des Beispielprogramms schon zu ent­
nehmen ist, handelt es sich um einen Programmgenerator.
Da - wie gesagt - die Programmierung wie bei selbstmodifi­
zierenden Programmen ist, habe ich bewußt einen Pro­
grammgenerator als Beispiel gewählt.

Als Listing 31 finden Sie ein MSE-Listing, falls Sie »Loader-
Maker 64« bequem abtippen wollen und an der Anwendung
des Programms interessiert sind. Deshalb zunächst eine
Kurzbeschreibung für Anwender.

»Loader-Maker« ermöglicht es Ihnen, zu einem Programm
ein (Maschinensprache-) Ladeprogramm zu generieren, wel­
ches normal geladen und mit »RUN« gestartet wird, worauf es
das nachzuladende Programm nachlädt und startet.

Nach dem Laden von »Loader-Maker« wird dieses Pro­
gramm durch SYS 2154,START gestartet. START ist eine
Variable und wird durch die Startadresse des nachzuladen­
den Programms ausgedrückt. Soll ein Basic-Programm nach­
geladen werden, hat diese Adresse keine Bedeutung (ein­
fach SYS2154,0 eingeben). Bei einem Maschinenprogramm
handelt es sich hier um die Adresse, mit der das Programm
über »SYS« gestartet wird (49152 beim SMON $C000).

Das Programm meldet sich mit »Loader-Maker 64« und gibt
die Startadresse aus. Dazu können Sie den Filenamen einge­
ben.

Bei allen weiteren Eingaben (Gerätenummer, von der gela­
den werden soll; Maschinenprogramm j/n; Systemmeldun­
gen wie »SEARCHING FOR« ausgeben j/n; LOAD ERROR bei
Ladefehler ausgeben j/n) können Sie das Programm durch
Eingabe des Linkspfeils abbrechen. Sind alle Eingaben
gemacht worden, kommt die Meldung »LOADER GENE­
RIERT« und der Lader kann mit »SAVE« gespeichert werden.

Wenn das nachzuladende Programm von der Adresse
geladen werden soll, von der auch das Ladeprogramm selbst
eingelesen wurde, ist als Gerätenummer nur 0 einzugeben.

Befassen wir uns nun mit dem Programm, dessen Quelltext
Sie als Listing 30 finden.

Die Zeilen bis 990 stellen das Ladeprogramm in unmodifi­
zierter Form dar und enthalten viele Dummywerte, wie zum
Beispiel die (unsinnige) Startadresse 0 in Zeile 820.

Mit 1000 beginnt die Modifikationsroutine. Nach 1120
wurde die Startadresse eingelesen, die ja per SYS über­
geben wurde, und wird wieder mit dem Titel ausgegeben.
1100/1110 schreiben die Startadresse hinter den JMP-
Befehl in Zeile 820.

1150 - 1350 bringen das (noch unmodifizierte) Gerüst in
den Ausgangszustand, der dann nach Bedarf geändert wird.

1400 - 1550 holen den Filenamen, legen ihn bei NAME
(850) ab, berechnen gleich die Länge des Filenamens und
legen diese bei LAENGE (750) ab.

1600 - 1720 holen die Geräteadresse. Da diese im ASCII-
Fbrmat vorliegt, muß der ASCII-Code von 0 abgezogen wer­
den (1640/1650). Wurde 0 eingegeben, wird der LDX
DEVICE-Befehl (730) in »LDX $BA« geändert. Die Adresse
$BA enthältjeweils die Adresse, von der das letzte Programm
geladen wurde.

1750 - 1850 fragen, ob das nachzuladende Programm mit
der per SYS übermittelten Startadresse gestartet wird (Ein­
gabe »j«). Wurde »n« eingegeben, muß das Programm über
den Basic-Befehl RUN eingegeben werden. Auf eine ent­
sprechende Routine (870 - 980) wird die Startadresse
gestellt (1810 - 1840).

1900 - 1970 ermöglichen die Einstellung, ob »SEAR­
CHING..«, »LOADING« etc. ausgegeben werden sollen.

Soll im Falle eines Ladefehlers das Programm nicht gestar­
tet und stattdessen »LOAD ERROR..« ausgegeben werden,

wird dies bei 2000 - 2090 festgelegt. Wird die Fehleraus­
gabe unterdrückt, muß der BCS-Befehl (810) unschädlich
gemacht werden. Dies geschieht einfach dadurch, daß die
Sprungweite auf 0 gesetzt wird (2070/2080).

