Kurs C64/VC 20
[
Assembler ist
1. Einige Begriffserkldrungen k - AI h - u
2. Basic kontra Assembler
3. Wie sag ich’s meinem Computer? el ne c I m Ie
4. Wie funktioniert unser Computer? .
5. Das Innenleben eines Mikroprozessors
6. Der Speicher unseres Computers: eine StraBe mit 65536 Den k om pIetten A Ssembler KUI'S in einem
Hausnummern =
7. ;\:s?;r;ft uber das Befinden unseres Computers: die Register- Stuck winschten sich viele 64’er-Leser. In
zei . w . .
8. Wie sieht ein Assemblerprogramm aus? diesem Sonderheft konnen wir diesen
9- Die absolute Adressierung Wunsch realisieren. Der Kurs soll nicht
10. Vier neue Befehle

. Die Zahlen der Assembler-Alchimisten
. Eine Zauberformel der Assembler-Alchimisten: INX, INY, INC,

DEX, DEY, DEC?

. Noch ein Alchimistischer Zahlentrick: BCD
. Wie Variable im Speicher stehen

. Ein wirkungsvolles Zweiglein: BNE

. Herr Carry und der V-Mann

. Der Computer rechnet: ADC, CLC

. Noch mehr Rechnen: SBC, SEC

. Ein Programmprojekt

. Die Branch-Befehle

. Die relative Adressierung

. Zeropage-Adressierung

. Die Vergleichsbefehle: CMP, CPX, CPY

. Zeichencodierung mit dem ASCIIl- und dem Commodore-

ASCII-Code

. Die Chrget-Routine
. Die indizierte Adressierung
. Einige Nachzugler: die Befehle BIT, CLV, NOP und TAX, TAY,

TXA, TYA

. So springen die Assembler-Alchimisten: JMP, JSR

. Alles flieBt: FlieBkommazahlen

. Die USR-Funktion

. Der harte Kern: nochmal Speicherfragen

. Die Urzelle eines Programmprojektes

. Wir stapeln

. Aktives Stapeln mit PHA, PLA, PHP, PLP, TSX und TXS
. Sein oder Nichtsein: das Rétsel des Prozessorports
. Die indirekte Adressierung

. Die ersten Kernel-Routinen

. Der C 64 und FlieBkommazahlen

. Die beiden ersten Interpreter-Routinen

. Assembler-Befehle zum Beherrschen von Bits

. Die restlichen Bit-Verschiebe-Operationen

. Schneller Joystick

. Die 16-Bit-Multiplikation

. 16-Bit-Division

. Das Programmprojekt wird fortgefiihrt

. Die ROM-Bereiche als Datenquellen

. Was sind Interrupts?

. Das Unterbrechungssystem der CPU 6510/6502

. Schlissel zur Unterbrechungsprogrammierung: CLI, SEIl, RTI,

BRK

. Woher kommen die Unterbrechungsanforderungen?
. Der VIC-II-Chip als Unterbrechungsquelie

. Die beiden ClA-Bausteine als Unterbrechungsquellen
. Der IRQ-CIA

. Der NMI-CIA

. Die Restore-Taste und ein kleines Testprogramm

. Der normale Verlauf eines IRQ

. BRK-Unterbrechung

. Was macht ein NMI?

. Eigentlich keine Unterbrechung: Reset

. Die Sache mit dem Modulstart

. Nutzung der Unterbrechungen

. Ein Programm zum VIC-II-IRQ

. Unterbrechungen mit den ClAs

. Die Timer der ClAs

. Die Echtzeituhren

unbedingt ein Buch iiber Maschinenspra-
che ersetzen, er wird lhnen jedoch helfen,
diese Sprache leichter zu verstehen.

Fingern gejuckt, wenn Sie von Wunderdingen gelesen

haben, die man per Maschinensprache mit dem
Computer machen kann. Vielleicht haben Sie sogar schon
mal nichtsahnend angefangen einzutippen, was Sie als
Assemblerlisting sahen. Doch schon nach dem ersten »CO00
LDA # $00« und RETURN weigerte sich der Computer mit
einem lapidaren »SYNTAX ERROR«. Wieso, werden Sie sich
gefragt haben, das ist doch nun die Sprache unserer
Maschine, namlich Maschinensprache, was habe ich falsch
gemacht?

Dann sind Sie sicherlich mal auf diese merkwirdigen
Basic-Programme gestoBen, in denen ein langer Wurm von
DATA-Zeilen mit einem kleinen FOR..NEXT.. POKE-Kopf
vorne und einem SYS-Schwanz hinten enthalten ist, und die
man Basic-Lader nennt. Sie haben fleiBig Zahlen eingetippt -
das Ganze hoffentlich sofort gespeichert-, vorschriftsmaBig
mit dem SYS-Befehl gestartet und auf einen scheintoten
Computer geschaut, der nur noch durch Aus- und Einschal-
ten wiederzubeleben war. Wenn Sie dann nach langer Fehler-
suche den irrtimlich eingetippten Punkt durch ein Komma
ersetzt haben (oft finden Sie auch keinen Fehler, denn beilan-
gen DATA-Sequenzen schlagt der Druckfehlerteufel mit Vor-
liebe zu), werden Sie sich gefragt haben, warum in aller Welt
dieses kleine MiBgeschick den ganzen Computer abstiirzen
1aBt. Sie merken vermutlich schon, daB mir das alles und noch
mehr (wortiber ich schamhaft schweige) passiertist. Die Kon-
sequenz war, daB ichlosging, um ein schlaues Buch zu erwer-
ben. Aber merkwurdig, damals tauchte der Begriff sMaschi-
nensprachec in keinem Titel auf. Irgendwann begriff ich, daB
Assembler und Maschinensprache irgend etwas miteinander
zu tun haben.

Aber da fing das ganze Elend erst richtig an: Da gab es
6502-, Z80-, 8080-, 8085-, 6800-Assembler, da waren
irgendwelche Schalipléane, anscheinend, wie man wo was
hinloétet- fur mich als Nichtelektroniker eine Art moderner
Kunst-, da war von CPU, Bussen, negativen Flanken, Zwei-
phasentakten die Rede.

Ich habe mich furchtbar geérgert Uber die Geheimsprache,
die es dem Uneingeweihten verwehrt, etwas zu verstehen.
Seither hat sich einiges verandert. Die Geheimnisse sind
keine mehr und ich werde Ihnen in dieser Serie ohne ver-
schliisselte Sprache die magischen Zirkel der Assembler-
Alchimisten offenbaren. Heute gibt es auch Bucher uber
»Maschinensprache auf dem Commodore 64« und es sei
ihnen angeraten, ruhig auch das eine oder andere durchzu-
arbeiten. Sie werden allerdings feststellen, daB die meisten
davon gerade dort aufhéren, wo es anféngt spannend zu wer-

v ermutlich hat es lhnen auch schon ab und zu in den

~den: bei der Benutzung von Routinen des Betriebssystems

C 64/VC 20

Kurs

und des Interpreters. Deswegen soll der Schwerpunkt dieses
Artikels woanders liegen:

Wir werden das notwendige Grundwissen tiber die Hard-
ware nur ganz knapp behandeln, dann das Vokabular des
65xx-Assemblers kennenlernen. Den Hauptteil des Artikels
verbringen wir aber mit Dingen, Uber die es kaum Literatur
gibt, ndmlich wie man fur eine Unzahl von Programmierauf-
gaben nicht nochmal das Rad erfinden muB, weil es schon
langst in unserem Computer existiert.

Bevor wir loslegen, will ich lhnen noch etwas Literatur
empfehlen:

a) Wenn wir iber Speicheraufbau, das binédre und das hexa-
dezimale Zahlensystem reden, sollten Sie die Serie »Reise
durch das Wunderland der Grafik« gelesen haben, die in der
64'erinden Folgen 1 und 2 (Ausgaben 4/84 und 5/84) diese
Themen grundlegend behandelt hat. (Auch als Buch unter
gleichnamigem Titel erschienen.)

b) Als Nachschlagebuch sehr wertvollist das Buch von Raeto
West: C 64 Computer Handbuch. Hier finden Sie auch viele
Tips und Tricks.

c) Spéter wird Ihnen dieses Buch fast unentbehrlich vorkom-
men: R. Babel, M. Krause, A. Dripke: Systemhandbuch zum
Commodore 64 (und VC 20), Miinchen 1983

Weitere Literaturempfehlungen werde ich lhnen von Fall zu
Fall geben und Sie finden sie auch in der Biicherecke. Gerade
zu unserem Computer erscheint fast jeden Monat ein neues
Buch und es ist nicht einfach, die Spreu vom Weizen zu
trennen.

1. Einige Begriffsklarungen
L

Zunéchst einmal muB ich Sie enttauschen: Ich glaube kaum,
daB Sie mit lhrem Computer je einmal in Maschinensprache
verkehren werden! Maschinensprache, das ist die einzige,
die der Computer direkt versteht, das sind vorhandene oder
nicht vorhandene Stromimpulse oder Magnetisierungszu-
sténde, die bei unserem Computer durch 8-Bit-Binérzahlen
auszudricken sind. Was wir mit unserem Computer reden
werden ist Assembler. Mit dem Computer sprechen soll hei-
Ben: Mit dem Gehirn unseres Computers, dem Prozessor, oft
auch CPU (von Central Processing Unit=Zentraler Arbeits-
baustein) genannt, verkehren, also ihm Befehle zu geben.
Solche CPUg werden bei verschiedenen Firmen hergestellt,
sind daher unterschiedlich aufgebaut und auch unterschied-
lich ansprechbar. Ein weit verbreiteter Prozessortyp ist der
6502, der das Gehirn des C 64 und auch des VC 20 ist.
Genau genommen ist das Gehirn des C 64 allerdings der
6510, ein dem 6502 fastidentischer Prozessor. Auf den kiei-
nen Unterschied werden wir noch zu sprechen kommen.
Beide (6502 und 6510) sindin 6502-Assembler zu program-
mieren und wenn wir diese Sprache sprechen, sind fir uns

alle 6502-Computer zugénglich. Commodore, Apple, Atari:

und einige andere. Nun wissen Sie aber immer noch nicht,
was Assembler eigentlichist. Das englische Wort »assemble«
heiBt auf deutsch etwa montieren, zusammenstellen. Es han-
delt sich also um eine Programmiersprache und weil sie sehr
eng am Computer orientiert ist, spricht man von einer
»maschinenorientierten« Programmsprache im Gegensatz
zu »problemorientierten« Programmsprachen wie Basic, Pas-
cal, Cobol etc., die - so sollte es jedenfalls sein - auf jedem
Computertyp gleich aussehen.

Ein Assembler ist aber noch etwas anderes, namlich ein
Software-Instrument, das einen in Assembler geschriebenen
Befehl in die Maschinensprache Ubersetzt. Man spricht vom
Vorgang des Assemblierens. Das umgekehrte leistet ein
Disassembler, welcher uns Maschinensprache durch Riick-
Ubersetzung lesen hilft. Um die Verwirrung noch etwas zu
steigern, sage ich Ihnen auch noch, was ein Monitor ist. In

bAEr,

diesem Zusammenhang ist kein Bildschirmgerat damit
gemeint, sondern ebenfalls ein Software-Instrument, das den
Einblick in die Register und Speicher des Computers
gewahrt.)

Damit Sie nun den Uberblick véllig verlieren, sei abschlie-
Bend zu diesem Sprachenwirrwarr noch erzahlt, daB
Software-Pakete, die sowohl Assembler als auch Disassem-
bler als auch Monitor enthalten und noch eine Menge anderer
brauchbarer Dinge, oft als »Assembler« angeboten werden.
Das ist ein alter Trick der Alchimisten, verschiedenen Dingen
den gleichen Namen zu geben!

2. Basic contra Assembler
.

Um das Nachfolgende deutlich zu machen, schalten Sie bitte
lhren Computer an und tippen die beiden folgenden Pro-
gramme ein, die beide genau dasselbe tun: Das obere Viertel
unseres Bildschirmes mit dem Buchstaben A fillen (beim
VC 20 ist es die obere Hilfte). Zunéchst einmal in Basic:
10 FOR 1=1024+255 TO 1024 STEP-1

20 POKE |, 1:POKE 1+54272,14

30 NEXT |

Fir den VC 20 (Grundversion und 3-KByte-Erweiterung)
ist zu setzen: anstelle von 1024 jetzt 7680, statt 54272 jetzt
30208 und statt 14 die 6. Wenn Sie mehr als die 6,5 KByte
im VC 20 haben, dann setzen Sie statt 1024 jetzt 4096, statt
54272 jetzt 34304 und ebenfalls statt 14 die 6. Das Pro-
gramm braucht 65 Byte + 7 Byte fiir die Variable 1, macht
zusammen 62 Byte Speicherplatz. Es geht ganz schnell und
wenn Sie es schaffen, kénnen Sie ja mal mitstoppen, wie
lange es von RUN bis READY braucht: zirka 4 Sekunden.

Jetzt dasselbe in Assembler. Weil wir aber noch nicht
soweit sind, erst mal als Basic-Lader, der uns das Programm
in den Speicher bringt (wir kommen dazu gleich noch).
Geben Sie also NEW ein und dann:

10 FOR I=7000 TO 7000+16

20 READ A:POKE I,A:NEXT | :END

30 DATA 160,255,162,14,169,1,153,255,
3,138,1563,255,215,136,208,244,96

Beim VC 20 geben Sie bitte statt der 14 (Zeile 30,4.Zahl)
eine 6 ein. Starten Sie den Basic-Lader mit RUN und nach
dem READY geben Sie NEW und CLR ein: wir brauchen ihn
nicht mehr. Ab Speicherstelle 7000 steht jetzt unser Assem-
blerprogramm als Maschinencode. DaB es wirklich dasselbe
tut wie das Basic-Programm erfahren Sie durch SYS 7000.
Da hatten Sie vermutlich gar keine Zeit mehr, auf die Stoppuhr
zu dricken! (5,4 Millisekunden etwa dauert das ohne die
Zeit, die der Basic-Interpreter fir den Befehl SYS benétigt).
AuBerdem braucht das Programm 17 Byte Speicherplatz.

Genau das ist es, was die Assemblerprogrammierung so
reizvoll macht: Der Speicher faBt mehr an Programm und die
Ausfliihrung des Programmes geht fast 1000mal so schnell!
Dazu kommen natdrlich noch einige andere Kriterien, denn
viele Probleme sind zum Beispiel in Basic nicht I6sbar, son-
dern nur mit dem vielseitigeren Assembler.

Unser Computer ist darauf vorbereitet, daB wir ihn in Basic
ansprechen. Er enthélt im Normalfall sofort nach dem Ein-
schalten ein stets prasentes Ubersetzungsprogramm, den
Interpreter, welcher unsere Basicanweisungen fir ihn ver-
standlich interpretiert. Auch das ist ein Unterschied zu
Assemblerprbgrammen: Ist ein solches Programm erst ein-
mal assembliert (also als Maschinensprache im Speicher vor-
handen), braucht man kein Ubersetzungsprogramm mehr.
Basic-Programme dagegen miissen bei jedem Durchlauf von
vorne bis hinten stindig Ubersetzt werden, sie laufen nicht
ohne vorhandenen Interpreter. Wie so ein Interpreter im Prin-
zip arbeitet und was ihn von einem sogenannten Compiler

5 3

Kurs

Y

C 64/VC 20

unterscheidet, kbnnen Sie im 64’er, Ausgabe 4/84 und im
64’er Sonderheft 6 (Top-Themen) im Artikel von M. Térk ber
seinen Strubs-Precompiler nachlesen.

Dort sehen Sie dann auch, daB ein Compiler zwar ein Basic-
Programm enorm beschleunigen kann, aber bei weitem nicht
an die Geschwindigkeit reiner Assemblerprogramme heran-
reicht, vom Speicherplatzbedarf ganz zu schweigen.

3. Wie sag ich’s meinem Computer?

Leider haben weder der C64 noch der VC 20 einen Assem-
bler implementiert. (Sie merken, daB jetzt von dem Software-
Paket die Rede ist!). Es gibt einen etwas miihseligen Weg,
dieses Handicap zu umgehen: den Basic-Lader. Wie ist also
der Weg, mit einem solchen Lader eigene Maschinenpro-
gramme in den Computer zu bekommen?

a) Erstellen des Assemblerprogrammes. Das zu lernen ist
die Hauptaufgabe in diesem Artikel. Das Ergebnis wird eine
Kette von Befehlen sein, zu denen zum Beispiel der Befehl
RTS gehort.

b) Jedem Befehl in Assembler entspricht in Maschinen-
sprache ein Binédrcode in einer Speicherstelle. Diese Codes
sind in Listen nachschlagbar: RTS entspricht dem Binarcode
0110 0000.

c) Der Code muB in eine Speicherstelle eingegeben wer-
den. Das geschieht von Basic aus mit dem POKE-Befehl.
Weil aber Basic keine Binédrzahlen kennt, muB der Code ins
Dezimalsystem umgerechnet werden. Gliicklicherweise sind
in den Tabellen meist schon die Codes als Dezimal- oder
wenigstens als Hexadezimalzahlen enthalten. RTS ist dezimal
96 (oder hexadezimal 60, das auch $ 60 geschrieben wer-
den kann). Man POKEt nun an die richtige Adresse den Wert
96, also zum Beispiel POKE 7016,96

d) Auf diese Weise wird Byte fiir Byte in der Programmab-
folge verfahren. Das reine POKEN geschieht dann eben in
der Form wie im oben gezeigten Basic-Lader. Mihsam, mih-
sam! Auch kann man leider nur mit dem PEEK-Kommando
nachsehen, was denn nun im Speicher steht (PEEK (7016)
gibt uns den Wert 96, entsprechend RTS).
~ Einanderer Weg ist, den in diesem Sonderheft abgedruck-

ten »SMON« abzutippen, oder sich die Leser-Service-
Diskette zu bestellen.

Assembler (das Software-Paket) gibt es in den unter-
schiedlichsten Ausfliihrungen. Es gibt beispielsweise Direkt-

Assembler, die jede Programmzeile sofort nach dem
RETURN assemblieren, aber auch 2-Pass-Assembler, bei
denen das erst nach AbschluB des Programms insgesamt
durch einen Befehl (zum Beispiel ASSEMBLE) geschieht. Bei
einigen kann man (&hnlich wie bei Basic mit REM) Kommen-
tare anfiigen, bestimmten Programmstellen Namen geben
(LABEL), ganze Programmabschnitte mit einem Merknamen
aufrufen (MAKROS) und so weiter. Was Sie fir sich bevorzu-
gen, bleibt Ihnen nattrlich tberlassen. Die in diesem Artikel
beschriebenen Programme werden am Anfang auf diese
schénen Erleichterungen verzichten, es wird sozusagen der
nackte Assembler verwendet. Was Sie aber auBer dem rei-
nen Assembler noch brauchen, ist ein Disassembler und ein
Monitor (ich habe schon erkléart, welchen ich meine), damit
wir unseren Computer (fast) immer im Griff haben.