Am Programmende wird noch eine Meldung ausgegeben
(2140 - 2160) und der Vektor für das Ende des Basic-
Programms neu gesetzt, damit das generierte Ladepro­
gramm mit »SAVE« gespeichert werden kann.

10000 - 10310 enthalten nur die Text-Tabellen.
Von 15000 bis zur letzten Zeile (15170) steht ein Unterpro­

gramm, daß bei jeder J/N-Entscheidung über »JSR J,N« auf­
gerufen wird.

Es gibt den Text »(J/N)?« aus (15030 - 15050) und holt
eine Eingabe. Ist diese »J«, so ist nach dem Verlassen des
Unterprogramms (1517) das Zero-Flag gesetzt (andernfalls <
nicht).

Wurde der Linkspfeil eingegeben, wird das Programm
abgebrochen und eine entsprechende Meldung ausgege­
ben (15100- 15150).

Wie wir nun gesehen haben, handelfes sich bei »Loader-
Maker« um einen Programmgenerator. Mit zwei kleinen
Änderungen wird erjedoch zum selbstmodifizierenden Lade­
programm. Wir müssen nur die beiden »JMP READY.«-
Befehle (2240/15150) in »JMP SYSTEM« umwandeln,
wodurch am Programmende der generierte Lader ange­
sprungen würde. Schon hätten wir ein selbstmodifizierendes
Ladeprogramm.

Um Ihnen noch die Anwendung des Loader-Maker zu
erleichtern, hier zwei Eingabebeispiele:

Startadresse.......................49152
Filename.............................SMON $C000
Geräteadresse..................0
Maschinenprogramm...... j
Systemmeldungen........... j
LOAD ERROR ausgeben..j
Startadresse.......................0 (bedeutungslos)
Filename.............................HI-EDDI
Geräteadresse...................8
Maschinenprogramm....... n
Systemmeldungen............ n
LOAD ERROR ausgeben. .j

g) Verbesserungen an »Tabellen-Beispiel«
Zum Abschluß des Themas »Selbstmodifikation« wollen wir

noch kleine Verbesserungen am Programm »Tabellen-
Beispiel« erwähnen. Ich werde hier eher Anregungen geben
als fertige Änderungsvorschläge.

Zunächst soll die Adresse XSÄVE (zum Sichern des X-
Registers in Schleifen) überflüssig werden. So könnte es nun
gesichert werden:
XSV STX GETX

GETX LDX #$00 O=Dummy;hierwirdXwieder
aufgenommen.

Auch die Sprungtabelle läßt sich - viel einfacher, finde ich -
anders handhaben:

LDA J?LO,X JMLO oder JELO
STA SPRO+1
LDA J7HI,X JMHI oder JEHI
STA SPRG+2

SPRG JMP 0000
In den Tabellen JMLO/JMHI und JELO/JEHI (Low- und

High-Bytes der Sprungadressen) dürfen die Adressen aber
nicht dekrementiert werden.

Wird ein JSR (IND)-Befehl simuliert, muß nach wie vor die
Rücksprungadresse auf den Stapel gelegt werden. Dies
würde entfallen, wenn die Rücksprungadresse direkt auf
»SPRG JMP 0000« folgen und der JMP-Befehl bei SPRG in
JSR umgewandelt würde.

100

PROGRAMM SER^'CE

Bestellungen aus
anderen Ländern bitte
per Auslandspost­
anweisung! Achtung:
Nicht die eingeheftete
Zahlkarte verwenden!

Bestellungen aus der
Schweiz bitte direkt an:

Markt&Technik
Vertriebs AG, Kollerstr. 3,

CH-6300 Zug,
Tel. 0 42/41 56 56.

Bestellungen aus
Österreich bitte direkt an:
Bücherzentrum Meidling,

Schönbrunnerstr. 261,
1120 Wien,

Tel. 02 22/8331 96.
Mikrocomput-ique

Erhard Schiller
Fasangasse 21, 1030 Wien,

Tel. 02 22/78 56 61.