4. Wie funktioniert unser Computer?

Weil das Programmieren in Assembler einen viel engeren
Kontakt zu technischen Einzelheiten unseres Computers
erfordert, ist es notwendig, ein wenig tber diese Innereien
und ihre Funktion zu wissen. Sehen Sie sich dazu bitte das
Bild 1 an.

Da sehen wir zunachst unseren Mikroprozessor, der meist
eine Menge Funktionen in sich vereinigt (dazu kommen wir
noch). Im Prinzip ist das unsere CPU (Zentraler Arbeitsbau-
stein). Der Prozessor steht Gber eine Reihe von Leitungen mit
dem Rest des Computers in Verbindung. Diese Leitungen
werden im Fachjargon BUSSE genannt. Da ist zunéchst ein-
mal der sogenannte AdreBbus, auf dem 16-Bit-Adressen
transportiert werden, die der Prozessor erzeugt, und die die
Herkunft oder auch das Ziel von Daten festlegen, die tGber
den Datenbus laufen. Dieser kann 8-Bit-Daten transportie-
ren, und zwar schreibend oder lesend, also zum Beispiel vom
Prozessor zum RAM (schreibend), vom RAM zum Prozessor
(lesend) und so weiter. AuBerdem gibt es danoch einen Steu-
erbus, der verschiedene Synchronisationsaufgaben durch-
fuhren hilft. Links vom Prozessor ist ein Taktgeber angedeu-
tet. Damit nichts durcheinander kommt, lauft alles im Compu-
ter sozusagen im Gleichschritt. Diese Uhr ist gewigsermaBen
der Trommler, den Sie vielleicht von den alten Ruder-
Galeeren kennen. Dann sehen Sie einen ROM-Bereich, also
einen Nur-Lese-Speicher (Read Only Memory). DaB man hier
nur herauslesen kann, ist durch den Pfeil zum Datenbus

Stromversorgung
A
/
8-Bit-Datenbus >
Mikro- @ /1
prozessor .
Ein- u. Aus- |\ : Ein- und
6502 gabebau- Ausgahe-
bzw. steine Busse
6510

ﬁ 4, Steuersignale

%m 16-Bit-AdreBbus

Bild 1. Aufbauprinzip eines 8-Bit-Computers

v

Steuerleitungen

C 64/VC 20 Kurs |

gekennzeichnet. Doppelpfeile finden wir aber beim RAM speziellen Speichers, der vom Prozessor direkt verwaltet
(Random Access Memory), einem Speicher fiir beliebigen wird. Auch damit werden wir noch oft zu tun haben. SchlieB-
Zugriff, also lesend und schreibend, und bei den Ein- und lich kommen wir zur vorhin erwihnten Ausnahme, zum Pro-
Ausgabebausteinen, die den Kontakt des Computers mitder grammzahler (PCL, PCH). Das ist ein 16-Bit-Register, das
Ubrigen Welt erlauben, also auch mit uns. Dieses Aufbauprin- sich aus zwei 8-Bit-Registern (PCL fir das LSB und PCH fiir
zip finden wir bei allen 8-Bit-Computern. das MSB) zusammensetzt und daher alle 65535 Speicher-
platze ansprechen kann. Hier ist immer die Adresse des
. . néchsten abzuarbeitenden Befehls enthalten.

5. Das Innenleben eines MIkI’OpI‘OZGSSOI‘S Ich will an dieser Stelle nicht in die Einzelheiten der Be-
——Eesssssssssssssssssssssssssssssmmmm | fehlsabarbeitung einsteigen (das kénnen Sie auch bei Rod-
ney Zaks nachlesen, wenn Sie es genau wissen wollen). Es
soll nur gesagt sein, daB sich die Verarbeitung in drei Schritte
unterteilen 14Bt:
a) den néchsten Befehl holen
b) den Befehl decodieren
c) den Befehl ausflihren

Zu c) ist noch zu sagen, daB es Befehle gibt, die der Pro-
zessor ohne weitere Angaben ausfiihren kann. Fur andere
mussen erst noch weitere Daten aus dem Speicher geholt
oder dort abgelegt werden. Deswegen brauchen die Befehle
unterschiedliche Zeiten zur Ausfuhrung. Die Zeit wird als
Anzahl von sogenannten Taktzyklen in den Befehlstabellen
angegeben. Unser Computer hat eine Taktfrequenz von rund
1 MHz, was bedeutet, daB ein Taktzyklus etwa eine Mikrose-
kunde (10—% Sekunden) dauert. Auf diese Weise wurde die
Zeitdauer fur unser kleines Demonstrationsprogramm zu
Anfang berechnet. Auch das werden Sie noch lernen.

Um es gleich nochmal zu sagen: Was hier erzihit wird, ist
nicht dazu geeignet, Elektronik-Freaks den totalen Durch-
blick zu geben. Wenn Sie das aber gerne méchten, dann
sehen Sie sich zum Beispiel die Blockschaltbilder an im »Pro-
grammer’s Reference Guide« fir den Commodore 64 auf
Seite 404 oder im »MOS-Hardware-Handbuch« auf Seite 34.
Auch Rodney Zaks' Buch »Programmierung des 6502«ist zu
empfehlen. Er hat sich viel Mihe gegeben, sich versténdlich
auszudriicken. Mir kommt es nur auf den allgemeinen Uber-
blick an. Den sollen Sie bekommen, wenn wir uns jetzt
zusammen Bild 2 betrachten.

Da sehen Sie zunéchst als Herzstlck des Prozessors, die
ALU (Arithmetik Logical Unit), also den arithmetisch-
logischen Baustein. Die ALU hat die Fahigkeit, Rechen-
operationen auszufiihren mit Daten, die sie tiber den Daten-
bus und normalerweise vom Akkumulator erhélt. Das Ergeb-
nis wird ebenfalls im Akkumulator abgelegt (daher auch der
Name: von akkumulieren, etwas ansammeln). Der Akkumula-
tor ist das Register, das uns als Programmierer am haufigsten . .
beschéftigen wird. Er ist die Sammel- aber auch die Verteiler- 6 Der Spelch_er unseres ComPUters'
stelle fur fast alle Daten, die wir hin- und herschieben wollen. eine StraBe mit 65536 Hausnummern
Sowohl der Akku (so werde ich ihn, in der Hoffnung auf Ihr EEE——————————————
wohlwollendes Verstandnis, kiinftig bezeichnen) als auch alle
anderen Register, das heiBt, die héchste Zahl, die darin bear- Dieser Artikel ist fir den VC 20 und den C 64 geschrieben.
beitet werden kann, ist 255 (bindr 1111 1111). Nahezu Den Speicheraufbau des Commodore 64 finden Sie in der
ebenso oft wie den Akku werden wir die beiden sogenannten April-Ausgabe ‘84 dieser Zeitschrift ab Seite 119. Deswegen
Index-Register X und Y benutzen. Warum man sie soll hier nur der des VC 20 gezeigt werden. Man muB beim
Index-Register nennt, werden Sie nochim Verlauf des Kurses VC 20 zwei Konfigurationen unterscheiden — sehr zum Leid-
sehen. Als nachstes zum Prozessor-Statusflaggen-Register wesen der Benutzer. In Bild 3 ist die Aufteilung gezeigt, die
(hier P genannt). Man findet darin angezeigt, ob eine Rechen- in der Grund- und der um 3 KByte erweiterten Version
operation ein negatives Ergebnis hatte, ob eine Null aufge- vorliegt.
taucht ist oder ob ein Ubertrag stattgefunden hat. Auch die- In Bild 4 sehen Sie die Speicheraufteilung, die bei mehr als
ses Register wird uns noch héufig begegnen. Das Stapelregi- 6,5 KByte eingestecktem Speicher gilltig ist.
ster, auch Stackpointer (Stapelzeiger) genannt, gibt uns Aus- Wenn Sie die VC 20 Speicherarchitekturen mit der des
kunft Uber den Fullungsgrad eines 256 Byte groBen C64 vergleichen, werden Sie eine Reihe von Unterschieden

T T

Stapel-
Register Register register : Akku

ALU |77

— E—

PCL | PCH P

7SN

8-Bit-Adressen low

8-Bit-Adressen high

Bild 2. Aufbauschema eines 6510-Prozessors

Kurs

C 64/VC 20

feststellen. Genau besehen gibt es an den wichtigen Punk-
ten aber eine Menge Gemeinsamkeiten! Der VC 20 kennt nur
Speicher-Hauser mit ErdgeschoB, im Gegensatz zum C 64,

Bildschirm]
35K
BASIC-RAM [81927
BASIC 168
3-K-RAM-Erweiterung
oder LEER
_Seite 3 4086]
ya Seite 2
Seite 1
Zero-Page
1024/
o7

Bild 3. VC 20-Speicher (Grundversion oder mit
3-KByte-Erweiterung)

8-K-
C) Erweiterung

.
N
é,v [24576
8-K-
% Erweiterung
/ 16384 /
Z Bildschirm
3-K-Erweiterung 8192 7
oder LEER
Seite 3
Seite 2 1 4608
Seite 1
/4096 7
Zero-Page 4
1024

F57

Bild 4. VC 20-Speicher (Version mit mehr als
6,5 KByte Speicherplatz)

wo manche Bereiche sogar zwei Etagen haben (soll heiBen:
mehrfach belegt sind). Durch die Eigenart des C 64 aber, im
Normalfall das Basic-ROM, die Ein- und Ausgabebausteine
und das Betriebssystem eingeschaltet zu haben, kann man

8

ihn eigentlich genauso behandeln wie einen VC 20, bei dem
die genannten ROM-Bausteine, - und zwar das Basic-ROM
—, um 8 KByte verschoben sind. Die Unterschiede der ROM-
Inhalte kénnen fast vernachlassigt werden. Wir werden im
Einzelfall darauf zu sprechen kommen. Bei den Ein- und Aus-
gabebausteinen liegen allerdings gréBere Unterschiede.

Die Seiten O bis 3 (eine Seite oder auch page enthélt 256
Byte und man z&hlt oft auch in diesen Seiten, wenn vom Spei-
cher die Rede ist), sind sich ebenfalls sehr dhnlich und die
wenigen Unterschiede werden uns ebenfalls noch beschéfti-
gen. Der Bildschirm liegt bei der Grundversion und der mitder
3-KByte-Erweiterung von 7680 bis 8191, in der Version mit
mehr als 6,5 KByte von 4096 bis 4607 und beim C 64 von
1024 bis 2047. Der Bildschirmfarbspeicher liegt - bei glei-
cher Reihenfolge - von 37888 bis 38399, beziehungsweise
von 38400 bis 38911 und schlieBlich von 55296 bis
56295. Der Basic-RAM-Bereich beginnt beim C 64 im Nor-
malfall bei 2048 und endet bei 40959. Beim VC 20 ist das
naturlich wieder von der jeweiligen Erweiterung abhéngig
(Tabelle 1).

Grundversion :Basic-Start 4096 Basic-Ende 7679
+3-K-Erweiterung : —"— 1024, —_"— 7679
+8-K-Erweiterung : —"— 4608, —"— 16383
+16-K-Erweiterung : —"— 4608, —_— 24575
+24-K-Erweiterung : —"— 4608, —"— 32767

Tabelle 1. Basic-Start und -Endadressen beim VC 20 mit
verschiedenem Speicherausbau

Dies gilt - wie Sie leicht auch aus Bild 4 sehen kénnen -
auch dann, wenn zu den 8 KByie/16 KByte/24-KByte-
Erweiterungen noch die 3-KByte-Erweiterung und die
'KByte-Erweiterung im hohen Speicherbereich (40960 bis
49151) verwendet werden. Diese letztgenannten Adressen-
bereiche sind dann gut als geschiitzte RAM-Bereiche fur
Maschinensprache zu verwenden, ebenso wie beim C 64
der Speicherabschnitt von 49152 bis 53247.

7. Auskunft liber das Befinden unseres
Computers: die Register-Anzeige

Bisher haben wir uns mit dem Innenleben unserer Computer
auseinandergesetzt und die wichtigsten Teile der Hardware
kennengelernt. Jetzt kommen wir zur Software, ndmlich zum
Assembler. Wenn Sie jetzt den SMON einschalten, meldet er
sich mit einer Registeranzeige (Bild 5).

Die angezeigten Werte sind Beispiele, wie sie beim C 64
auftreten kénnen. PC ist der Programmzahler, der immer auf
den nichsten zu holenden Befehl zeigt. (Der Wert $E147
riihrt vom SYS-Aufruf, mit dem ich meinen Assembler starte).
IRQ zeigt uns an, auf welche Adresse der sogenannte
Interrupt-Vektor gestellt ist. Das ist das Byte-Paar 788 (LSB)
und 789 (MSB). Auf den Wert $EA31 zeigt es im Normalfall.

Die nachsten acht Angaben beziehen sich auf das Prozes-
sorstatusregister, das wir zuletzt P genannt haben. Die
Bedeutung der einzelnen »Flaggen« zeigt Ihnen Bild 6.

AC ist der aktuelle Inhalt des Akkus. XR zeigt an, was im
X-Register und YR was im Y-Register enthalten ist. SP (von
Stackpointer = Stapelzeiger) gibt uns Auskunft tber den
freien Platz im Stapelregister. Damit wissen wir genau, was in
diesem Moment in unserem Computer vorgeht. So fremd
Ihnen das alles im Augenblick noch vorkommt, bald werden
Sie mit dieser Registeranzeige auf vertrautem FuB stehen.

BAET,

C64/VC 20

WW

Kurs

8. Wie sieht ein Assemblerprogramm aus?
L

Das menschliche Gehirn hat dem des Computers vieles vor-
aus. Dazu gehort beispielsweise, daB ein Mensch allerlei
Dinge gleichzeitig tun kann: gehen, sprechen, Musik héren,
lacheln, Handbewegungen ausfiihren, woméglich dabei
auch noch etwas kauen und so weiter. Ein Computer ist dazu
nicht imstande. Er erledigt eine kleine Aufgabe nach der
anderen. Weil er das so schnell macht, hat es fir uns den
Anschein, es geschéhe alles gleichzeitig. Das Maschinen-
programm ist eine Kette solcher kleiner Aufgaben. Das erste
Glied daraus, das wir kennenlernen wollen ist der Befehl
LDA.

Das bedeutet: Lade den Akkumulator. Alle Assembler-
Befehlsworte bestehen aus drei Buchstaben wie dieser hier
auch. Wir haben in der ersten Folge schon gesagt, daB einem
solchen Befehl eine 8-Bit-Codezahl entspricht. Das ist hier
$A9 oder binar 1010 1001 oder schlieBlich dezimal 169. Die
Codezahl muB in einem Speicherplatz stehen, zum Beispiel
in $1500 (entspricht dez. 5376). Assemblerlistings sehen
dann so aus:

1500 LDA

Hier tritt also die Speicherplatznummer mit einem nachfol-
genden Befehl anstelle der von Basic gewohnten Zei-
lennummer.

Es fehit noch etwas Entscheidendes: Was soll denn in den
Akku geladen werden? Genauso wie es in Basic Befehle gibt,
die fur sich alleine stehen kdnnen wie CLR oder LIST, gibt es
auch im Assembler solche Befehle. Weitaus haufiger sind
aber hier Befehle, die ein Argument erfordern (in Basic zum
Beispiel PEEK(100). Dabei ist 100 das Argument). In Assem-
bler gibt es zwei Sorten von Argumenten. Solche, die in
einem Speicherplatz unterzubringen sind und andere, die
zwei Byte brauchen. Mit dem Befehlswort (hier also LDA)
zusammen, existieren in Assembler also 1-Byte-Befehle,
2-Byte-Befehle und 3-Byte-Befehle.

PC IRQ
E147 EA31

NV-BDIZC AC XR YR SP
10110000 00 00 00 F8

Bild 5. Eine Registeranzeige

N \Y — B D J z C
Negativ- Uber- unbe- Abbruch- Dezimal- Interrupt- Zero- Qgrry-
Flagge lauf- nutzt Flagge Flagge Flagge (Null) (Uber-
Flagge Flagge trag)
Flagge

Bild 6. Das Prozessor-Status-Register P: die Flaggen

Befehis- Adressierung Byte- Code Dauer Beein-
wort anzahl HEX DEZ in flussung
Takt- von
zyklen Flaggen
LDA unmittelbar, 2 A9 169 2 N, Z
absolut 3 AD 173 4 N, Z
LDX unmittelbar 2 A2 162 2 N, Z
absolut 3 AE 174 4 N, Z
LDY unmittelbar 2 A0 160 2 N, Z
absolut 3 AC 172 4 N, Z
STA absolut 3 8D 141 4 keine
STX absolut 3 8E 142 4 keine
STY absolut 3 8C 140 4 keine
RTS implizit 1 60 96 6 keine

Bild 7. Die ersten sieben Befehle

Das Argument von LDA ist also das, was in den Akku soll.

Laden wir deshalb mal eine 1 in den Akku:
1500 LDA # $01

Wir haben jetzt einen 2-Byte-Befehl erzeugt. Was aber
bedeuten »# « und »$« dabei? $ ist leicht zu erkliren. Die
groBe Mehrzahl der Assembler nimmt bei Zahlenangaben
Hexadezimalzahlen an. Bei einigen muB man dies durch das
$-Zeichen kennzeichnen. Manche Assembler lassen auch
Binédrzahlen, Dezimalzahlen und sogar ASCIl-Zeichen als
Argumente zu. Fir jede Eingabeart steht dann vor dem Argu-
ment ein Zeichen, das die Art des Argumentes angibt, zum
Beispiel haufig »!« fir Dezimalzahlen oder »%« fir Binirzah-
len. Nun zum #-Zeichen. Es gibt viele Arten, den Akku zu
laden. Direkt mit einer Zahl - wie wir hier —, aber zum Beispiel
auch mit dem Inhalt eines anderen Speichers und so weiter.
Man spricht von der sogenannten Adressierung.

Es gibt eine ganze Menge davon und jede wird auf eindeu-
tige Weise gekennzeichnet. Wenn wir in unserem Akku eine
Zahl laden, dann ist das die »unmittelbare« Adressierung und
die kennzeichnet man mit dem #-Zeichen.