Programme aus den früheren Ausgaben

Sonderheft: Professionelle
Anwendungen
2 Disketten
Bestell-Nr. L6 85 S7D DM 34,90*
4 KassGtton
Bestell-Nr. L6 85 S7K DM 34,90*

Sonderheft: Top-Themen
2 Disketten
Bestell-Nr. L6 85 S6 DM 34,90*

Sonderheft: Floppy,
Datasette
Diskette
Bestell-Nr. L6 85 S5D DM 29,90*
KdSS6tt6
Bestell-Nr. L6 85 S5K DM 19,90*

Sonderheft: Grafik
Bestell-Nr. L6 85 S4A DM 29,90*

Sonderheft: Spiele
Beide Disketten in einem Paket!
Verwenden Sie nur diese Bestell-Nr.:
Bestell-Nr. L6 85 S3A DM 34,90*

Ausgabe 11/85
Bestell-Nr. L6 85 11A DM 29,90*
Commodore 64
Checksummer V3 S. 54
MSE S. 54
Koala-Painter Hardcopy S. 39
Lyrik-Maschine (AdM) s. 55
Hypra-Platos (LdM) s. 61
Profiprint s. 71
Apfelmännchen s. 80
Block Out s. 84
Spritekill s. 86
Screen-Dump s. 88
Pseudo-IRQ s. 88
INPUT-Routine s. 90
Synthetische Melodien s. 95
Hypra-Ass Ergänzung s. 96
Reassembler s. 97
Vier Betriebssysteme s. 105
Grafikwelt Teil 2 s. 149
Musikkurs Teil 10 s. 157

Sonderheft: Abenteuerspiele
Bestell-Nr. L6 85 S2 DM 34,90*

Ausgabe 12/85
Bestell-Nr. L6 85 12A DM 29,90*

Ausgabe 10/85
Leider hat sich in die Bestell-Nummer
der letzten Programm-Service-Anzeige
ein Druckfehler eingeschlichen. Die
korrigierte Bestell-Nummer lautet:

Sonderheft: Tips&Tricks
(2. ü. Auflage)
Floppy-Utilities CB 023 DM 29,90*
Hilfsprogramme CB 024 DM 29,90*

L6 85 10A DM 29,90*
Commodore 64
Check V3 Dez 64 S. 54
MSEV1.0
Floppy-Adjust S. 32
Eprom-Trans S. 42
Schreiberling S. 54
Cursus Latinus (AdM) S. 57
Hypra-Text (LdM) S. 67

Pacman S. 76 Modulator S. 46
Programm GEN S. 86 REM-Killer S. 75
SMON + S. 87 Sound Editor S. 136
Sequenzer S. 129 Startgenerator S. 74
Musik S. 129 Ausgabe 6/85
Alarmanlage
Codeschloß

S. 132
S. 132

Bestell-Nr. L6 85 06A
Commodore 64

DM 29,90*

Ausgabe 9/85 MSE S. 54
Bestell-Nr. L6 85 09A
Commodore 64
Sound-Machine
Noteneingabe
Sound Master
Ringmod
Moonlight
SYNC
Prüfungsfragen (AdM)

DM 29,90*

S. 23
S. 24-25

S. 32
S. 32
S. 33
S. 33

S. 55-58

HI-EDDI/MPS 801
Prost
E-Routine 64
GCR-HEX
HEX-GCR
Samurai
Scroll-Machine (LdM)
Crossreferenz
Heapsort
C 16
F-Plotter

S. 69
S. 76
S. 148
S. 117
S. 118
S. 72
S. 61
S. 155
S. 126

Schlüssel (LdM)
Disk Designer

S. 59-61
S. 70-72 S. 68

Blinker
Logelei-1/2
Lichtgr.
Mischsort
Block Busters
X-Gleichung
Musik-Tool

S. 73
S. 118
S. 122
S. 127
S. 159
S. 159
S. 159

Ausgabe 5/85
Bestell-Nr. L6 85 05A
Commodore 64
Checksum. Schnell
MSE Lader
MPS 802
Format-System

DM 29,90*

S. 54
S. 55
S. 31
S. 147

Ausgabe 8/85 VIC S. 175
Bestell-Nr. L6 85 08A DM 29,90* 6510 I S. 71
Commodore 64 Sternenhimmel (AdM) S. 57
Quicksort S. 142 Assemblerkurs S. 144
Procedure S. 78 Direktory-Sorter S. 77
Hypra-Save S. 79 Trick.OBJ S. 65
Uhr S. 22 3D-Movie-Maker (LdM) S. 65
NEWEA2 (AdM) s: 6o Modulator (Heft 4) S. 155
Disk-Monitor S. 84 VC 20
Maskengenerator S. 87 Checksummer S. 54
Bit-Map S. 81 Minigrafik S. 69
HiRes3-Komplett S. 159 Longscreen S. 83
Forth-Compiler (LdM) S. 63 C 16