Wenn in Speicherstelle $1500 die Codezahl fiir LDA steht,
dann muB die 1 in der Speicherstelle $1501 stehen, wie es
sich fur einen 2-Byte-Befehl gehért. Wenn Sie nun die
Assemblerzeile eingegeben haben und (RETURN) driicken,
dann taucht auf dem Bildschirm eine Fehlermeldung auf (bei
vielen Assemblern). Wir miissen vorher namlich noch unse-
rem Software-Instrument sagen, jetzt zu assemblieren. Wie
das geschieht, ist auch wieder von Assembler zu Assembler
verschieden. Die meisten erwarten, daB man vor der Zeile
noch ein A eingibt (zum Beispiel bei dem C 128):

A 1500 LDA # $01

Wenn Sie jetzt (RETURN) driicken, zeigt der Bild-

schirm:

A 1500 LDA # $01

A 1502
und meistens einen blinkenden Cursor, der auf die nichste
Eingabe wartet. $ 1502 ist die nachste freie Speicherstellg,
und wenn beim Programmablauf der Programmzéhler nach
dem LDA # $01 auf $1502 deutet, dann erwartet er dort den
néchsten Befehl. Wenn dort Unsinn steht, dann stirzt der
Computer im allgemeinen ab, je nachdem, welcher Code
dann hier zuféllig enthalten ist. Wir haben ja 256 Méglichkei-
ten daftr: $00 bis $FF. Im Gegensatz zu Basic, wo man durch
den Interpreter die Méglichkeit hat, Zeilennummern zu bauen
wie man will, muB hier das Programm eine ununterbrochene
Perlenschnur von Befehlen in Speicherstelien sein. Durch
einige Befehle 14Bt sich dieses Prinzip allerdings durch-
brechen.

Damit wir die Wirkung von Befehlen sehen kénnen, greife
ich auf einen Befehl vor, der dhnlich dem STOP in Basic einen
Programmabbruch bewirkt: BRK. Die genaue Funktion soll
erst spéter erklart werden, aber wir sehen jedenfalls dann,
wenn ein Maschinenprogramm auf einen BRK-Befehl l4uft,
die Registerinhalte angezeigt. Das ist in den meisten Assem-
blern eingebaut. Wir ergénzen jetzt:

A 1502 BRK

Damit erstmal genug. Steigen Sie aus dem Assembler aus
und starten Sie das Programm. In den meisten Assemblern
geht das mit

G 1500
oder sonst von Basic aus mit SYS 5376. Jetzt werden wieder
die Register angezeigt. Der Programmzihler steht auf 1503,
im Akku steht 01, alle Flaggen auBer der Breakflagge sind
Null (die unbenutzte Flagge steht immer auf 1). Jetzt andern
wir das Argument:

A 1500 LDA # $00

A 1502 BRK

Wir starten wieder und sehen uns die Register an: Pro-
grammzéhler 1503, Akku jetzt 00, aber bei den Flaggen hat

9

Kurs

C 64/VC 20

sich etwas verandert: Die Zero-Flagge ist auf 1 gesetzt. Wir
sehen also: Diese Flagge bleibt so lange ungesetzt, solange
nicht eine Null im Akku auftaucht, erst dann wird sie 1.
Noch einmal d4ndern wir das Programm:
A 1500 LDA # $FF
A 1502 BRK
Nach erneutem Start steht das Erwartete in den Registern,
nur bei den Flaggen ist etwas Merkwurdiges passiert: Die
Vorzeichenflagge steht auf 1. Das bedeutet, im Akku soll eine
negative Zahl stehen! Nun wissen wir aber, daB $FF = dez.
255 ist. Dieses Ratsel wird uns noch eine Weile begleiten. Es
sei hier nur bemerkt, daB kein Fehler vorliegt: Immer wenn in
einer Zahl das Bit 7 gleich 1 ist, geht die Vorzeichenflagge
auf 1. Die Losung des Ratsels werden wir bei den negativen
Bin&rzahlen finden.
Wir schlieBen aus alledem: Der LDA-Befehl beeinfluBt die
Vorzeichen- und die Zeroflagge.

9. Die absolute Adressierung

STA heiBt »STore Accumulators, also »lege Akkuinhalt ab«.
Wie Sie sich denken kénnen, muB auch hier ein Argument
auftauchen, namlich wohin abgelegt werden soll. Wir legen
unseren Akkuinhalt in die erste Bildschirmspeicherstelle
(C 64:$0400, VC 20 Grundversion: $1E00, VC 20 mit Er-
~ weiterung: $1000). Unser Programm muB also so aussehen:
: A 1500 LDA # $01

A 1502 STA $0400

oder die entsprechende Adresse

(siehe oben).

Mit diesem STA-Befehl lernen wir eine neue Adressie-
rungsartkennen: die »absolute« Adressierung. Sieistdaranzu
erkennen, daB kein besonderes Merkmal verwendet wird.
Die Adresse $ 0400 ist nicht in einem Byte darstellbar, son-
dern wird aufgeteilt auf zwei Bytes. Im Speicher steht jetzt:

1500 LDA #

1501 $ O1

1502 STA

1503 $ 00 »das ist das LSB«
1504 $ 04 »das ist das MSB«

Hier liegt also ein 3-Byte-Befehl vor und die néchste freie
Speicherstelle ist $ 1505.

Vom Basic her wissen Sie, daB 1 der Bildschirmcode fir
den Buchstaben A ist und daB man jeder Bildschirmspeicher-
stelle auch eine Bildschirmfarbspeicherstelle zuordnet. Um

ein eingeschriebenes Zeichen vom Hintergrund abzuheben, -

muB man dort dann eine Farbinformation eingeben. Der Start
dieses Bildschirmspeichers liegt so:

C 64: $ D800

VC 20 (Grundv.): $9400

VC 20 (Erw. Vers.): $9600.

Der Farbe Schwarz entspricht die Codezahl 0. Wir ergén-

zen unser Programm durch:

A 1505 LDA # $00
A 1507 STA $D800 (oder entsprechender Speicher, siehe
oben). Die nichste freie Adresse ist nun $150A. Unser Pro-
gramm soll jetzt abgeschlossen sein. Damit der Computer
aber beim Programmzéhlerstand $150A nicht Unsinn vorfin-
det, muB - dhnlich wie bei END in Basic - das Programm auf
irgendeine Weise beendet werden. Das kann durch BRK
geschehen. Wir wollen aber den dritten Assembler-Befehl
kennenlernen:

RTS

Das heiBt »Return From Subroutine«, also »Rickkehr aus

Unterprogramme. In unserem Fall bewirkt das eine Rickkehr
zum Basic. Wie Sie sehen, ist das ein 1-Byte-Befehl, also
ohne Argument. Auch hier spricht man von einer Adressie-

rungsart, namlich der »impliziten«-Adressierung. Man
erkennt sie am Fehlen des Argumentes. Die Adresse ist impli-
zit, das heiBt im Befehl selbst enthalten. Dies ist ndmlich ein
Befehl, der immer an den Programmzéhler gerichtet ist. Der
Computer holt sich vom Stapel-Speicher die dort zuoberst
liegende Adresse, das ist die, bei der der Computer in ein

‘Unterprogramm gesprungen ist oder aber die, bei der der

Computer Basic verlassen hat. Wir ergéanzen also noch:
, A 150A RTS
und starten das Programm, zum Beispiel von Basic aus mit
SYS 5376. Natrlich taucht dann in der linken oberen Ecke
des Bildschirmes ein schwarzes A auf. Hier noch der
Basic-Lader:
10 FOR 1=5376 TO 5386:READ A:POKE |,A:NEXT I:END
20 DATA 169,1,141,0,4*,169,0,141,0,216 *,96.

Die mit * markierten Zahlen mussen fur den VC 20 veréan-
dert werden: Grundversion: 30 und 148.
Erweiterung: 16 und 150.

10. Vier neue Befehle

Eine Kombination von LDA mit STA ist vergleichbar mit dem
POKE-Befehl in Basic. Man kann in Assembler nicht direkt
eine Zahl in einen Speicher einschreiben, sondern muB den
Umweg Uber den Akku machen. AuBer dem Akku eignen sich
dazu aber auch das X-Register und das Y-Register. Hierfur
gibt es die Befehle LDX (lade X-Register), STX (lege X-
Register-Inhalt ab), LDY (lade Y-Register) und schlieBlich STY
(lege Y-Register-Inhalt ab). Sie kdnnen das Gbungshalber an
unserem kleinen Programm ausprobieren. An dem folgenden
Programm sehen Sie noch eine Eigenart der drei Register
(Akku, X-Register, Y-Register):

A 1500 LDA #$01

A 1502 LDX #$00

A 1504 LDY #$02

A 1506 STA $0400

A 1509 STX $D800

A 150C STY $0401

A 150F STX $D801

A 1512 STA $0402

A 1515 STX $D802

A 1518 RTS

Fur den VC 20 werden die entsprechenden Speicherstel-
len fur Bildschirm- und Bildschirmfarbspeicher eingesetzt.
Dieses Programm druckt - wie erwartet - »ABA« in die linke
obere Ecke des Bildschirms. Dabei ist das X-Register dreimal
ausgelesen worden und der Akku zweimal. Sie sehen also,
daB die Registerinhalte durch die STA-, STX-, STY-Befehle
nicht verandert werden.

Wir wollen noch etwas ausprobieren. Bisher haben wir den
LDA-Befehl nur mit der »unmittelbaren« Adressierung ken-
nengelernt. LDA, LDX, LDY kénnen auch »absolut« adressiert
werden.

A 1518 LDA $D800

Damit laden wir den Inhalt der Speicherstelle $ D800 (beim
VC 20 die anderen Adressen des Bildschirmfarbspeichers)
in den Akku. Der Inhalt ist seit $1509 eine Null. Jetzt weiter:

A 151B STA $0403
A 151E STX $D803
A 1521 RTS ,

Das muBte beim Ablauf des Programms noch einen Klam-
meraffen (@mit Bildschirmcode 0) an die vierte Stelle plazie-
ren, was Sie durch SYS 5376 leicht nachpriifen kbnnen. Sie
sehen, daB man mit diesen sieben Befehlen schon eine
Menge anfangen kann.

Wir kommen noch einmal zur Adressierung. Ich hatte Ihnen
gesagt, daB LDA # $01 ein 2-Byte-Befehl mit unmittelbarer

C64/VC 20

Kurs

Adressierung ist (ein Byte fur LDA und eines fur 01), LDA
$D80O0 ist ein 3-Byte-Befehl (ein Byte fir LDA, je eines fir
das LSB und das MSB von $D800) mit absoluter Adressie-
rung. Da werden Sie sich doch sicher schon gefragt haben,
wo die Adressierung bleibt! Wenn aber kein Byte fir die
Adressenmarkierung (zum Beispiel #) reserviertist, muB die
Kennzeichnung irgendwie anders sein. Wenn Sie einen
Disassembler zur Verfligung haben, dann sehen Sie sich
damit unser Programm an. Fast jeder Disassembler gibt
neben dem Assemblertext auch Byte fur Byte in Hexadezi-
malzahlen die Codes an. Wenn Sie nun die beiden Befehle
LDA #$01 und LDA $d800 von den Codes her untersu-
chen, sehen Sie folgendes:

1500 A9 01 LDA # $01
und

1518 AD 00 D8 LDA $D800

Offensichtlich gehort jeweils das erste angezeigte Byte zu
LDA. Sie sind aber verschieden! Wir sehen daraus, daB die
Codezahl fur einen Befehl gleich zwei Informationen enthélt:
das Befehlswort selbst (LDA) und die Adressierungsart.

Genauso wie man LDA sowohl unmittelbar als auch absolut
ausfihren kann, ist das auch mit LDX und LDY méglich. Bei
den Befehlen STA, STX, STY ist eine unmittelbare Adressie-
rung sinnlos. Fir RTS kennt man nur eine implizite Adressie-
rung. Wir fassen das alles in Bild 7 zusammen.

In den letzten Spalten von Bild 7 ist noch angegeben,
inwieweit durch diese Befehle das Prozessorstatusregister
beeinfluBt wird, so wie wir es flir den Befehl LDA schon aus-
probiert haben. In der vorletzten Spalte sehen Sie, wie lange
die Ausfiihrung eines Befehls dauert. Wenn sie fir einen Takt-
zyklus etwa eine Mikrosekunde rechnen, dann miBten Sie
jetzt ausrechnen kénnen, wie lange unser letztes Programm
zur Bearbeitung braucht: 48 Mikrosekunden. Ein vergleich-
bares Basic-Programm braucht dazu etwa hundertmal so
lange: zirka 0,05 Sekunden.

11. Die Zahlen der Assembler-Alchimisten

Ein biBchen von Assembler-Alchimie verstehen Sie jetzt
schon mit diesen sieben Befehlen. Wir wollen uns nun die
Zahlen ansehen, die hier Verwendung finden: das Binér-
system und das Hexadezimalsystem.

Die einzigen Ziffern, die unser Computer kennt, sind O und
1. Sie stehen fir »Strom an« oder »Strom aus«, oder fir »keine
magnetische Erregung« oder »magnetische Erregung«. Des-
halb ist es flir uns als angehende Assembler-Alchimisten von
groBer Bedeutung - wir arbeiten ja ganz eng an der Hardware
- dieses bindre Zahlensystem handhaben zu kénnen. Das
Hexadezimalsystem kennt der Computer eigentlich gar nicht.
Wir verwenden es deswegen, weil es in einem besonders
engen Zusammenhang mit Bindrzahlen und dem Aufbau
unseres Computers steht: Die gréBte einstellige Hex-Zahl ist
$F, das entspricht genau 1111 im Binérsystem, also dem
maximalen Fullungsgrad eines halben Bytes, das Nibble
genannt wird. Ein ganzes Byte kann maximal $FF enthalten
(bindr 1111 1111) und der gesamte Speicheradressenbereich
unseres Computers geht bis $FFFF (dezimal 65535). Eine
einstellige Hex-Zahl paBt also in ein Nibble, eine zweistellige
in ein Byte undeine dreistellige oder vierstellige in zwei Byte,
weshalb man solche Hex-Adressen auch recht leicht in das
LSB und das MSB (auch Low- und High-Byte genannt) auftei-
len kann:

$ D8 00
MSB LSB

Rechnen werden wir mit Hexadezimalzahlen nicht, dazu
benutzen wir dann das Dezimalsystem oder — wenn es sich
um computerinterne Vorgénge handelt - das Binérsystem.

Das Rechnen mit Binarzahlen funktioniert genauso wie das
mit Dezimalzahlen. Es gilt also
0+0=0
0+1=1
1+0=1
1+1=10
wobei bindr 10 gleich dezimal 2 ist. Als Beispiel kénnen wir
mal 2+1=3 im Binarsystem rechnen:
10 entspricht dez. 2
+01 entspricht dez. 1

11, was ja dezimal 3 ergibt.
Die Addition erfolgt also spaltenweise wie beim gewohnten
dezimalen Addieren. Auch mit dem Ubertrag l4uft es wie im
dezimalen. Beispiel: 2+2=4:
10 entspricht dez. 2
+10 entspricht dez. 2

100, was dezimal eine 4 ergibt.
In der zweiten Spalte wurde nach der Regel verfahren:
1+1=10. Rechnen wir noch 3+3=6:
11 entspricht dez. 3
+11 entspricht dez. 3

110, was dezimal eine 6 ergibt.

In der ersten Spalte wurde gerechnet 1+1=10, wobei nach
dem alten Motto: O hin, 1 im Sinn die O unter den Strich
gesetzt wurde. In der zweiten Spalte wird dann so verfahren:
14+1+1 (dasistdie 1, die wir »im Sinn<hatten) =11. Ich meine,
daB Sie ohne Probleme die folgenden Ubungsaufgaben
I6sen und dann jeweils dezimal das Ergebnis nachpriifen
kénnen: 10+5, 7+1, 16+16, 240+16, 62+65.

12. Eine Zauberformel der Assembler-
Alchimisten:
INX, INY, INC, DEX, DEY, DEC?

Wir wissen ja schon, daB man diese »Zauberformeln« entzau-
bern kann. INX heiBt einfach »INCrement X-Register«, also
Inhalt des X-Registers um 1 erhéhen. Es wird Ihnen sicher
einleuchten, daB INY dasselbe mit dem Y-Register tut. Etwas
weniger deutlich ist das bei INC. Das bedeutet »INCrement
memorys, also zdhle zum Inhalt einer Speicherstelle eins
dazu. INX und INY enthalten alles, was dem Computer zu
sagen ist, sind also offensichtlich 1-Byte-Befehle mit der in
der letzten Folge schon kennengelernten impliziten Adres-
sierung. Bei INC muB dem Computer noch gesagt werden,
welche Speicherstelle er um 1 erhéhen soll. Es gehért also
noch eine Adresse dazu. Das laBt diesen Befehl im allgemei-
nen zu einem 3-Byte-Befehl werden.

Das Umgekehrte leisten die Befehle DEX, DEY und DEC.
Sie bedeuten namlich »\DECrement X-Registers, also »zéhle
das X-Register um eins herunter«, beziehungsweise das
Y-Register oder - bei DEC - die angegebene Speicherstelle.
Fur die Adressierungsart und die Anzahl Bytes pro Befehl gilt
hier das gleiche wie fir die INX...-Befehle. Sehen wir uns das
an einem kleinen Beispiel an:

1500 LDA #00
1502 LDX # 01
1504 STA D800
1507 STX 0400
150A INX
150B STA D801
150E STX 0401
1511 DEX

1512 STA D802
15615 STX 0402
1518 BRK

1

Kurs

C 64/VC 20

Wenn Sie das kleine Programm mit G 1500 starten, dann
sollten Sie in der linken oberen Ecke des Bildschirms ABA in
schwarzer Schrift stehen haben. Was ist geschehen? Wir
habendeninhaltdes Akkus (=0, also Farbcode fiirschwarz)in
das Bildschirm-Farbregister geschrieben (#D800), dann
den Inhalt des X-Registers (1 = POKE-Code fir den Buch-
staben A) in die erste Bildschirm-Speicherzelle (# 0400).
AnschlieBend wurde das X-Register um 1 erhéht (2 = POKE-
Code fir den Buchstaben B) und dieser Inhalt in die zweite
Bildschirmzelle geschrieben. AuBerdem muBte natirlich
auch dieser Bildschirm-Farbspeicherplatz mit dem Farbcode
0 belegt werden. Durch DEX wurde das X-Register wieder
heruntergezahlt, somit wieder ein A erzeugt und in die dritte
Bildschirmstelle gedruckt.

Sie haben sicher schon bemerkt, daB man auf diese Weise
Ablaufe mitzahlen kann. Soll zum Beispiel ein Vorgang 20 mal
wiederholt werden, dann packt man ins X-Register (oder ins
Y-Register oder in eine andere Speicherstelle) den Anfangs-
wert O, laBt den Computer eine Arbeit ausfiihren, erhdht das
entsprechende Register oder die Speicherzelle um 1 mitINX,
INY oder INC, priift dann, ob dieser Inhalt schon 20 geworden
ist und so weiter. Wie man diese Prifung vornimmt, dazu
kommen wir erst spater bei den BRANCH-Befehlen. Das ist
also dhnlich wie in Basic bei den FOR...NEXT-Schleifen: Dort
wird eine Variable als Z&hler verwendet, hier ein Register
(oder eine Speicherstelle). Ebenso wie in Basic bei diesen
Schleifen kann man auch hier riickwarts zéhlen mit DEX, DEY
oder DEC. Das hat oft gewisse Vorzlige, was uns aber noch
nicht kiimmern soll.

Wenn wir diese Befehle als Zahler verwenden, sollten wir
im Auge behalten, daB eine Speicherstelle (auch ein X- oder
Y-Register) Zahlen nur von O bis 255 enthalten kann. Die
héchste 8-Bit-Zahl ist ja:

dez. 255 = bin. 1111 1111
+1 1

ergibt: (1) 0000 0000
Wenn wir also Gber 255 hinauszéhlen, ergibt sich wieder
0 und so weiter, weil ein Uberlauf stattgefunden hat. Das 9.Bit
paBt nicht mehr in das Byte hinein. Um nochmal genau sehen
zu kénnen, was unser Computer da tut, probieren Sie einmal
aus:
1500 LDA #01
1502 BRK
Das soll uns die Register zunachst mal im Ausgangszu-
stand zeigen. Nach G 1500 werden sie angezeigt:
AC XR YR N V-BDI ZC
01 00 00 0 0110000
Im Akku steht jetzt die dort eingeladene 1. Nun wollen wir
das X-Register laden mit 255 (also $FF). Dazu &ndern wir das
. Programm:
1502 LDX #FF
1504 BRK
Nach erneutem G 1500 zeigen die Register:
AC XR YR N V-BDI ZC
01 FF 00 1 0110000
Im X-Register steht nun die Zahl $FF. Bei den Flaggen hat
~sich die N-Flagge (die negative Zahlen anzeigen soll) auf 1
geschaltet!
Nun wollen wir das X-Register Gber 255 hinauszéhlen. Wir
verandern das Programm nochmal;
1 1504 INX
1505 BRK
Der Start mit G 1500 liefert uns die folgende Register-
anzeige:
AC XR YR N V-BDI zZzC
01 00 00 0 0110010
Wie erwartet, ist der Uberlauf des X-Registers eingetreten:
Esistjetzt Null. Die N-Flagge hatihren gewohnten Wert O wie-

12

der angenommen und die Z-Flagge, die uns anzeigt, ob die
letzte Operation eine Null erzeugt hat, ist jetzt gesetzt. Bei
weiterem Hochzahlen verschwindet die Z-Flagge wieder:
1505 INX
1506 BRK
G 1500 liefert den Registerinhalt:
AC XR YR N V-BDI zC
01 01 00 0O 0110000

Das gleiche passiert bei Verwendung des Y-Registers als
Zahler, wie Sie leicht durch Austauschen aller auf X bezoge-
nen Befehle feststellen kdnnen. Sehr nett ist es, diesen
Befehlsablauf einmal fiir den INC-Befehl auf die Speicher-
stelle $0400 (Bildschirmspeicher links oben) bezogen
ablaufen zu lassen. Wenn man darauf achtet, daB kein Hoch-
scrollen des Bildschirms eintritt, kann man das Ergebnis
auBer in den Registern auch noch als Zeichen auf dem Bild-
schirm verfolgen. Der Beginn der Befehlsequenz ist dann
sinnvollerweise:

1500 LDA #FF
1502 STA 0400
1505 BRK

Im folgenden setzt man dann anstelle von INX immer INC
0400 ein.

Was passiert beim Herunterzéhlen unter Null? Sie kdnnen
das mit der gezeigten Befehlskette leicht verfolgen, indem
Sie immer statt INX jetzt DEX setzen und die Register nicht
mit $FF, sondern mit 01 laden. Es zeigt sich, daB beim Herab-
ziahlen nach der Null wieder 255 (=$FF) im Register zu fin-
den ist. Die Reaktion der N- und der Z-Flagge auf den jeweili-
gen Registerinhalt ist die gleiche wie beim Hochzéhien.

Es ist uns nun deutlich, daB diese sechs Befehle die N-
Flagge und die Z-Flagge beeinflussen kénnen. Diese Tatsa-
che wird spéter noch eine groBe Rolle spielen, wenn es um
die bereits erwéhnte Schleifenkontrolle geht.

13. Noch ein alchimistischer Zahlentrick:
BCD

Die Assembler-Alchimisten haben noch viel mehr Arten der
Zahlen- und Zeichendarstellung auf Lager. Eine davon ist die
Codierung als BCD-Zahlen. BCD kommt vom englischen
»binary coded dezimal, was bedeutet: Binér codierte Dezi-
malzahlen.

Zwischendurch mdchte ich noch eine Bemerkung loswer-
den, die Sie als Trost auffassen sollen: Auch wenn wir spater
andere Zahlendarstellungen kennenlernen werden, es wird
nicht so schwierig! Sogar so komplette Idioten wie Computer
verstehen das, obwohl man ihnen alles haarklein vorkauen
muB.

Wenden wir uns nun wieder den einfachen BCD-Zahlen zu.
Alle Zahlen von O bis 9 lassen sich bindr mit nur 4 Bit
ausdriicken:

Binar
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

Die weiteren Werte 1010 bis 1111 werden in der BCD-
Codierung nicht benutzt. Liegt nun eine Dezimalzahl (zum
Beispiel 12) vor, dann wird jede Stelle dieser Zahl (also die 1

Dezimal

©CoONOOARWN—=2O

C 64/VC 20

Kurs

und die 2) getrennt binér codiert. In unserem Beispiel mit der
12 wére das dann 0001 fir die 1 und 0010 fur die 2. Somit
ist die 12 im BCD-Code 0001 0010. Jede Ziffer erhélt so ihr
Nibble. Eine Zahl im BCD-Format hat deswegen keine feste
Anzahl von Bytes, sondern die Byte-Zahl hangt von der
Anzahl der Stellen ab. Die Zahl 1984 beispielsweise braucht
2 Byte: 0001 1001 1000 0100.

Schwierig gestaltet sich das Rechnen mit diesen Zahlen
wegen der sechs unbenutzten Codes. Aber auch da habe ich
einen Trost flr Sie: Wir werden damit nicht rechnen. Wozu
das ganze dann, werden Sie sich fragen? Der Grund fiir das
alles ist, daB BCD-Zahlen im Gegensatz zu den Zahlen mit
festem Format (die sonst verwendet werden) so eingegeben

und verarbeitet werden kénnen, wie sie vorliegen. Das ist im

kaufménnischen Bereich manchmal notwendig, wo eben
1000 mal 0,1 Pfennige 1 Mark ergeben und Fehler unzulissig
sind. Sollten Sie also vor dem Problem stehen, mit BCD-
Zahlen rechnen zu mussen, gramen Sie sich nicht: Unser
Prozessor kennt den Dezimalmodus. Er ist dann eingeschal-
tet, wenn die Dezimal-Flagge auf 1 gesetzt ist.

Damit sollen Sie dann auch noch gleich zwei neue Befehle
kennenlernen: SED und CLD. Der erstere hat nichts mit Par-
teien zu tun, sondern ist die Abkurzung fir »SEt Dezimal-
flag¢, also setze die Dezimalflagge. So schalten Sie den
Dezimal-Modus ein. Wie Sie sicher schon messerscharf
geschlossen haben, heiBt CLD »ClLear Dezimal-flag«, also
setze die Dezimalflagge auf Null, wodurch dieser Modus wie-
der auszuschalten ist.

Wichtig! Wenn Sie argwohnen, daB in einem Programm
irgendwann mal die Dezimal-Flagge gesetzt sein kénnte,
dann gehen Sie auf Nummer sicher und schieben Sie vor eine
Rechenoperation, die nicht im Dezimalmodus laufen soll; ein
CLD.

Beide Befehle sind 1-Byte-Befehle mit implizierter Adres-
sierung. Sie beeinflussen lediglich die Dezimalflagge.

Wie schon mal betont: Der Computer ist strondumm. Er

kann nicht einmal auf normale Weise voneinander abziehen!
Deswegen geht er den komplizierten Weg: Er addiert eine
negative Zahl. Nur: Wie sehen negative Binarzahlen aus? Wir
werden diese Frage in drei Etappen beantworten.
a) Man kénnte eine Flagge setzen, die 1 ist bei negativen und
0 bei positiven Zahlen. Bei einigen FlieBkommazahlen wird
das auch so gemacht. Hier aber setzt man die Flagge direkt
in die Zahl ein: Bit 7 jeder Zahl ist jetzt ein Vorzeichenmerk-
mal. Wenn dieses Bit O ist, handelt es sich um eine positive,
wenn es 1 ist, um eine negative Zahl. Auf diese Weise ist also
+1 wie bisher 0000 0001, wohingegen —1 jetzt 1000 0001
hieBe. Damit wird allerdings der Zahlenbereich, der durch ein
Byte auszudriicken ist, verschoben. 255=bindr 1111 1111
kann so nicht mehr verwendet werden. Die gréBte Zahl, die
jetztausgedriickt werden kann, ist 0111 1111 = dezimal 127.
Die kleinste Zahl ist dann 1111 1111 = —127. Probieren wir
mal aus, wie sich damit rechnen laBt:

+10 0000 1010
—6 1000 0110
ergibt 1001 0000 = —16,

was offensichtlich falsch ist, denn nach Adam Riese sollte
+4 herauskommen. So kann man also nicht rechnen!
Mannenntdiese Artder Zahlendarstellung Ubrigens »signed
binary«-Format, also in Deutsch: markierte Bindrzahlen.
b) Der néchste Schritt ist das sogenannte Einerkomplement.
Dabei tritt fiir die positiven Zahlen keine Anderung ein. Die
negativen entstehen aus den positiven durch Komplement-
bildung, das heiBt jedes Bit der positiven Zahl wird in sein
Gegenteil verkehrt, wie es das folgende Beispiel zeigen soll:
0000 1100 ist+12,
dann ist das Einerkomplement:
1111 0011 =—12,

:

Interessanterweise taucht hier auch wieder das Merkmal
der »signed binary«-Zahlen auf: die 1 in Bit 7 bei negativen
Zahlen. Beschrankt man sich auf den Zahlenbereich, der fiir
die »signed binary«-Zahlen guiltig war, dann hétten wir jetzt
beide Darstellungsweisen miteinander vereint. Nun miissen
wir naturlich noch feststellen, ob man so auch rechnen kann.

+8 0000 1000
—6 1111 1001
in Einerkomplementdarsteliung

ergibt (1) 0000 0001

was 1 mit einem Ubertrag ergébe, jedenfalls nicht 2, wie es
sich gehért. Also ist auch die Einerkomplementdarstellung
noch nicht das Gelbe vom Ei.
c) Ich will Sie nicht langer auf die Folter spannen: Wenn man
zum Einerkomplement einer Zahl noch 1 dazuzihlt, erhalt
man das Zweierkomplement. Und genauso werden negative
Zahlen in unserem Computer gehandhabt. Die positiven Zah-
len bleiben unveréndert. Von den negativen bildet man das
Zweierkomplement wie zum Beispiel hier mit der Zahl —12:
12 0000 1100 normale Binardarstellung
—121111 0011 Einerkomplement
+1 0000 0001 addieren

—12 1111 0100 Zweierkomplement

Jetzt wollen wir auch diese Zahlenart ausgiebig testen:
Wir rechnen nochmal 8-6:
+8 0000 1000
—6 1111 1010 das ist —6 in der
Zweierkomplementdarstellung.

ergibt
(1) 0000 0010
also 2 mit einem Ubertrag, der ignoriert wird. Das Ergebnis
ist richtig. Wenn bei einer solchen Rechnung eine negative
Zahl herauskommt, ist sie nicht leicht zu erkennen. In solchen
Féllen kehrt man das Vorzeichen um, indem man das Zweier-
komplement berechnet. Das machen wir mal am Beispiel
5—6:
+5 0000 0101
—6 1111 1010 das ist wieder unser Zweier-
komplement von 6, also —6

ergibt1111 1111
das ist —1 in der Zweierkomplementdarstellung. Zur Kon-
trolle nun die Vorzeichenumkehr durch Umrechnen ins Zwei-

erkomplement:
Einerkomplement davon 0000 0000
plus 1 0000 0001
ergibt 0000 0001

also wie erwartet +1.

Auf diese Weise rechnet unser Computer mit negativen
Zahlen. Negative ganze Zahlen speichert er im Zweierkomp-
lement-Format. Auch wenn wir nun etwas vorgreifen miissen,
wollen wir uns das ansehen. Dazu schalten Sie am besten
erst einmal den Computer aus und laden dann den SMON
beziehungsweise ihren Assembler. Dann bauen wir ein klei-
nes Basic-Programm:

10 A%=—1i2
20 END

14. Wie Variable im Speicher stehen
L]

Noch nicht RUN eingeben! Zuerst schalten Sie den Maschi-
nensprachmonitor ein und wir sehen uns das Programm so
an, wie es im Speicher steht. Der Basic-Speicher des C 64

13

S\ ASHTON ‘TATE

WordStar,dBASE]

Der Best-
seller unter den Textverarbeitungsprogrammen fir PCs bietet
lhnen bildschirmorientierte Formatierung, deutschen Zeichensatz
und DIN-Tastatur sowie integrierte Hilfstexte. Mit MailMerge
kénnen Sie Serienbriefe mit persénlicher Anrede an eine beliebige
Anzahl von Adressen schreiben und auch die AdreBaufkleber
drucken.

WordStar/MailMerge fiir den Commodore 128 PC

Bestell-Nr. MS 103 (5% ” -Diskette)

Hardware-Anforderungen: Commodore 128 PC, Diskettenlauf-
werk, 80-Zeichen-Monitor, beliebiger Commodore-Drucker oder
ein Drucker mit Centronics-Schnittstelle. 199, (sFr. 178;)

dBASE ll, das meistver-
kaufte Programm unter den Datenbanksystemen, eréffnet lhnen
optimale Mdglichkeiten der Daten- u. Dateihandhabung. Einfach u.
schnell kénnen Datenstrukturen definiert, benutzt und geéndert
werden. Der Datenzugriff erfolgt sequentiell oder nach frei wahlba-
ren Kriterien, die integrierte Kommandosprache ermdglicht den
Aufbau kompletter Anwendungen wie Finanzbuchhaltung, Lager-
verwaltung, Betriebsabrechnung usw.
dBASE I fiir den Commodore 128 PC
Bestell-Nr. MS 303 (5% " -Diskette) .
Hardwaj 2-Anforderungen: Commodore 128 PC, Diskettenlauf-
werk, 80-Zeichen-Monitor, beliebiger Commodore-Drucker oder
ein Drucker mit Centromcs-Schmttstelle. DM 199,-* (sFr. 178;)

Wenn Sie die
zeitraubende manuelle Verwaltung tabellarischer Aufstellungen
mit Bleistift, Radiergummi und Rechenmaschine satt haben, dann
ist MULTIPLAN, das System zur Bearbeitung »elektronischer Da-
tenblatter« genau das richtige fur Sie! Das benutzerfreundliche
und leistungsfahige Tabellenkalkulationsprogramm kann bei allen
Analyse- und Planungsberechnungen eingesetzt werden, wie z.B.
Budgetplanungen, Produktkalkulationen, Personalkosten usw.
Spezielle Formatierungs-, Aufbereitungs- und Druckanweisungen
erméglichen auBerdem optimal aufbereitete Présentationsunterla-

en!
MULTIPLAN fiir den Commodore 128 PC
Bestell-Nr. MS 203 (5% "-Diskette)
Hardware-Anforderungen: Commodore 128 PC, Diskettenlauf-
werk, 80-Zeichen-Monitor, beliebiger Commodore-Drucker oder
ein Drucker mit Centronics-Schnittstelle. pp 199,-* (sFr. 178;)

Dies sind die
ersten drei
weltbekannten
Software-
Produkte fiir den
Commodore

128 PC. Weitere
folgen in Kiirze!

Diese Markt & Technik-Softwareprodukte erhalten Sie in den Computer-Abteilungen der Kauf-
hauser Horten, Karstadt, Kaufhof, Quelle oder bei lhrem Computerhéndier.
Wenn Sie direkt beim Verlag bestellen wollen: per Nachnahme oder gegen Vorauskasse durch Ver-

rechnungsscheck oder mit der eingehefteten Zahlkarte.

Bestellungen im Ausland bitte an nebenstehende Adressen.

Fur Auskinfte stehen Ihnen Herr Barsa, Tel. 089/46 13-1 33, und Herr Teller, Tel. 089/46 13-2 05,

gerne zur Verfigung.

MICROSOFT® 1

lund MULTIPLAN

Mit diesem Buch haben Sie eine wertvolle Erganzung zum
‘WordStar-Handbuch: Anhand vieler Beispiele steigen Sie mii-
helos in die Praxis der Textverarbeitung mit WordStar ein. An-
gefangen beim einfachen Brief bis hin zur umfangreichen Ma-
nuskripterstellung zeigt lhnen dieses Buch auch, wie Sie mit
Hilfe von MailMerge Serienbriefe an eine beliebige Anzahl von
Adressen mit personlicher Anrede senden kénnen.
WordStar fiir den Commodore 128 PC

Best-Nr. MT 780, ISBN 3-89090-181-6

Zu einem Weltbestseller unter den Datenbanksystemen gehért
auch ein klassisches Einfiihrungs- und Nachschlagewerk! Die-
ses Buch von dem deutschen Erfolgsautor Dr. Peter Albrecht
begleitet Sie mit nutzlichen Hinweisen, die nur von einem Profi
stammen kénnen, bei lhrer taglichen Arbeit mit dBASE II.
Schon nach Beherrschung weniger Befehle ist der Einsteiger
inder Lage, Dateien zu erstellen, mit Informationen zu laden und
auszuwerten.
i dBASE Il fiir den Commodore 128 PC

odore 128 P Best-Nr. MT 838, ISBN 3-89090-189-1

[R ARASED.

ASHTON TATEW

Dank seiner Menttechnik ist MULTIPLAN sehr schnell erlern-
bar. Mit diesem Buch von Dr. Peter Albrecht werden Sie Ihre Ta-
bellenkalkulation ohne Probleme in den Griff bekommen. Als
Nachschlagewerk leistet es auch dem Profi nutzliche Dienste.
MULTIPLAN fiir den Commodore 128 PC

Best-Nr. MT 836, ISBN 3-89090-187-5

dBASE Wl

i

Jedes Buch kostet DM 49~ (sFr. 45,10).
Erhéltlich bei lhrem Buchhiandler.