S. 84Vocabulary S. 69 Help&Trace
Schach
Extern-Kurs

S. 74
S. 147

Ausgabe 4/85
Sprites S. 44 Bestell-Nr. L6 85 04A DM 29,90*
Hypra-Zusatz
Hi-Text 2.0

S. 25
S. 71

Ausgabe 3/85
Bestell-Nr. L6 85 03A DM 29,90*

Ausgabe 7/85
Bestell-Nr. L6 85 07A DM 29,90* Ausgabe 2/85
Commodore 64
Haushaltsbuch (AdM) S. 57

Bestell-Nr. L6 85 02A

Ausgabe 1/85

DM 29,90*

Terminalprogramm S. 152
Centron S. 80 Bestell-Nr. L6 85 01A DM 29,90*
Editor
Ein-/Ausgaberoutine

S. 151
S. 77 Ausgabe 12/84

DM 29,90*Fenster (C 16) S. 84 Bestell-Nr. CB 022
File-Compactor S. 82 Ausgabe 11/84
Hypra-Assembler (LdM) S. 66 Bestell-Nr. CB 020 DM 29,90*
lEEE-Basic S. 46
Logik S. 144 Ausgabe 10/84
Merkzettel S. 83 Bestell-Nr. CB 019 DM 29,90*

Bedeutung der Abkürzungen

*LdM = Listing des Monats
*AdM = Anwendung des Monats
*SB = Simons Basic
*GV = Grundversion
*GV> = alleSpeicherversionenkönnen

verwendet werden (einschließlich
GV)

* 3K = 3-KByte-Speichererweiterung
wird benötigt

* 8K> = Speichererweiterunggrößerals
8 KByte wird benötigt

* UPB = Unterprogrammbibliothek

* Alle Preise inklusive Mehrwertsteuer.

Bitte verwenden Sie für Ihre Bestellung nur
die eingeheftete Postscheck-Zahlkarte zur
Überweisung des Rechnungsbetrags.

Fehlende Hefte erhalten Sie
bei: Markt&Technik
Vertrieb 64'er
Hans-Pinsel-Str. 2
8013 Haar__________________

. den USA för ftren Commodwe 64

. el,

(Speichern, Löschen, Laden)

Mari<t&Technik
RUCHVERLAG

=s.^SS«==

★ Deutsches _
Auswahlmenü auf

Diskette
Deutsches

Anleitungsheft

H
inkt lJ?ita

MMhM Malwelen“ ““ **Ä-Ä

Siebrauchenmr®nuomm

Kurs C64

Damit soll das Thema »Selbstmodifikation« abgeschlossen
sein. Die vorgestellten Programmiertechniken bieten fast
unbegrenzte Möglichkeiten, hier konnte ich nur einen kleinen
Überblickgeben, welcheraberfürfortgeschrittene Program­
mierer ausreicht

11. Mehr über relative Adressierung

So wie wir schon die Tücken der Zeropage-Adressierung
zumindest teilweise beseitigen konnten, wollen wir uns mit
der in vergleichbarer Weise leistungsstarken Relativ-
Adressierung auseinandersetzen.
a) So vermeidet man JMP

Oft muß eine Stelle im Programm angesprungen werden,
ohne daß erst eine Bedingung geprüft wird. Diese Stelle ist
nicht selten weniger als 128 Byte vom Sprungbefehl entfernt,
könnte also relativ adressiert werden.

Dennoch ist es in vielen Fällen möglich, einen Branch-
Befehl - obwohl diese Befehle eine Bedingung (C=0..) prü­
fen - zu verwenden.
Beispiel:

7050 BNE 7040
7052 JMP 708A

Kann ersetzt werden durch:
7050 BNE 7040
7052 BEQ 708A

da bei 7052 in jedem Fall das Z-Flag = 0 ist (dafür sorgt der
Abfang-Befehl BNE) und somit immer verzweigt wird.

Man könnte den BEQ-Befehl als »Pseudo-Verzweigungs­
befehl« bezeichnen, da die Bedingung gar nicht überprüft
werden müßte (sie ist sowieso erfüllt).

Der Branch-Befehl übertrifft den JMP-Befehl deutlich an
Effektivität, da ein Byte weniger verbraucht wird.