Sie erhalten jedes WordStar-,
dBASE II- und MULTIPLAN-Pro-
gramm fur lhren Commodore
128 PC fertig angepaBt (Bild-
schirmsteuerung und Druckerin-

stallation).
Jedes Programmpaket
enthélt auBerdem ein ausfthrli- Umerbindliche Proisempfehiung
ches Handbuch mit kompakter
Befehlstbersicht.

Markt Technik
BUCHVERLAG

Hans-Pinsel-StraBe 2, 8013 Haar bei Miinchen
Schweiz: Markt & Technik-Vertriebs AG, Kollerstrasse 3, CH-6300 Zug, = 042/4156 56
(Osterreich: Microcomput-ique Schiller, Fasangasse 21, A-1030 Wien, = 0222/785661

Kurs

C64/VC 20

beginnt im Normalfall bei $0800. Wir geben also den Moni-
torbefehl M 0800.

Uns geniigen schon die Speicherplatze bis $081C. Nun
sehen wir das nackte Basic-Programm im Speicher, so wie es
uns C. Sauer in seinem Artikel »Der glaserne VC 20, Teil 1«
im 64'er, Ausgabe 9/84 auf Seite 156 beschrieben hat.

In Bild 8 ist unser Speicherinhalt kommentiert zu sehen.
Das Programm endet im Speicherplatz $0813. Das Kennzei-
chen fir Programmende sind zwei aufeinanderfolgende
Bytes mit dem Wort Null. Dahinter werden die Variablen abge-
legt, sobald das Programm gestartet wird. Wir steigen aus
dem Monitor durch X aus und starten das Programm mit RUN.
Jetzt sehen wir nochmal in den Speicher. Bis $0813 hat sich
nichts verandert. Danach aber ist jetzt in 7 Bytes die Variable
-~ A% abgelegt. Das zeigt Bild 9.

Zunichst einmal die Bytes $0814 und $0815: Hier wird
der Variablenname und -typ angegeben. Der Typ ist aus den
Bits 7 zu erkennen. Sind beide (wie hier) gleich 1, dann han-
delt es sich um eine Integervariable (also eine ganze Zahl).
LaBt man die Kennbits auBer acht, zeigt sich, daB in $0814
der Code fiir den Buchstaben A steht und $0815 nur den
~ Wert O enthalt. Nun zum Rest: Der C 64 legt Integers in nur

2 Byte ab - die restlichen 3 Byte $0818 bis $081A bleiben
unbenutzt. Das ist auch dann der Fall, wenn danach noch wei-
 tere Variable kommen. Es bringt also keine Speicher-
ersparnis (VC 20-Benutzer aufgepaBt!), wenn man mit Ganz-
. zahlvariablen arbeitet!

In $0817 steht $F4, welches bindr ausgedriickt 1111
0100 ist. Das kennen wir noch von weiter oben als die —12
im Zweierkomplement-Format. Woher kommt $FF in Spei-
cherzelle $0816? Wie gesagt, die Integers werden in 2 Byte
gespeichert, und wenn wir —12 in 16 Bit ausdriicken, dann
sieht das so aus:

+12 0000 0000 0000 1100
Einerkomplement: 1111 1111 1111 0011
plus 1 0000 0000 0000 0001
ergibt712: 11111111 1111 0100
MSB LSB
=$FF =$F4

als 16-Bit-Zweierkomplement.
Die groBte positive ganze Zahl, die man in 2 Byte aus-

driicken kann, ist 32767, was biné&r

o111 1111 1111 1111
ergibt. Die kleinste ist

1000 0000 0000 0000
also—32768. Das ist der Grund dafir, daB der C 64 Integers
groBer als 32767 oder kleiner als —32767 dankend mit
ILLEGAL QUANTITY ERROR ablehnt, wenn sie als Argument
verwendet werden. (Die Zahl—32768 kann als Ergebnis von
logischen Operationen auftauchen.)

Damit will ich Sie erstmal von den Zahlenspielereien erlé-
sen. Sie kénnen die Art des Abziehens von Zahlen durch
Addieren des Zweierkomplementes bis zum nachsten Mal an
weiteren Beispielen tiben. Wenn Sie das mit 16-Bit-Zahlen
tun, werden Sie bald feststellen, daB noch nicht alles so funk-
tioniert wie es sollte...

Wir kénnen jetzt Gbrigens auch das Rétsel I6sen, weshalb
bei positiven Zahlen (zum Beispiel LDA # FF) die Negativ-
Flagge auf 1 geht: Die Flagge wird immer dann geziickt, wenn
eine Zahl auftritt, die in Bit 7 eine 1 aufweist. Ganz einfach,
gell?

15. Ein wirkungsvolles Zweiglein: BNE

Vermutlich raucht lhnen nach soviel Zahlensalat der Kopf.
Deshalb sollen Sie zur Entspannung noch einen neuen
Assembler-Befehl kennenlernen und auch gleich ein nitzli-
ches Programmbeispiel dazu.

BNE heiBt »Branch if Not Equal zero«, was man Ubersetzen
kann mit »verzweige, wenn ungleich Null«. Genauer gesagt:
Es wird dann verzweigt - also zu einer angegebenen Adresse
gesprungen —, wenn die Z-Flagge (die haben wir bei den
INX,DEX...-Befehlen genauer untersucht) nicht gesetzt ist,
also O zeigt. Sehen wir uns das mal an der nachfolgenden
Verzogerungsschleife an, deren FluBdiagramm Bild 10 zeigt.

Das Programm dazu:

1500 LDX #FF
1502 LDY #FF
1504 DEY
1505 BNE 1504
1507 DEX
1508 BNE 1502
150A BRK

Zunichst einmal werden das X- und das Y-Register als Z&h-
ler initialisiert (also mit einem Ausgangswert geladen). Mit
dem vorhin behandelten Befehl DEY wird dann das Y-Regi-
ster um 1 heruntergezahlt, was jetzt $FE ergibt. Fur die Null-
flagge (Z) bedeutet das den Inhalt 0, denn es liegt kein Grund
vor, sie zu setzen (also eine 1 dort anzuzeigen), weil noch
keine Null aufgetreten ist. Bei der nachfolgenden Prifung
durch BNE wird also eine Verzweigung nach 1504 das Er-
gebnis sein, worauf das Y-Register weiter verringert und dann
die Z-Flagge erneut gepriift wird und so weiter. Das geht so
lange, bis nun wirklich endlich die Null im Y-Register erreicht
ist. In diesem Fall zhlt DEX nun das X-Register herunter und
der nachste BNE-Befehl fiihrt zum Sprung nach 1502, wo
das Y-Register wieder auf $FF gesetzt wird. Auf diese Weise
wird die duBere Schleife 255mal und die innere 65025mal
durchlaufen.

0800 00 oC 08 0A 00 a4 25 B2

080C 000A A % =
Koppeladresse Zeilennr10 Token
0808 AB 31 32 00 12 08 14 00
— 1 2 Zeilen- 0812 0014
Token ende Koppeladresse Zeilennr.20

0810 80 00 00 00 FF FF FF FF

END Zeilen-
Token ende

Programm-
ende .

Leerer Speicher

Speicher-
stelle 0814 0815 0816 0817 0818 bis 081A
Byte 1 2 3 4 5—7
C1 80 FF F4 00 00 00
Inhalt 1100 0001 1000 0000 1111 1111 1111 0100
unbenutzt bei
Kennbits 7 fir Integer ~ MSB LSB Integerzahlen
0100 0001 0000 0000 von
£ 65
Code fir A —12
Variablenname und -typ Variablenwert

Bild 8. Der Monitor zeigt das nackte Programm im
Speicher

16

Bild 9. So werden Integer-Variable aus Basic-
Programmen vom C 64 im Speicher eingerichtet

F¥ap

C64/VC 20

Kurs

Sie haben beim Eingeben des Programmes vermutlich
etwas gestutzt, als der Assembler nach dem BNE 1504 als
nichste Adresse statt dem erwarteten 1508 eine 1507 aus-
gegeben hat. Der Befehl sieht zwar wie ein 3-Byte-Befehl
aus, istaber nur ein 2-Byte-Befehl! Das liegt an der speziellen
Art der Adressierung von solchen Branch-Anweisungen: Der
sogenannten relativen Adressierung, die wir aber erst spater
mit den anderen Branch-Befehlen behandeln werden.

Wenn Sie das Programm mit G 1500 starten, werden Sie
-obwohl allesin Maschinensprache schnell lauft - eine merk-
liche Verzégerung feststellen, bevor die Registeranzeige auf-
taucht. Noch langere Verzégerungen lassen sich ohne weite-
res erreichen, indem man mehr Schleifen ineinanderschach-
telt. Dabei verwendet man dann den DEC-Befehl.

In der Tabelle 2 sind auch die Zyklen angegeben, die die
neu gelernten Befehle zur Abarbeitung benétigen. Mit sol-
chen Angaben lassen sich recht genau definierte Zeiten ein-

Programm-
Verzégerung
$FF — X-Reg. LDX #FF
$FF — Y-Reg. LDY #FF
Y=Y—1 DEY
A
A
Z-Flagge=1 BNE 1504
Nein ?
X=X-1 DEX
- Z-Flagge =1 BNE 1502
Nein ?
BRK

stellen, in denen der Computer nichts anderes tut als durch
das Programm zu flitzen. Wozu das dient, braucht wohl kaum
noch gesagt werden: Wenn Sie zum Beispiel einen Text auf
dem Bildschirm lesen wollen, bevor das Programm weiter-
lauft oder wenn Sie mit Peripherie arbeiten, die langsamer als
das Programmist oder... Allerdings muB noch gesagt werden,
daB es noch elegantere Methoden zur Verzégerungs-Pro-
grammierung gibt als das Lahmlegen des Computers, aber
dazu kommen wir erst spéter.

16. Herr Carry und der V-Mann
L .

Neun neue Befehle haben wir bisher kennengelernt und wir
wissen nun, wie unser Computer ganze Zahlen (sogenannte
Integers) abspeichert. Zur Erinnerung: Das geschieht im
Zweierkomplement-Format. Das Bit 7 einer 8-Bit-Zahl dient
dabei als Vorzeichen-Merkmal: Wenn es O ist, liegt eine posi-
tive Zahl vor, die genauso aussieht, wie wir bislang immer
Bin&rzahlen kannten. Ist das Bit 7 aber eine 1, dann haben wir
es mit einer negativen Zahlin der Zweierkomplement-Darstel-
lung zu tun. Wenn wir - wie unser Computer - zur Verarbei-
tung ganzer Zahlen 16 Bits (also 2 Bytes) verwenden, dannist
eben Bit 15 anstelle von Bit 7 das Vorzeichenbit.

Wenn Sie ein biBchen mit solchen Zahlen gerechnet haben,
konnten Sie sicher feststellen, daB zwar oft das richtige
Ergebnis herauskam - aber leider nicht immer.

Keine Angst; wir sind nicht ins Krimi- oder Agentenmilieu
gewechselt! Wir haben es mit zwei Flaggen zu tun, der Carry-
und der V-Flagge. »lo carry« heiBt auf deutsch etwa »tragenc.
In der Registeranzeige ist diese Flagge immer mit C gekenn-
zeichnet. Was wird denn hier getragen? Das ergriinden wir am
besten an einem Beispiel. Dazu rechnen wir mit normalen
Bindrzahlen (also ohne Ruicksicht auf Vorzeichenbits). Wir
zéhlen die Zahlen 128 und 130 zusammen:

128 10000000
+ 130 + 10000010
258 (1)00000010

Das Ergebnis 258 ist richtig - auch in der Binardarstellung
- nur es paBt nicht mehr in 8 Bits. Ein Bit wurde (ibelTRAGEN
in ein extra daflr vorgesehenes Platzchen: In das Carry-Bit.
Jedesmal also, wenn so ein Ubertrag in einer Rechenopera-
tion des C 64 stattfindet, zeigt die Carry-Flagge eine 1 (Bild
11).

Je nach Art der von uns programmierten Aufgabe kénnen
wir nun dieses Carry-Bit weiterverarbeiten. Es gibt Situatio-
nen, in denen man es einfach ignorieren darf (dazu kommen

Befehls- Adressie- Byte- Code 7 Dez Dauer in Beein-
wort rung anzahl Hex Taktzyklen flussung

von

Flaggen
INX implizit 1 E8 232 2 N,Z
INY implizit 1 c8 200 2 N,Z
INC absolut 3 EE 238 6 N,Z
DEX implizit 1 CA 202 2 N,Z
DEY implizit 1 88 136 2 N,Z
DEC absolut 3 CE 206 6 N,Z
SED implizit 1 F8 248 2 1-D
CLD implizit 1 D8 216 2 0-D
BNE relativ 2 DO 208 2 —

+1 bei Verzweigung
+2 bei Uberschreiten
einer Seitengrenze

Bild 10. FluBdiagramm zur Verzégerungsschleife

ba-ETy

Tabelle 2. Die neuen Befehle

17

Kurs

C 64/VC 20

Bild 11. Das Carry-Bit als Bit 8 einer Rechenoperation

wir gleich noch) oder aber solche, wo man es weiter in der
Rechnung verwendet. SchlieBlich kann es auch noch einen
Fehler anzeigen: Dann namlich, wenn das gréB8te zulassige
Ergebnis 1111 1111 sein darf. Natirlich kann das Carry-Bit
auch gesetzt werden; wenn man in der Zweierkomplement-
form rechnet. Die Verhéltnisse sind dann aber fir ein leicht
Uberschaubares Beispiel des Ubertrages zu verwickelt, wie
Sie gleich sehen werden.

Wenn wir ndmlich mit den Zweierkomplement-Zahlen
rechnen, dann interessieren uns auch Félle wie bei der Addi-
tion von 64 und 66:

64 01000000
+ 66 + 01000010

(-126) 10000010

Das ist offensichtlich falsch. Bei der Addition ist durch das
Zusammenzadhlen der Bits 6 pl6tzlich Bit 7 gesetzt worden.
Da wir es aber mit einer Zweierkomplementzahl zu tun haben,
bei der dieses Bit 7 eine negative Zahl anzeigt, folgt ein Feh-
ler. Es ist also von Bedeutung, so einen Uberlauf (englisch:
‘overflow’) erkennen zu kénnen um eine entsprechende pro-
grammtechnische Reaktion zu starten. Es wird die Uberlauf-
Flagge V auf 1 gesetzt. Leider ist die Sache aber nicht so ein-
fach, daB sie immer gesetzt wiirde, wenn von Bit 6 nach Bit 7
ein Ubertrag stattfindet. Gesetzt wird diese V-Flagge nur in
folgenden zwei Féllen:

1) Esfindet ein Ubertrag von Bit 6 nach Bit 7 statt, aber kein
&uBerer Ubertrag (wie beim Carry)

2) Esfindetkein interner Ubertrag von Bit 6 nach Bit 7 statt,
aber ein duBerer Ubertrag passiert.

Merken kann man sich das am besten so: Immer dann,
wenn gewissermaBen das Vorzeichenbit 7 »versehentlich«
verandert wurde, wird die V-Flagge auf 1 gesetzt. Das ist ein
harter Brocken! Wir sind es ja gewohnt, daB wir uns um diese
Dinge beim Computer eigentlich gar nicht mehr kiimmern
mussen. AuBerdem wiirde das ja erfordern daB man sich bei
allen Operationen vorher tiberlegen muB, welche Fehler also
durch »versehentliches« Vorzeichenandern passieren koén-
nen! Genauso ist es - in der Programmierpraxis wird Ihnen
aber das ganze Problem nicht mehr so groB vorkommen. Wir
wollen uns dieses Zusammenspiel der Ubertrage von Bit 6
nach Bit 7 und von Bit 7 nach Bit 8 (also in Carry-Bit) noch
anhand einiger Beispiele klarer machen.

Im obigen Beispiel der Addition von 64 und 66 haben wir
einen Fall schon behandelt: Es fand ein Ubertrag von Bit 6
nach Bit 7 statt, aber kein &uBerer Ubertrag in Carry-Bit. Des-
wegen wurde dann auch die V-Flagge gesetzt. Das Problem
148t sich hier ganz einfach I6sen zum Beispiel durch Verwen-
dung von 16-Bit-Zahlen:

64 0000000001000000
+ 66 + 0000000001000010

130 0000000010000010

Bei 16-Bit-Zahlen ist ja Bit 15 das Vorzeichenbit, welches
hier keine Anderung erfahrt.

18

Der andere Fall tritt auf bei der Addition von zwei negativen
Zahlen wie -125 und -64:

-125 10000011
- 64 11000000
(+67) (1)01000011

Auch das ist offensichtlich falsch: Es hat wieder »verse-
hentlich« ein Vorzeichenwechsel stattgefunden. Dies ist also
der Fall, wo zwar ein Ubertragins Carry-Bit stattfand aber kein
Ubertrag von Bit 6 nach Bit 7. Auch dieses Problem 1&Bt sich
durch Verwendung von 16-Bit-Zahlen I16sen. Eine kleine Trai-
ningsaufgabe flr Sie!

Man kann also sagen: Immer dann, wenn bei 8-Bit-Rech-
nungen der mittels Zweierkomplementzahlen darstellbare
Bereich (127 bis -128) tiber- oder unterschritten wird, fuhr-
werkt man im Vorzeichen-Bit herum und verfélscht das
Ergebnis. Dann leuchtet wie eine rote Ampel die Uberlauf(V)-
Flagge auf und sagt uns, daB wir besser in diesen Fallen mit
16-Bit-Zahlen arbeiten sollten.

Nun noch zum Ignorieren des Carry-Bits, das ich weiter
oben erwihnt habe. Bei allen 8-Bit-Rechenoperationen mit
Zweierkomplementzahlen kann das Carry-Bit vernachlassigt
werden. Zwei Beispiele sollen das wieder illustrieren. Wir
addieren +4 und -2:

+4 00000100
+ -2 4 11111110
+2 (1)00000010

Das Carry-Bit wird auBer acht gelassen. Anderes Beispiel:
Wir addieren zwei negative Zahlen, -4 und -6:

-4 11111010
-2, 11111110

-6 (1)11111000

+

Auch hier kann man (sogar: muB man) das Carry-Bit ver-
nachlassigen. Beide Ergebnisse sind richtig.

Nun wissen Sie alles Uber die Art, wie unser Rechner mit
ganzen Zahlen arbeitet. Probieren Sie mal ein paar Aufgaben
aus zur Ubung.

Wir verlassen jetzt den Zahlendschungel und widmen uns
der Praxis.

17. Der Computer rechnet: ADC, CLC

ADC ist der erste Arithmetik-Befehl des 6502 (und nattrlich
auch des 6510), den wir kennenlernen. Er bedeutet »ADd
with Carry«, also »addiere mit Carry-Bit«<. An einem 8-Bit-
Beispiel wollen wir uns das mal ansehen. ZAHL1 und ZAHL2
sollen addiert werden. Beide sollen positive 8-Bit-Zahlen
sein, die so klein sind, daB kein Uberlauf zu erwarten ist. Die
ZAHL1 wird in den Akku gegeben:

LDA #ZAHL1

Wenn wir nun den Befehl

ADC #ZAHL2
folgen lassen, sorgt die ALU (arithmetisch-logische Einheit,
siehe Folge 1) dafur, daB beide Zahlen addiert werden und das
Ergebnis im Akku erscheint. ZAHL1 ist dann vom Ergebnis
Uberschrieben worden. An sich ist damit alles erledigt. Weil
wir aber haufig wissen wollen, was denn nun bei der Addition
herausgekommen ist, speichern wir den Akku-Inhalt noch
irgendwo ab mittels »STA Speicherstelle«. AuBerdem war daja
noch die Sache mit dem Carry-Bit. Wir haben oben festge-
stellt, daB bei einer 8-Bit-Addition kein Carry-Bit beriicksich-

b4-Ery

C64/VC 20

Kurs

tigt werden soll. Nun gibt es aber eine ganze Menge von Vor-
gangen in einem Assembler-Programm, die das Carry-Bit
beeinflussen. Man kann eigentlich vor einer Addition nie ganz
sicher sein, ob es denn nun 1 oder O ist. Weil jedoch ADC
auch das Carry-Bit mitaddiert, sollte man dafiir sorgen, daB es
vor dem Zusammenzéahlen wirklich geléscht ist. Dazu gibt es
den Befehl CLC was die Abkulrzung fir »CLear Carry, also
»lédsche Carry-Bit« ist. Sei ZAHL1=12 und ZAHL2=7, dann
wiirde unser volistédndiges 8-Bit-Additions- Programmchen
also lauten:

1200 CLC

1201 LDA #$0C
1203 ADC #$07
12056 STA 1500

Sehen wir mal davon ab, daB dieses Programm natirlich
unsinnig ist (das kann man ja im Kopf schneller rechnen!),
dann erkennen wir: CLC ist ein 1-Byte-Befehl mit impliziter
Adressierung, welcher sich nur auf die C-Flagge (also das
Carry-Bit) auswirkt. ADC istin der hier verwendeten Form ein
2-Byte-Befehl und liegt in der »unmittelbar« genannten
Adressierung vor. Wie wir oben gesehen haben, kann ADC -
je nach Art der Rechnung - auf einige Flaggen wirken: Da
wéren zunidchst nattrlich die V-Flagge und die C-Flagge.
Dann aber kann beim Auftreten eines gesetzten Bit 7 auch die
N-Flagge und beim Uberschreiten von $FF eventuellauch die
Z-Flagge verandert werden.

Viel interessanter wird unser Mini-Programm schon, wenn
man anstelle von

1201 LDA #$0C
jetzt die absolute Adressierung verwendet, zum Beispiel
1201 LDA 1400

Weil das ein 3-Byte-Befehlist, verschiebt sich natirlich der
Rest des Programmes um 1 Byte. So kann man immerhin
schon zu unterschiedlichen Inhalten von 1400 den gleichen
Betrag addieren.

Am interessantesten allerdings ist die Tatsache, daB auch
ADC absolut adressierbar ist. Wir kbnnen so zum Beispiel den
Inhalt der Speicherzelle 1300 zum Inhalt der Zeile 1400 hin-
zuzéhlen und dann das Ergebnis in 1500 ablegen:

1200 CLC

1201 LDA 1400
1204 ADC 1300 °
1207 STA 1500

Hier ist der ADC-Befehl dann 3 Byte lang geworden.

Vergessen Sie bitte nicht - das gilt vor allem far die nachfol-
genden Rechenoperationen - dann, wenn die Wahrschein-
lichkeit besteht, daB der Dezimal-Modus eingeschaltet ist
(also die D-Flagge auf 1 gesetztist), noch den Befehl CLD vor
solche Programme zu stellen.

Solche 8-Bit-Rechnungen kommen recht haufig vor: Wenn
man in Schieifen nicht mit mehrfach wiederholten INX (bezie-
hungsweise INY oder INC, DEX, DEY oder DEC) arbeiten will,
addiert man eben immer die Sprungweite mittels ADC hinzu.
Der Akku kann nicht als Zahler dienen, denn es gibt fur ihn kei-
nen Befehl, der dem INX und so weiter vergleichbar wére,
weswegen man ihn - sollte es nétig sein - mittels ADC
hochzénhit.

Haufiger und in der Praxis bedeutender sind 16-Bit-Rech-
nungen. Wie Sie sicher noch aus den vorangegangenen Fol-
gen wissen, teilt man so eine 16-Bit-Zahl auf in zwei Byte (das
LSB und das MSB). Nehmem wir fir unser nachfolgendes
Beispiel wieder an, daB die Zahlen so gebaut sind, daB kein
Uberlauf zu befiirchten ist. ZAHL1 hatten wir vorher in die
Speicherstellen 1300 (LSB) und 1301 (MSB) gepackt,
ZAHL2 liegt in den Zellen 1400 (LSB) und 1401 (MSB).
Zunéchst wieder die VorbereitungsmaBnahmen:

1200 CLD
1201 CLC

BAEr,

Dabei ist CLD nicht immer nétig, wie schon gesagt. Nun
addieren wir zuerst die LSBs:

1202 LDA 1300
1205 ADC 1400
1208 STA 1500

Ein Uberlauf kann hier nicht stattgefunden haben, denn das
Vorzeichenbit ist ja im MSB als Bit 15 enthalten, wohl aber
kann ein Ubertrag stattgefunden haben: Das Ergebnis konnte
groBer als 255 ($FF) gewesen sein. War das der Fall, dannist
jetzt eine 1 im Carry-Bit. Wir addieren nun die MSBs:

120 BLDA 1301
120 EADC 1401
1211 STA 1501

Egal, was im Carry-Bit stand: Es wurde jetzt hinzuaddiert.
Das Ergebnis unserer Rechnung stehtnunin 1500 (LSB) und
1501 (MSB). Sehen wir uns das ganze nochmal am Zahlen-
beispiel an. Wir addieren die Zahlen 2176 (bin&r: 0000 1000
1000 0000) und 1009 (binar: 0000 0011 1111 0001). Die
Speicherinhalte sind dann:

1300 10000000 LSB Zahi1
1301 00001000 MSB
1400 11110001 LSB Zahl2
1401 00000011 MSB

Jetzt addieren wir die LSBs:
1300 10000000
1400 11110001
Carry 0
1500 01110001
Carry: 1
Nun folgt der zweite Teil der Addition mit den MSBs:
1301 00001000
1401 00000011
Carry: 1
1501 00001100
Damit steht nun das Ergebnis 3185 (binér

000011000111 0001) sauberlich aufgeteilt in LSB (Spei-
cher 1500) und MSB (Speicher 1501) fest. Das Carry-Bit
steht auch nach vollendeter Rechnung noch auf 1, so daB es
vor erneuter Addition wieder mit CLC zu Iéschen ist.

Damit ware alles tber die Addition berichtet. Wie immer in
Programmiererkreisen die Empfehlung: Gben, Gben,....

Wir wenden uns jetzt der gegenléufigen Operation zu: der
Subtraktion.

18. Noch mehr Rechnen: SBC, SEC

DaB das Abziehen von Zahlen im Computer durch das Hin-
zuzéhlen des Zweierkomplementes geschieht, haben wir mit
viel Gehirnschmalzverbrauch schon in vorangegangenen
Abschnitten erfahren. Nun sollen Sie die dazu nétigen
Befehlsworte des Assemblers kennenlernen. Zunichst ein-
mal ist da SBC. Das heiBt »SuBtract with Carry« oder auf
deutsch etwa »ziehe unter Berlicksichtigung des Carry-Bits
ab«. Ebenso wie bei der Addition mit ADC, wirkt das Argument
des SBC-Befehls auf den Akku-Inhalt ein - wobei das Ergeb-
nisim Akku landet, diesen also Uiberschreibt. Komplizierter ist
hier die Verwendung des Carry-Bits, worauf wir aber nicht
detailliert eingehen wollen. (Wen es interessiert: Nachlesen
in L.A. Leventhal, »6502 Programmieren in Assembler,
3. Auflage, Miinchen 1983, Seite 3-100). Fur uns soll einfach
die nicht ganz korrekte Analogie zum »Borgen« bei der Sub-
traktion ausreichen. Fur den Fall, daB ein solches Borgen ein-
treten muB, sollte auch das dazu nétige Carry-Bit vorhanden

19 |

Kurs

C64/VC 20

sein (also auf 1 gesetzt sein). Wie Sie sicherlich schon er-
raten haben, heiBt SEC »SEt Carry«, also »setze das Carry-
Bit« (auf 1).

Merke: Vor einer Addition immer Loschen des Carry-Bits
mit CLC,
vor einer Subtraktion immer Setzen des Carry-Bits mit
SEC!

Zwei Beispiele fur die Subtraktion sollen das bisher
Gesagte erldutern: Zunachst eine 8-Bit-Subtraktion von
ZAHL1 (in Speicherzellle 1300) minus ZAHL2 (in Zelle
1400). Das Ergebnis wird nach 1500 geschrieben:

1200 CLD
1201 SEC
1202 LDA 1300
1205 SBC 1400
1208 STA 1500

SBC kann - wie hier - absolut adressiert werden, aber auch

! unmittelbar (also zum Beispiel SBC # $40). Der Befehl ist

. dannim ersten Fall ein 3-, im anderen Fall ein 2-Byte-Befehl.

;| SEC ist ebenso wie vorher schon CLC ein implizit adressier-

barer 1-Byte-Befehl.

. Das zweite Beispiel ist eine 16-Bit Subtraktion. In den Spei-
chern steht vor dem Aufruf dieser kieinen Routine:

1300 ZAHL1 LSB
1301 ZAHL1 MSB
1400 ZAHL2 LSB
1401 ZAHL2 MSB

Das Ergebnis soll nach 1500 (LSB) und 1501 (MSB)
gebracht werden:

1200 CLD
1201 SEC
1202 LDA 1300
1205 SBC 1400
1208 STA 1500

Jetzt sind die beiden LSBs voneinander abgezogen und die
Differenz abgespeichert als LSB des Ergebnisses.

120B LDA 1301
120E SBC 1401
1211 STA 1501

Damit ist die Aufgabe beendet. Auch die MSBs sind subtra-
hiert und das MSB des Ergebnisses steht in 1501.
SBC beeinfluBt die gleichen Flaggen wie der Befehl ADC.

19. Ein Programmprojekt

Damit die so kennengelernten Arithmetik-Befehle nicht so
trocken auf weiter Flur stehen, wollen wir nun ein Programm
entwickeln, aus dem zweierlei zu lernen ist:

1) Die Anwendung bisher gelernter Befehle und

2) ein héaufig angewendetes Verfahren, Assemblerpro-
gramme in Basic-Programme einzubinden.

Besonders dieser zweite Aspekt scheint noch vielen
Lesern unklar zu sein (das zeigen mir Zuschriften). Es gibt
eine ganze Reihe von Mdglichkeiten, zum Einbau von
Assembler-Routinen in Basic-Programme; die werden wir alle
nach und nach kennenlernen. Von Ihnen wurde der SYS-
Befehl sicherlich schon haufig angewendet (zum Beispiel fir
SYS 58640 und vorherigem POKE214,Zeile und POKE211,
Spalte zum Setzen des Cursors an die Stelle Zeile, Spalte).
Damit haben Sie ein Maschinenprogramm aufgerufen, das im
System unseres Computers schon enthalten ist. 58640 ist
die Startadresse des Programmes und man kann diesen SYS-
Befehl eigentlich wie eine Art »GOTO Maschinenprogramm-
Startadresse« ansehen. Nichts hindert uns also, auf diese

20

Weise eigene Assembler-Programme anzuspringen! Das
Problem liegt nun nur noch darin, wie man Parameter, die
unsere Maschinenroutine benétigt, tibergeben kann. Eine
offensichtliche - aber leider auch relativ langsame - Methode
ist das POKEN der Werte im LSB/MSB-Format in die Spei-
cherzellen, aus denen sie sich unser ML-Programm dann
abholt. Wir wollen dieses Verfahren nun an einem Programm-
beispiel verwenden.

Eine arithmetische Reihe werden viele von Ihnen schon
kennen. Wenn man A als erstes Glied, D als Differenz und N
als die Anzahl der Glieder bezeichnet, dann ist die Summe
einer solchen Reihe:

S=A+(A+D)+(A+2*D)+....... +(A+(N-1)*D)
Ein Beispiel ist die Summe der ersten zehn ganzen Zahlen:
S=1+2+4+34+4+5+6+7+8+9+10

HieristA=1, D=1 und N=10. DaB die Summe Sim Beispiel
55 ist, kann man schnell berechnen, was aber, wenn wir
wesentlich mehr als nur zehn Glieder haben? Es gibt nattirlich
auch Formeln zur Berechnung von S. Aber eigentlich ist es
ganzreizvoll, ohne solche Formeln den Computer die Summe
bilden zu lassen. Wir bauen also ein Programm zur Berech-
nung der Summe der ersten N ganze Zahlen, wobei N frei
gewahlt werden kann. Das Ergebnis soll eine 16-Bit-Zahl sein,
also nicht gréBer als 32767. Das beschréankt uns bei N auf
Werte von 1 bis 255 (Warum, kénnen Sie ja mal mit dem ferti-
gen Programm ausprobieren). N benétigt also nur 1 Byte
Speicherplatz und soll in $1300 abrufbar sein. A soll 1 sein
ebenso wie D. Fur eventuelle Programméanderungen ist es
aber sinnvoll, A und D als 16-Bit-Zahlen aufzubewahren und
zwar in $1310/1311 (A in LSB/MSB-Format) und in
$1320/1321 (D im gleichen Format). Das Ergebnis soll in
$1400/1401 zu finden sein. Das Maschinenprogramm legen
wir nach $1200.

Zuerst kimmern wir uns um das Basic-Aufrufprogramm:

Zu diesem Programm gibt es nur noch zu bemerken, daB
die Zahlenbei POKE, PEEK oder SYS die Dezimalwerte unse-
rer oben gewahiten Adressen sind.

Nun endlich zum Assemblerprogramm. Sehen Sie sich
dazu bitte das FluBdiagramm im Bild 12 an.

Wir bereiten den Ablauf vor, indem wir aus $1300 die
Anzahl der Glieder ins X-Register laden und zur Vorbereitung
der Addition das Carry-Bit I6schen. Schalten Sie also bitte
den SMON ein und tippen Sie A1200 <RETURN>. Es
erscheint die Startadresse 1200. Jetzt kbnnen Sie Zeile fiir
Zeile das Assembler-Programm eingeben (nach jeder Zeile
ein RETURN, das die nachste Zeilennummer erzeugt):

1200 LDX 1300
1203 CLC

Die n4chsten sechs Zeilen summieren jeweils das neueste

Glied zur bis dahin erzeugten Summe. Jetzt zu Beginn ist

10 REM * *AUFRUF SUMME ARITHMETISCHE REIHE* *

20 POKE5120,0:POKE5121,0:REM ERGEBNISSPEICHER AUF
NULL

30 PRINTCHR$(147)CHR$(17)CHR$(17)

40 INPUT"ANZAHL DER GLIEDER N=";N

50 IFN<1 ORN>255THEN PRINT CHR$(17)"1 <=N
<=255"G0OTO40

60 POKE4864,N:REM EINSPEICHERN VON N

70 POKE4880,1:POKE4881,0:POKE4896,1:
POKE4897,0:REM EINSPEICHERN VON A UND D

80 8YS4608:REM AUFRUF UNSERES MASCHINEN-

PROGRAMMES
90 M=PEEK(5121):.L=PEEK(5120):REM AUSLESEN DES
ERGEBNISSES
100 E=256*M+L:PRINTCHR$(17)CHR$(17)
110 PRINT”DIE SUMME DER ERSTEN "N” GANZEN ZAHLEN
IST”:PRINTE
120 END

-

C 64/VC 20

Kurs

$1400/1401 noch leer und in $1310/1311 steht noch das
Anfangsglied A=1. Spéter mit Durchlaufen der Schieife, steht
in $1400/1401 immer die bis dahin gebildete Summe und in
$1310/1311 dasletzte Glied der Reihe. Es handelt sichum die
oben kennengelernte 16-Bit-Addition:

1204 LDA 1400
1207 ADC 1310
120 ASTA 1400
Das neue LSB ist berechnet und in $1400 geschrieben.
1200 LDA 1401
1210 ADC 1311
1213 STA 1401

Das war nun noch das neue MSB. Als ndchstes berechnen
wir das momentan letzte Glied der Reihe durch Addieren von
D zum alten letzten Glied. Das entspricht dem Basic-Befehl
A=A+Din einer Schleife. Dies ist eine neue 16-Bit-Addition,
weshalb wir wieder CLC vorgeben missen:

1216 CLC

1217 LDA 1310
121 AADC 1320
121 DSTA 1310

PROGRAMM
Summe arithmet. Reihe

N-—X-Reg.

16-Bit-Addition:

aktuelle Summe
+
letztes Glied

neue aktuelle Summe

Carry l16schen A

16-Bit-Addition:

aktuelles letztes Glied
+
Differenz D

neues letztes Glied

I

X-Register -1

X-Register = 0
?

Ja

Riicksprung ins .
Basic-Prog.

Bild 12. FluBdiagramm des Assembler-

programmes »Summe einer arithmetischen Reihe«

ba-ETy

Das war wieder das LSB. Nun zum MSB:

1220 LDA 1311
1223 ADC 1321
1226 STA 1311

Wir zéhlen nun das X-Register um 1 herunter und prtifen, ob
es schon Null gewordenist, ob also schon alle N-Glieder sum-
miert worden sind:

1229 DEX
122 ABNE 1203

Wenn noch nicht alle Glieder berechnet und summiert sind,
kehren wir an den Schleifenanfang zuriick. Ansonsten sprin-
gen wir zurtick ins Basic-Aufrufprogramm:

122 CRTS

Wenn Sie beide Programme eingetippt haben, dann spei-
chern Sie sie vorsichtshalber ab (das Assemblerprogramm
mit dem S-Befehl des SMON). Beim neuen Einladen brau-
chen Sie den SMON nicht mehr. Nach dem Laden unseres
Maschinenprogrammes (mit ,8,1 bei Diskette oder ,1,1 bei
Kassette) geben Sie NEW < RETURN > ein, damitdie Zeiger
vor dem Einladen des Basic-Programmes wieder auf Normal-
werte gesetzt werden. Zwischen dem dann eingeladenen
Basic-Programm und unserer Assembler-Routine ist genug
Platz. Sollten Sie aber irgendwann mal das Basic-Programm
vergréBern, schiitzen Sie bitte unseren Bereich ab $1200.