Im übrigen ist auch bei
7050 BVS 7040
7052 CLV

der CLV-Befehl überflüssig, solange vor7052 der Befehl von
7050 verarbeitet wird.
b) Zugriff auf Befehle in »Umgebung«

Unter »Umgebung« wollen wir den Bereich um einen Pro­
grammteil verstehen, der über relative Adressierung ange­
sprochen werden kann. Da in diesem oft ähnliche Befehlsfol­
gen stehen wie im anderen Programm, läßt sich hier durch
gezielten Zugriff auf die »Umgebung« der Speicherplatz­
bedarf senken.

Beispielsweise stehen an vielen Stellen im Programm RTS-
Befehle. Diese werden, wenn ein Unterprogramm verlassen
werden soll, manchmal durch einen Branch-Befehl ange­
sprungen.
X1 RTS ; Ende eines im Speicher voraus­

gehenden Unterprogramms
UP ; Unterprogramm
TEST BEQ X2 ; Unterprogramm verlassen, falls Z=0

..... ; andernfalls weiteres Programm
X2 RTS ; Ende des Unterprogramms
Wenn X1 von TEST aus relativ adressiert werden kann, kön­
nen wir folgendermaßen ein Byte sparen:
X1 RTS
UP
TEST BEQ X1 ; nach X1 springen, wo auch ein RTS

steht

X2 RTS ; wird nicht mehr benötigt
Noch ein Beispiel aus dem Basic-Interpreter. Bei Adresse

$AF08 stehen zwei Befehle, die einen SYNTAX ERROR
erzeugen.

Nun gibt es im Basic-Interpreter unzählige Stellen, an
denen ein SYNTAX ERROR aufgerufen werden muß. Deshalb

steht dort nur »JMP $AF08«. Diese Stellen werden bei
Bedarf relativ adressiert, so daß nicht an jeder Stelle, an der
ein SYNTAX ERROR aufgerufen wird, der Befehl »JMP
$AF08« stehen muß.

Zur Übung könnten Sie noch versuchen, im Programm
Tabellen-Beispiel (Listing 11) die Menüroutine (insbesondere
die Routinen HOME, DOWN, UP, EXEC), in der beispiels­
weise wiederholt STX MPT steht, durch Zugriff auf »Umge­
bung« zu optimieren. Besonders hilfreich dürfte es sein,
zunächst statt Branch-Befehlen JMPs einzusetzen und dann
zu überlegen, inwieweit die JMPs durch Branches ersetzt
werden können, weil zum Beispiel nach »LDX # 0« das Z-Flag
immer gesetzt ist etc.

12. Puffer-Technik

ln der Computerei fällt der Begriff »Puffer« sehr häufig. Beim
C 64 gehören der Kassetten- und der Tastaturpuffer gemein­
hin zu den bekanntesten Puffern. Statt »Puffer« kann man
auch Zwischenspeicher sagen. Puffer dienen nämlich immer
als Zwischenspeicher.

Zunächst wollen wir klären, was zu einem Puffer gehört,
a) Was benötigt ein Puffer?

- Pufferspeicher
Selbstverständlich muß ein Puffer einen bestimmten Spei­

cherbereich belegen, in dem die Werte zwischengespei­
chert werden.

Ebenso muß die maximale Puffergröße festgelegt werden,
damit geprüft werden kann, ob sich der Puffer schon angefüllt
hat. Beim Kassettenzugriff werden vorerst alle Byte, die auf
die Kassette sollen, im Puffer (ab $033C) zwischengespei­
chert. Ist dieser Puffer voll, würde er beim nächsten Byte, das
er aufnehmen soll, überlaufen (das heißt, die maximale Puf­
fergröße überschreiten). Deshalb wird dann Byte für Byte der
Puffer entleert, indem die Bytes auf Kassette geschrieben
werden. Jedes Byte, das auf Kassette geschrieben wurde,
belegt keinen Speicher mehr im Puffer, so daß der Puffer wie­
der aufnahmefähig ist.

Damit das Programm, das den Puffer verwaltet, auch weiß,
aus welcher Adresse im Puffer es sich das nächste Byte
holen soll beziehungsweise wo im Puffer das nächste Byte
abgelegt werden soll, gibt es noch einen
- Pufferzeiger

Auf englisch heißt er »BUFFER-POINTER«, woher auch die
Abkürzung »B-P« beim Floppy-Befehl zur Manipulation des
Pufferzeigers stammt.