Unser Assembler-Beispiel ist so aufgebaut, daB auch Aund
D variabel gehalten sind. Sie miBten dann nur noch
Eingabemdglichkeiten im Basic-Programm schaffen und
anstelle der Werte 1 oder 0 in Zeile 70 die LSBs und MSBs
der von Ihnen eingegebenen GréBen A und D einPOKEN. Auf
diese Weise sind dann beliebige ganzzahlige, arithmetische
Reihen berechenbar, wie zum Beispiel S =7+10+13+16+...
und so weiter. Das Uberlasse ich lhrer Basic-Programmier-
fertigkeit. Nur eines noch: Sie miissen darauf achten, daB die
Summe S nicht groBer als 32767 wird. lhrer Phantasie sind
- wie immer in diesem Metier - keine Grenzen gesetzt. Sie
kénnten sich ja mal Gberlegen, wie man gréBere Summen
zulassen kann (wer sagt denn, daB wir Zahlen immer nur in
2 Byte darstellen durfen?). Oder Sie kdnnten sich Uiberlegen,
welches eindeutige Merkmal auftritt, sobald der Maximalwert
Uberschritten wird (ein Tip: Lesen Sie doch mal den Abschnitt
Uber die V-Flagge nach).

20. Die Branch-Befehle

Der 6502 (und auch der damitidentische 6510) kennt acht
bedingte Verzweigungen, von denen wir bisher BNE schon
verwendet haben. Alle diese Branch-Befehle (von branch
verzweigen) prifen Flaggen des Statusregisters.

BNE und BEQ beziehen sich auf die Z-Flagge, die anzeigt,
ob im Verlauf der letzten Operation eine Null aufgetreten ist.
Ist das der Fall, steht in der Z-Flagge eine 1. BNE verzweigt
zur angegebenen Adresse, wenn in der Z-Flagge eine O ent-
halten ist. BEQ (»Branch if EQual zero« = »verzweige, wenn
gleich Null«) tut das dann, wenn die Z-Flagge auf 1 gesetzt
ist. Da muB man etwas aufpassen, daB man sich nicht vertut!

BCC und BCS haben ihre Aufmerksamkeit auf die C-
Flagge, also das Carry-Bit gerichtet. BCC kommt vom engli-
schen »Branch if Carry Clear«, was heiBt: »verzweige, wenn
das Carry-Bit geléscht ist«. Ein gesetztes Carry-Bit (also
Inhalt=1) veranlaBt BCS (»Branch if Carry Set« = verzweige,
wenn das Carry-Bit gesetzt ist) zum Sprung an die angege-
bene Adresse.

Diese vier bedingten Verzweigungen sind an sich die
bedeutsamsten und am haufigsten verwendeten Branch-
Befehle. Man kann wohl getrost sagen, daB tiber 90% der von
Programmierern verwendeten bedingten Springe, damit
absolviert werden. R. Mansfield warnt sogar ausdrticklich in

21

Kurs

C 64/VC 20

seinem Buch »Machine language for beginners«, einem in
den USA sehr verbreitetem Werk, vor der Verwendung der
Befehle BPL und BMI!

Dafiir liegt absolut kein einsehbarer Grund vor. Viele pro-
grammtechnischen Aufgabenstellungen lassen sich elegant
- und leicht mit BPL, BMI, BVS und BVC I6ésen. Man muB nur
wissen, wie sie funktionieren und - da liegt vermutlich der
Hund begraben - man muB auch die Art kennen, wie Zahlen
vom Computer behandelt werden. Genau das aber wissen wir
und deswegen sollten wir diese Kenntnis fur uns auch nut-
zen. Also ohne Scheu heran an die verfehmten Befehle!

BMI und BPL (»Branch on Minus« = »verzweige, wenn
negativ« und Branch on PLus« = »verzweige, wenn positiv«)
hangen mit der Negativ-Flagge N zusammen. Das Ratsel die-
ser Flagge konnte in den vorangegangenen Folgen geldst
werden: Immer dann, wenn bei einer Operation eine Zahl auf-
trat, deren Bit 7 eine 1 war, wurde die N-Flagge auf 1 gesetzt.
. Wir wissen jetzt, daB dieses Bit bei 8-Bit-Zahlen das Vorzei-
chenbit ist. Bit 7 sagte uns bei einer 1, daB eine negative Zahl
. im Zweierkomplement-Format vorliegt oder aber iberhaupt
- ein Speicherzelleninhalt vorhanden ist, der groBer als 0111
. 1111 = 127 ist. BMI fuhrt zum Sprung in diesem Fall, weil die
" N-Flagge auf 1 steht. Andernfalls fihrt BPL zur Verzweigung.

Ebenso einfach sind BVS und BVC zu erkléren: Sie bezie-
hen sich auf die V-Flagge, unsere rote Ampel, die Uberlauf bei
Rechenoperationen anzeigt. Kann es was bequemeres
geben zur Behandlung solcher Fehlrechnungen als ein
»Branch on oVerflow Set« = »verzweige, falls die Uberlauf-
| Flagge gesetzt (=1) ist« mit BVS? Oder anders herum bei
BVC »Branch on oVerflow Clear« = »verzweige bei freier
Uberlauf-Flagge«. Wenn man - wie Sie jetzt - weiB, unter wel-
chen Umstédnden diese V-Flagge auf 1 gesetzt wird, sollte
man ohne Skrupel BVS und BVC ausgiebig benutzen. Man
. kénnte damit zum Beispiel programmieren, daB die Rechen-
' genauigkeit automatisch von 16-Bit auf 24- oder 32- (oder
wie es gerade beliebt) Bit gesteigert wird, ohne daB man sich
bei jeder Programmaufgabe Gedanken tber das gréoBtmogli-
che Ergebnis machen muB. Dazu aber ein andermal mehr.

Alle hier vorgestellten Branch-Befehle sind ebenso wie
- BNE 2-Byte-Befehle, was an der speziellen Art der Adressie-
© rung liegt: Der relativen Adressierung. Tabelle 3 zeigt eine
" Ubersicht der neuen Befehle aus den letzten fiinf Kapiteln.

Befehls- Adressierung Byte- Code Dauer Beeinflussung
wort an- in von Flaggen
zahl Takt-
hex dez zyklen
ADC unmittelbar 2 69 105 2
NV,ZC
absolut 3 6D 109 4
CLC implizit 1 18 24 2 0-C
SBC unmittelbar 2 E9 233 2
NV,ZC
absolut 3 ED 237 4
SEC implizit 1 38 56 2 1-C
BEQ relativ 2 FO 2 keine Anderung
BCC relativ 2 90 2 keine Anderung
BCS relativ 2 BO 2 keine Anderung
BMI relativ 2 30 2 keine Anderung
BPL relativ 2 10 2 keine Anderung
BVC relativ 2 50 2 keine Anderung
BVS relativ 2 70 2 keine Anderung

+1 bei Verzweigung
+2 bei Uberschreiten
einer Seitengrenze

Tabelle 3: Die 11 neuen Befehle

22

21. Die relative Adressierung

Als wir den BNE-Befehl das erstemal verwendet haben, stell-
ten wir fest, daB zum Beispiel BNE 1200 nicht — wie eigent-
lich zu erwarten war — ein 3-Byte-Befehl, sondern ein
2-Byte-Befehlist. Damals muBten wir uns mit der Bemerkung
zufrieden geben, es lage an der besonderen Art der Adres-
sierung, ndmlich der relativen Adressierung. Relativ bedeutet
ja »bezogen auf etwas«. Wenn wir also beispielsweise BNE
1200 schreiben, liegt es nur an der Benutzerfreundlichkeit
des SMON und vieler anderer Assembler, daB dieser die so
geschriebene absolute Adresse 1200 in die richtige Form,
ndmlich die relative umrechnet. In Wahrheit verlangt der
6502 (und nattrlich ebenso der 6510) eine Angabe darber,
wieviele Bytes nach vorne oder hinten im Programm er zur
weiteren Programmverarbeitung springen (verzweigen) soll.
Es gilt nun also, zwei Fragen zu kléren:
1. Relativ wozu wird gesprungen und
2. Wie berechnet sich die Angabe, um wieviele Bytes nach
vorne oder hintenim Programm der Sprung vollzogen werden
soll.

Zur Klérung verwenden wir ein hypothetisches Programm-
segment mit einem Sprungbefehl und sehen uns das Disas-
semblerlisting an:

2000 AD 0030 LDA 3000
2003 FO 05 BEQ 200A
2005 A9 00 LDA #00
2007 8D 0030 STA 3000
200A 60 RTS

Dieses Programm-Teilchen 1&dt den Inhalt der Speicher-
stelle 3000 in den Akku, Uberprft dann, ob dieser Inhalt Null
ist und verzweigt beim Vorliegen der Null zum Rucksprung
(RTS). Ist der Inhalt von 3000 nicht Null, dann wird 3000 auf
Null gesetzt. 3000 kénnte zum Beispiel eine Flagge sein.

Der Pfad, dem der Computer bei der Abarbeitung des Pro-
grammes folgt, wird durch den Programmzahler vorbereitet.
Dieser ist dann, wenn der BEQ-Befehl an der Reihe ist, schon
einen Schritt weiter, namlich im Programmzahler steht dann
die Adresse 2005.

Relativ zu dieser Adresse hat dann der Sprung zu erfolgen.
Zum Inhalt des Programmzéahlers muB also die Sprungweite
(auch héufig Offset genannt) addiert werden. Soweit zur
Frage 1.

Zur Klarung von Frage 2 listen wir uns mal Byte fir Byte
unser Programm auf:

Byte Inhalt Bedeutung
2000 AD LDA

2001 00 LSB von 3000
2002 30 MSB von 3000
2003 FO BEQ

2004 05 Offset

2005 A9 LDA #

2006 1 00 _

2007 2 8D STA

2008 3 00 LSB von 3000
2009 4 30 MSB von 3000
200A 5 60 RTS

Neben der Byte-Nummer ist noch die Entfernung zu 2005
geschrieben. Daraus ist deutlich zu erkennen, daB die
Sprungweite, die zum Programmzahler addiert wird, 05 sein
muB, wenn der Sprung zum RTS erfolgen soll. Fur Vorwérts-
Verzweigungen gilt also: Von der Adresse des Befehls an, der
auf den Branch-Befehl folgt, zahlt man die Byte-Anzahl bis
zum Sprungziel. Das Ergebnis ist der Offset.

ba-eT)

C 64/VC 20

Kurs

Nun gibt es genauso haufig Rlickwérts-Spriinge. In den bis-
her gezeigten Programmen sind sie mehrmals aufgetreten.
Wie berechnet man den Offset in diesen Fallen? Sehen wir
uns wieder das Disassembler-Listing eines solchen Pro-
grammsegmentes an:

1000 A2 00 LDX #00
1002 E8 INX
1003 DOFD BNE 1002
1005 00 BRK

Dieses Programmchen tut nichts anderes, als das vorher
auf Null gesetzte X-Register hochzuzahlen, bis es tiber 255
lauft (dann tritt ja wieder O auf!). Solange der Inhalt des
X-Registers ungleich Null ist, erfolgt ein Sprung zuriick bis
zur INX-Anweisung in Zeile 1002. Erst wenn die Null durch
den Uberlauf aufgetreten ist, endet das Programm mit einem
BRK in Zeile 1005.

Wir wissen schon, daB der Programmzahler beim Verarbei-
ten des BNE-Befehls auf 1005 steht. Sehen wir uns auch
dieses Programm Byte fiir Byte an:

Byte Inhalt Bedeutung
1000 A2 LDX #
1001 00

1002 3 E8 INX

1003 2 DO BNE

1004 1 FD Offset
1005 00 BRK

Wieder ist neben der Bytenummer die Entfernung vom
aktuellen Programmzahlerstand angegeben. Wir missen
also vom Inhalt des Programmzéahlers 3 abziehen, um zum
INX-Befehl in Byte 1002 zu gelangen. Das kennen wir aber
schon aus den vergangenen Ausgaben: Wenn der Computer
eine Zahl abzieht, dann addiert er das Zweierkomplement die-
ser Zahl. Hier soll nun 3 subtrahiert werden. Wir berechnen
das Zweierkomplement:

3= 0000 0011 (binar)
Das Einerkomplement davon ist:
1111 1100
Dann wird eine 1 addiert
1111 1101

Dies ist das Zweierkomplement. In hexadezimal ausge-
druckt heiBt diese Zahl $FD und ist unser Offset. Fur
Ruckwarts-Verzweigungen gilt also: Von der auf die Branch-
Anweisung folgenden Speicherstelle an zahlt man die Bytes
zuriick bis zum Sprungziel. Das Zweierkomplement der sich
dadurch ergebenden Byte-Anzahl ist der Offset.

Das sieht reichlich kompliziert aus, aber zum einen haben
Sie ja einen ganz freundlichen Assembler und nur in seltenen
Notfallen missen Sie den Offset berechnen. Zum anderen
gibt es noch eine Faustregel, mit der man sich das ganze ver-
einfachen kann. Die soll durch folgendes Schema erldutert
werden:

Byte Inhalt Offset
1995 F9
1996 FA
1997 FB
1998 FC
1999 FD
2000 BNE FE
2001 Offset FF
2002 Programm-
zéhlerstand
2003 01
2004 02

2005 03

Bei Vorwartsspriingen ist ohnehin alles klar: Bei einem
Sprung nach Adresse 2005 miBte man in vorliegendem Fall
einen Offset von 03 eingeben. Bei Rickwarts-Ver-
zweigungen zahlt man einfach von $FF an rickwaérts bis zur
Zieladresse. Eine Verzweigung nach 1996 wiurde im vorlie-
genden Fall also einen Offset von $FA erfordern.

Eine Einschrankung der relativen Adressierung kénnen Sie
nun auch sofort verstehen, wenn Sie an Zweierkomplement-
zahlen denken: Der Offset belegt ein Byte. Die gréBte posi-

tive Zahl in einem Byte ist

0111 1111 = +127 = $7F
und die kleinste negative Zahl ist
1000 0000 = —128 =($80)

Es sind keine gréBeren Vorwérts-Verzweigungen als um
127 Byte moglich, weil in diesem Fall ein Offset groBer als
$7F, also mit einem Bit 7 gleich 1 ndtig ware, was aber wieder
als negative Zweierkomplementzahl verstanden und einen
Ruckwértssprung verursachen wiirde. Ahnliches gilt anders
herum: Esistkein weiterer Rticksprung als um 128 Byte még-
lich, weil das im Offset zum geléschten Bit 7 fihren wirde,
also zu einem Offset kleiner als $80, was wiederum anstelle
des Riicksprunges eine Vorwaérts-Verzweigung herbeifiihren
wirde.

Darauf sollte man achten beim Erstellen eines Assem-
bler-Programmes, daB man nie weitere Rickwartsspringe
als um 128, beziehungsweise Vorwartsspringe um 127 Byte
verlangt. Auch wenn man im Assembler gar nicht auf relative
Adressierung Rucksicht nehmen muB, weil der Assembler
sich mit den Absolutadressen begnugt, solite man wissen,
daB zum Beispiel folgende Zeile aufgrund dieser Einschran-
kung nicht méglich ist: ‘

3000 BNE 1000

Die meisten Assembler reagieren auf solch eine Zeile mit
einer Fehlermeldung (beim Hypra-Ass mit »Branch too far)
oder so wie der SMON, der klammheimlich die Programm-
startadresse statt 1000 einsetzt. Aber es ist doch éargerlich,
wenn man auf dem Papier ein Programm fertig hat und erst
beim Eintippen feststellt, daB der Computer das so nicht
haben will.

22. Zeropage-Adressierung

Weil wir nun gerade mit der Adressierung so schén in
Schwung sind, stelle ich lhnen noch eine andere vor: Die
Adressierung der Zeropage. Was ist die Zeropage? Auf
deutsch heiBt das Nullseite. Am besten versteht man das,
wenn man sich in Erinnerung ruft, wie Adressen in unserem
Computer verwaltet werden. Da haben wir doch ein LSB
(Least Significant Byte) und ein MSB (Most Significant Byte),
zum Beispiel $1F 04 (mit 1F als MSB und 04 als LSB). Nun
hat unser C 64 65535 Adressen von $0000 bis $FFFF. Bei
den ersten 256 Adressen von $0000 bis $00FF ist das MSB
$00. Man nennt so einen 256-Byte-Block eine Seite (engl.
page). Weil hier flr alle Adressen dieser ersten Seite des
MSB Null ist heiBt sie Nulseite = Zeropage. Messerscharf
werden Sie schlieBen, daB man die Seite mit den MSBs $01
als erste Seite bezeichnet, die mit den MSBs $02 als zweite
Seite und so weiter.

Wenn wir nun zum Beispiel den Akku mit dem Inhalt der
Zeropageadresse $00FA laden wollen, dann kénnten wir
schreiben:

3000 LDA O0OFA

Unser Mikroprozessor versteht uns aber auch, wenn wir

nur schreiben:
3000 LDA FA

23

Kurs

C 64/VC 20

Das ist sie, die Zeropage-Adressierung. Anstelle eines
3-Byte-Befehls ist das jetzt ein 2-Byte-Befehl, was Speicher-
platz und vor allem Rechenzeit einspart. Auf diese Weise
kann man von den bisher kennengelernten Befehlen fol-
gende adressieren:

LDA, LDX, LDY, STA, STX, STY, INC, DEC, ADC und SBC

Sie kdénnen sich merken, daB man (bis auf zwei Ausnah-
men, die wir noch kennenlernen werden) alle absolut adres-
sierbaren Befehle auch Zeropage-absolut anwenden kann.
Genauere Angaben Uber die Codes, die Ausflihrungszeiten
und die Beeinflussung der Flaggen (letztere ist identisch mit
der absoluten Adressierung) entnehmen Sie bitte der ange-
fugten Tabelle 4.

Zum Thema Geschwindigkeit: Wenn Sie die bendétigten
Taktzyklen von absolut und von O-absolut adressierten
Befehlen in den Tabellen miteinander vergleichen, werden
Sie jeweils einen Unterschied von einem Zyklus feststellen.
Das mag lhnen l&ppisch vorkommen. Bedenken Sie aber, daB
Sie sehr haufig Schleifen programmieren missen, die meh-
~ere 100 Mal durchlaufen werden, die vielleicht als oft zu ver-
wendende Unterprogramme dienen... Sie werden bald fest-
stellen, daB da schnell beachtliche Zeitunterschiede auftre-
ten kénnen: Fur zeitkritische Programme ist die Verwendung
der Zeropage-Adressierung dringend geboten.