Dieser Pufferzeiger kann mit dem Stapelzeiger verglichen
werden. Auf keinen Fall ist er mit dem
- Puffervektor
zu verwechseln, der die Startadresse des Pufferspeichers
beinhaltet. Ein Puffervektor ist nicht unbedingt erforderlich,
erhöht aber die Flexibilität.

Damit wären die Fachausdrücke im Zusammenhang mit
Puffern geklärt.
b) Wann verwendet man Puffer?

Puffer dienen in der Regel als Zwischenspeicher, wie zum
Beispiel der Basic-Eingabepuffer (ab $0200).

Im Fall des Tastatur- oder Diskettenpuffers aber sind die
Puffer als Verbindungsstelle zwischen zwei parallel arbeiten­
den Programmen beziehungsweise Peripheriegeräten vor­
gesehen (interruptgesteuerte Tastaturabfrage/Hauptpro-
gramm im Computer, DOS/Betriebssystem des Computers).

Die Puffer sind in diesen Fällen ein Bereich, auf den zwei
(quasi-) parallel arbeitende Programme zugreifen.

Bei Computern, die ein wirklich starkes Multitasking bieten
(wie der Commodore Amiga) finden Puffer weitaus mehr Ver­
wendung als beim C 64, der nur einen quasiparallelen Ablauf
ermöglicht.

102

C64 Kurs

Daher werden bei ihm Puffer hauptsächlich im I/O-Bereich
verwendet, zum Beispiel bei Druckern, Datasette, Floppy,
Tastatur etc. (I/O = lnput/Output = Eingabe/Ausgabe).

13. Pass-Technik

a) Begriffserläuterung
Der Begriff »Pass« wurde schon mehrfach im 64’er erläutert

(unter anderem Ausgabe 7/85, Seite 51).
Am einfachsten kann der Begriff als »Schritt beim Pro-

grammmablauf« verstanden werden. Mit »Schritt« ist hier
nicht ein einzelner Befehl, sondern ein größerer Block im Pro­
gramm gemeint.

Wenn ein Programm in 3 Passes (Durchläufen) arbeitet,
heißt dies, daß 3 Schleifen hintereinander abgearbeitet wer­
den, die alle eine Teilaufgabe erfüllen, die in Verbindung mit
den anderen Passes erst eine größere Aufgabe (zum Beispiel
eine Assemblierung) ausfüllen kann. Jeder einzelne Pass
führt eine bestimmte Tätigkeit aus, die für das Funktionieren
der darauffolgenden Passes unbedingt erforderlich ist. Pass
1 wirkt also wie eine Initialisierung von Pass 2 etc.

Komplexe Programme in Schritte (Passes) zu gliedern,
gehört zu den Grundregeln des strukturierten Programmie­
rens.
b) Beispiele von Anwendungen der Pass-Technik

Besonders umfangreiche Programme wie Assembler
(Hypra-Ass), Compiler (Austro-Speed) und Interpreter
(Comal) sind immer in mehrere Passes eingeteilt.

So erfolgt bei den meisten Assemblern im ersten Pass ein
Syntax-Check und das Anlegen der Symbol-Tabelle. Erst im
zweiten Pass wird der Objektcode generiert, wobei die
bereits erstellte Symboltabelle benötigt wird.

14. Diverse Tips zur
optimalen Speichernutzung

Mit übermäßig viel RAM ist der C 64 bestimmt nicht geseg­
net. Bei vielen Anwendungen (zum Beispiel Datenverarbei­
tung) braucht man auch das letzte Byte.

Sie werden nun mehrere Tips erhalten, wie man den weni­
gen vorhandenen Speicher möglichst sparsam verwenden
kann.

Zu den speicherplatzaufwendigsten Einrichtungen gehö­
ren die Puffer. Der Kassettenpuffer beispielsweise belegt
den RAM-Bereich $033C - $03FB, auf den man somit oft
verzichten muß.

Hier wollen wir einfach den Kassettenpuffer in den Bild­
schirmspeicher (ab $0400 in Normaleinstellung) verlegen.

LDA #<$400
LDY #>$400
STA $B2
STY $B3

Da der Bildschirm beim Kassettenbetrieb ohnehin abge­
schaltet wird, fällt dies nicht auf. Nach dem Kassettenbetrieb
sollte man aber den Bildschirm unverzüglich löschen.

Ebenso kann man andere Puffer, für die es einen Vektor
gibt, problemlos nach $400verlegen, sofern sie nicht größer
als 1000 Byte sind.

Ein Problem für sich stellt das RAM ab $E000 (also unter
dem Betriebssystem!) dar. Diesen Speicher kann man nur
durch Bank-Switching nutzen, wobei man noch auf das
Betriebssystem verzichten muß, solange der $E000-Be-
reich auf RAM geschaltet ist.

Hier können wir uns zunutze machen, daß der VIC auch
ohne Ändern des Prozessor-Ports (Adresse $0001) auf die­
sen RAM-Bereichzugreifen kann. FürGrafikbilderodereinen
geänderten Zeichensatz ist der$E000-Bereich bestens
geeignet.

Oft wird der $E000-Bereich zur Ablage verschiedener
Daten verwendet, auf die nicht andauernd zugegriffen wer- '
den muß.

Man könnte aber auch das Betriebssystem ins RAM ab
$E000 kopieren und diejenigen Bereiche, in denen nicht
benötigte Routinen stehen (zum Beispiel für Kassettenbe­
trieb) einfach überschreiben. Dies ist dann sinnvoll, wenn nur
ein paar Byte im $E000-Bereich gebraucht werden. Außer­
dem ist eine gute Kenntnis des C 64-ROMs erforderlich.

Nun wollen wir noch besprechen, wie der Speicherplatz­
bedarf eines Programms niedriggehalten werden kann. Dazu
wurde im Laufe des Kurses schon einiges gesagt (Unter­
programme statt Makros verwenden etc.).

Jedes Programm benötigt eine Menge Flags. Meist belegt
ein Flag genau 1 Byte, für dessen Inhalt es oft nur zwei mögli­
che Werte gibt: einen für »JA« und einen für »NEIN«.

Für diese primitive Unterscheidungsform genügt aber auch
1/8 Byte, also ein Bit.

Wenn Sie sich das 64’er Extra in der Ausgabe 10/85 anse­
hen, werden Sie feststellen, daß fast jedes VIC-Register
mehrere Funktionen hat, weil jedem Bit eine eigene Bedeu­
tung zukommt. Würde der VIC hier statt auf Bits auf Bytes
zugreifen müssen, wäre er

1. langsamer und
2. würde der Speicherplatzaufwand für die Register sich
vervielfachen.
Man sollte also bei Flags jedem Bit eine Bedeutung geben
und nur die Bits prüfen:
BIT FLAG
Danach ist das N-Flag gesetzt, falls das 7. Bit im FLAG

gesetzt ist, und das V-Flag, falls das 6. Bit gesetzt ist. Die übri­
gen Flags erhält man über das Z-Flag im Prozessor-Status-
Register mit Hilfe des Akkus. Angenommen, man möchte
testen, ob Bit 0 im Flag gesetzt ist oder nicht, dann macht das
folgendes Programm:

LDA #01
BITFIag
BNE ??? ; (Bit gesetzt)

; (Bit nicht gesetzt)

Der Bit-Befehl ANDet den Inhalt des Akkus mit dem Inhalt der
Speicherzelle »Flag«. Möchte man Bit 1 testen, so ist der
Befehl LDA # 01 zu ersetzen durch LDA # 02 und so weiter.

Durch Selbstmodifikation können Flags bekanntlich ver­
mieden werden. Aber auch sonst bietet die Selbstmodifika­
tion die Möglichkeit, Speicherplatz zu sparen: die Steuerung
einer Sprungtabelle belegt mit Selbstmodifikation weniger
Speicher als ohne.

Auch die »Wegwerfmethode« ist sehr vorteilhaft. Pro­
grammteile werden einmal abgearbeitet und dann (zum Bei­
spiel durch Nachladen) überschrieben.

Damit hätten wir unseren Kurs abgeschlossen. Ich hoffe,
daß er Ihnen etwas Spaß gemacht hat und Sie einige interes­
sante Informationen herausholen konnten. Sie sollten sich
jedoch darüber im klaren sein, daß einige der hier vorgestell­
ten Methoden die Lesbarkeit eines Assembler-Listings ein­
schränken können. Also, verzichten Sie, wenn nicht unbe­
dingt notwendig, auf allzu trickreiche Programmierung. Falls
Sie noch Fragen oder Probleme haben (vielleicht erst wegen
diesem Artikel), dann schreiben Sie doch einfach.

(Florian Müller/tr)

103