Dieser Tatsache waren sich leider auch die Schopfer unse-
res Betriebssystems und des Basic-Interpreters voll bewuBt.
Die Zeropage ist nahezu randvoll mit Speicherstellen, in
denen sich beide Programmkomplexe tummeln. Fast jede
Kernel- und Interpreter-Routine notiert sich irgendwelche
Werte auf der Seite Null. Das macht es uns als
Assembler-Programmierer nicht gerade leicht, die Zeropage-
adressierung zu verwenden, wenn wir auBerdem den Inter-
preter oder das Betriebssystem benutzen wollen. Es kann
geradezu katastrophale Folgen haben, einige Zeropage-
Adressen zu Uberschreiben. Andere werden standig neu
beschrieben durch das Betriebssystem oder den Interpreter,
was unseren eigenen — vielleicht gerade in so einer Spei-
cherzelle gelagerten — Zwischenwerten den Garaus
machen wirde. Man sollte sich also die ersten 256 Speicher-
stellen ganz genau ansehen, bevor man sie adressiert oder
aber auf das Betriebssystem und den Basic-Interpreter ver-
zichten. Ersteres erleichtern uns Tabellen der Speicherbe-
legung (zum Beispiel Babel, Krause, Dripke »Das Interface
Age Systemhandbuch zum Commodore 64, Interface Age

Be- Adressierung | Byte- Code Dauer in Beeinflus-
fehls- an- Hex Dez | Taktzyklen | sung von
wort zahl Flaggen
LDA | O-Page, abs. 2 | A5 165 3 N,Z
LDX | 0O-Page, abs. 2 | A6 166 3 N,Z
LDY | O-Page, abs. 2 | A4 164 3 N,Z
STA 0-Page, abs. 2 | 85 133 3 —
STX | O-Page, abs. 2 | 86 134 3 —_
STY | O-Page, abs. 2 | 84 132 3 —
INC 0-Page, abs. 2 | E6 230 5 N,Z
DEC | O-Page, abs. 2 [C6 198 5 N,Z
ADC | O-Page, abs. 2 | 65 101 3 NV,ZC
SBC | 0-Page, abs. 2 | E5 229 3 NV,ZC
CMP | unmittelbar 2 [C9 201 2
absolut 3 | CD 205 4
0-Page, abs. 2 | C5 197 3
CPX | unmittelbar 2 | EO 224 2
absolut 3 | EC 236 4 N,Z,C
0-Page, abs. 2 | E4 228 3
CPY | unmittelbar 2 | CO 192 2
absolut 3 | CC 204 4
0-Page, abs. 2 | C4 196 3

Tabelle 4: Kenndaten der neuen Befehle und
Adressierungen

24

Verlag, oder »Das Commodore 64 Buch, Band 4, Ein Leit-
faden fir Systemprogrammierer«, Markt und Technik Verlag)
und auch die Serie von Dr. Helmut Hauck sMemory Map mit
Wandervorschldgen«, die seit Ausgabe 11/84 im 64’er
erscheint.

Ohne Hemmungen durfen wir nur die Speicherstellen (je-
denfalls beim C 64) $02 und $FB bis $FE nutzen. Weil das
doch recht mickrig ist, hat jeder Assembler-Programmierer
spezielle Tips, welche Zellen er noch mit welchen Vorsichts-
maBnahmen benutzt. Wenn man bestimmte Routinen aus
dem Betriebssystem oder dem Interpreter nicht aufruft, blei-
ben dazugehérige Zeropageadressen unbeeinfluBt und sind
dann fiir eigene Zwecke nutzbar. Manchmal ist es notwendig,
den alten Zustand einer Adresse nach Beendigung eigener
Programme wieder herzustellen, manchmal nicht. Interes-
sant und viel beschrieben in allen méglichen Zeitschriften,
Buichern etc. ist die Moéglichkeit, die Notizen, die sich das
Betriebssystem oder der Interpreter auf der Zeropage macht,
zu verandern. Im Prinzip schreibt man damit kleine Teile die-
ser GroBprogramme um oder variiert Tabellenteile davon. Wie
schon Dr. Hauck in seiner Serie sagt, geschieht das im Rah-
men der »lricks« mit irgendwelchen POKEs mehr oder weni-
ger blind, weshalb auch bevorzugt Abstirze des Computers
dabei festzustellen sind. Warum Abstiirze? Na, stellen Sie
sich mal ein von lhnen geschriebenes Programm vor — zum
Beispiel das aus Kapitel 19 zur Berechnung der Summe einer
arithmetischen Reihe — und POKEn Sie dann anstelle
irgendeines Befehiscodes, der dorthin gehért, jetzt eine O
(also ein BRK) hinein. Die Wirkung dirfte dhnlich sein. Wenn
man allerdings die Funktion der betreffenden Speicherstelle
genau kennt, lassen sich recht nitzliche Anderungen hervor-
rufen, wie zum Beispiel die Schutz-POKEs fir den Basic-
Speicher durch Verandern der Adressen $33, $34, $37 und
$38.

Wir werden im folgenden immer dann, wenn wir mit
Zeropage-Adressierung arbeiten oder Routinen des
Betriebssystems oder Interpreters untersuchen, spezielle
Stellen der Nullseite kennenlernen.

Vorhin hatte ich noch angedeutet, daB man dann die Zero-

' page fast vollstédndig nutzen kénne, wenn man auf den Basic-

Interpreter und das Betriebssystem verzichtet. Das ist tat-
sé&chlich méglich. Nur wird man dann erstaunt feststellen,
wieviel Arbeit uns die computerinterne Software abnimmt
oder anders herum: Viele bislang selbstverstandliche Dinge
werden wir dann plétzlich selbst programmieren missen,
und das kann ein hartes Brot sein!

Als'Beispiel firr ein Programm, das nicht nur die Zeropage-
adressierung verwendet, sondern sogar selbst komplett in
der Zeropage steht, werden wir uns die CHRGET-Routine
ansehen. Eine Klasse von Befehlen, die dort angewendet
wird, die Vergleichsbefehle, soll zuvor noch gezeigt werden.

23. Die Vergleichsbefehle:
CMP, CPX, CPY

Vergleichen heiBt in englischer Sprache »to compares,
woraus Sie unschwer erkennen kénnen, woher die Bezeich-
nung CMP und die CPs in CPX beziehungsweise CPY kom-
men. Verglichen wird jeweils der Akku-Inhalt (bei CMP), der
Inhalt des X- (bei CPX) oder des Y-Registers (bei CPY) mit
Daten, die der Compare-Befehl adressiert. Einige Beispiele
werden lhnen das klarer machen:
CMP #FF
vergleicht den Akku-inhalt mit der Zahl $FF. Hier liegt die
unmittelbare Adressierung vor, die ebenso fir CPX und CPY
verwendbar ist. AuBerdem ist das dann ein 2-Byte-Befehl.
CPX 3000
vergleicht den Inhalt des X-Registers mit dem Inhalt der Spei-

ba-er

C 64/VC 20

Kurs

cherstelle $3000. Die absolute Adressierung ist also auch
anwendbar (naturlich auch fir CMP und CPY). Der Compare-
Befehl besteht so aus 3 Byte.

CPY A8

vergleicht den Inhalt des Y-Registers mit dem Inhalt der Zero-
pagestelle $A8. Diese soeben frisch gelernte Zeropage-
Adressierung ist bei allen drei Vergleichsbefehlen méglich
und macht aus ihnen 2-Byte-Befehle.

Fiar CPXund CPY sind das alle Mdglichkeiten der Adressie-
rung. CMP erlaubt weitere, die wir noch kennenlernen wer-
den. Nun interessiert uns natarlich noch, wie das Vergleichs-
ergebnis zu erhalten ist! Bei diesen Befehlen geschieht
merkwdrdiges: Die Vergleichsdaten werden vom Inhalt des
Akkus (beziehungsweise X- oder Y-Registers) abgezogen,
aber: Weder wird dieser Inhalt noch werden die adressierten
Daten verandert! Der Trick ist, daB drei Flaggen das Ergebnis
anzeigen: Die Negativ-Flagge N, die Null-Flage Z und das
Carry-Bit C. Diese Anzeige geschieht so: (Bild 13)

1) Der Registerinhalt (Akku, X-, Y-Register) ist gréBer als die
Vergleichsdaten:

Dann ist das Carry-Bit = 1, die N- und die Z-Flagge =0.

2) Der Registerinhalt ist gleich den Vergleichsdaten:

Dann sind Carry- und Z-Flagge = 1, die N-Flagge = O.
3) Der Registerinhalt ist kleiner als die Vergleichsdaten:
Die N-Flagge ist dann =1, Carry- und Zero-Flagge sind O.

Damit Sie die Ubersicht behalten kénnen, ist in Bild 13 das
ganze als Schema gezeigt.

Sie werden sich vermutlich schon denken kénnen, wie der
Hase weiterlduft: Mit den Verzweigungsbefehlen prifen wir
die Flaggen und springen die gewinschten weiteren
Programm-Routinen an.

Die Kombination der Compare-Befehle mit den Verzwei-
gungsoperationen wird lhnen im weiteren Verlauf dieses Kur-
ses noch ganz geldufig werden. Ein Beispiel sehen Sie nach-
her ebenfalls in der CHRGET-Routine. Leider muB ich Sie

.immer noch etwas vertrésten, denn mit Verstand begreifen

14Bt sich diese Routine nur dann, wenn man etwas mehr Giber
die Codierung von Zeichen weiB. Deswegen werden wir uns

ARk ARk ARk nun noch mit dem ASCIli-Code und dem Commodore-ASCII
u u u
FLAGGE X | >DATEN| X | =DATEN| X | <paten nerumschlagen.
Y Y \
N 0 oder 1 0 1 oder 0 24. Zeichencodierung mit dem ASCII-
z ¢ ° und dem Commodore-ASCII-Code
Bild 13. Flaggen bei den Vergleichsbefehlen ASCI! ist die Abkirzung von »American Standard Code for
Information Interchange«und das heiBt auf deutsch »amerika-
men nischer Standard-Code zum Informations-Austausch«. Diese
Isn g 9 v 2|3 |4]°S 6 7 Zeichenverschliisselungsart ist international als 1SO-7-Bit-
bin. | 1500l 0001|0010 0011 {0100 (0101|0110 0111 Code genormt, und es ware WII’kIICh' nett, wenn alle_ sugh
$ binér daran halten wirden. Tatséchlich aber finden wir zum Beispiel
NOL|DLE [sP | 0 | @ | P o bei unserem C 64 eine Abart des Normcodes, den
0| o |ooo ¥ ; ;
NULL|DLE | SP | 0 | @ | P |cHRs(6) |cHRs(112)| Commodore-ASCII-Code. Uber die damit erzwungenen
sonloct | + 1 1 | A] ala q Umrechnungen kénnen alle diejenigen Dramen erzéhlen, die
Y10 % TsonToct [+ [+ | A | a |chmser) [chmsis)| 2um erstenmal einen (Nicht-Commodore-)Drucker an ihr
sxlocz2 | » | 2 | 8 | R lb . Gerat anschlieBen oder aber blaudugig in den Online-Betrieb
21 %1% s Toca |~ [2 | 8 | R |chRswa) |crmsara)| Mit anderen Computern eintreten wollten.
Ex loca | = | 3 | ¢ | s lo s Sehen wir uns zunéchst einmal den ASCII-Code an. Es
810" rex Toca | # | 3 | © | s |chrswe) [onmsis)| handelt sich um einen 7-Bit-Code, das heiBt 128 Zeichen
Eor|pca | s | 4 | D | T |d i kénnen in nur 7 Bit untergebracht werden (0000 0000 bis
1% ™ Ieoroca Ts | 4 [o | T |crrsaoo)|chrsiie| 01111111). Das achte Bit dient bei manchen Operationen mit
ENQINAK | % | 5 | E | U le u Computer-Peripherie als Parité4ts-Bit. Bei dieser Gelegenheit
®1 % 1™ Tena[Nak | % | 5 | & | u |chrsion|crmrsarn| soll auch gleich erklart werden, was Paritét in diesem Zusam-
ol o lmolAck]sw [& |6 [F | v v menhang bedeutet. Werden Daten (bertragen, muB immer
ACK [SYN | & | 6 | F | V |CHR$(102)|CHRS$(118)
710 g [BELIEB | * | 7 | G [W]g w
BEL [ETB | * | 7 | G | W |CHR$(103)|CHR$(119)
8l 1 looolBS AN | (| 8 [H | x |n X
BS [CAN | ([8 | H | X |CHRS$(104)|CHR$(120)
ol 1 oot HT_IEM) o [t]yl y
HT [EM) | 9 | t | Y |CHR$(105)|CHRS(121)
Al 1 | ot | LF_|suB | J 1zl z
LF_[suB | * J | Z |CHR$(106)|CHRS(122)
Bl 1 Lo desc | + | o | k| [|k (
VI _|esC | + | ; | K | [|CHR$(107)|CHR$(123)
[}
c| 1 |100 LFF_LFS Ll < LN i
FF_|Fs . | < | L | & [CHR$(108)|CHR$(124)
bl 1 lorlerRles | = =|M] 1 |m]
CR [Gs | — [= | M |] |CHR$(109)|CHR$(125)
£l 1 |10 [80_LRs > | N | t]n ~
sO_|Rs > | N_| 1 [CHR$(110)|CHR$(126)
g | [8_lus I 1?2 1ol —lo DEL
sl__|us /| 2 | o | — |cHR$(111) [CHR$(127)

Bild 14: ASCII-Code (jeweils oben) und Commodore-ASCII
(msn = most significant nibble; Isn = least significant ni.

F¥ar

Bild 15. Grafikzeichen zu den entsprechenden
CHR$-Codes

25

Kurs

C 64/VC 20

mit Ubermittlungsfehlern gerechnet werden. Das Paritétsbit
dient dazu festzustellen, ob ein Byte korrekt angekommen
ist. Bei der sogenannten geraden Paritat zahlt man die Einser
im Byte zusammen und setzt Bit 7 auf 1 wenn sich eine unge-
rade Zahl ergibt. Mit dem Paritétsbit haben wir dann eine
gerade Zahl. Ist die Quersumme des Byte schon gerade,
bleibt Bit 7 eine Null. Ebensogut kann man die ungerade Pari-
tat verwenden, indem dann Bit 7 so gewahlt wird, daB sich
immer eine ungerad+. Zahl ergibt. Welche Art der Paritat zur
Anwendung kommt, ist Vereinbarungssache. Nehmen wir
mal an, es sei gerade Paritat gefordert und ein Byte mit der
Information 00010110 soll Gbermittelt werden. Die Quer-
summe ist 3, also ungerade. Das Paritatsbit muB auf 1 gesetzt
werden. Wir senden das Byte 10010110. Der Empfanger
Uberpruft zunachst auf gerade Paritat und verwendet dann
nur die Bits O bis 6. Doppelfehler, die mittels des Paritatsver-
fahrens nicht festgestellt werden kénnen, sind sehr selten.
Leider kann auf diese Weise nur bemerkt werden, daB ein
Ubertragungsfehler aufgetreten sein muB, aber nicht wel-
cher. Die Information muB dann neu angefordert werden.
Sehen wir uns nun den Commodore-ASCIl-Code an. Durch
die Einbindung der Grafikzeichen brauchen wir mehr als die
128 Kombinationen. Commodore benutzt deswegen einen
8-Bit-Code. Mit dem Basic-Befehl CHR$(x) kdnnen Sie sich
alle 256 Méglichkeiten ansehen. Erschwerend kommt aber
noch hinzu, daB wir nicht nur einen Zeichensatz, sondern
deren vier zur Verfugung haben, die durch den jeweiligen
Schreibmodus ansprechbar sind (Klein-/GroBschriftmodus,
GroBschriftmodus, beide Modi mit Reverse-ON oder OFF).
Im Zeichen-ROM liegen insgesamt 512 Muster abrufbereit.
Zu diesen kommen beim CHR$-Befehl noch eine ganze
Reihe von Steuerzeichen hinzu... die Verwirrung ist perfekt!
Wirwollen an dieser Stelle keine Entwirrung vornehmen, son-
dern wir durchschlagen den Gordischen Knoten, indem wir

NUL Null

SOH Start of heading Beginn des Kopfes

STX Start of text Textbeginn

ETX End of text Textende

EOT End of transmission Ubertragungsende

ENQ Inquiry Anfrage

ACK Acknowledge Bestatigung

BEL Bell Klingel

BS Backspace Zuriicksetzen

HT Horizontal tabul. Horizontaltabulator

LF Line feed Zeilenvorschub

vT Vertical tabulator Vertikaltabulator

FF Form feed Formatvorschub

CR Carriage return Wagenrucklauf/
Zeilenwechsel

SO Shift out Ruckschaltung

Sl Shift in Dauerumschaltung

DLE Data link escape Datenverbindungs-
umschaltung

DC1-4 Device control Geratesteuerung

NAK Negative acknowl. Negativ-Bestatigung

SYN Synchronous idle Synchronisations-
Leerlauf

ETB End of transmission block Ende des Ubertra-
gungsblockes

CAN Cancel Annullieren

EM End of medium Datentragerende

SuB Substitute Ersetzen

ESC Escape Umschaltung

FS File separator Dateitrennzeichen

GS Group separator Gruppentrennzeichen

RS Record separator Satztrennzeichen

us Unit separator Einheiten-Trennz.

SP Space Leerzeichen

DEL Delete Léschzeichen

Bild 16. Die Bedeutung der Abkiirzungen im ASCIl Code

26

nur die ersten 128 Zeichen mit den ASCII-Zeichen verglei-
chen. In Bild 14 und 15 finden Sie unsere Gegenuber-
stellung.

Einige Kombinationen dienen als Steuer-Codes. (Die
Bedeutung der dabei verwendeten Abkiirzungen sehen Sie
in Bild 16.)

Nur ein Teil dieser Codes wird tatséchlich genutzt. Andere
haben - je nach Gerat an das sie gesandt werden - unter-
schiedliche Bedeutungen. Denken Sie dabei nur mal an die
verschiedenen Betriebssysteme des Commodore-Druckers
1526, wo man bei dem einen mit CHR$(1), bei dem anderen
mit CHR$(14) den Breitschrift-Modus anschaltet. Innerhalb
unseres Computers werden offensichtlich bestimmte Codes
anders genutzt. Das sind:

Anstelle geschieht

von folgendes:

ENQ Zeichen weiB

BS Blockieren der Umschaltung
Klein-/GroBschrift

HT Zulassen der obigen
Umschaltung

DC1 Cursor abwirts

DC2 Reverse-Modus an

DC3 Cursor in HOME-Position

DC4 INST/DEL

FS Zeichen rot

GS Cursor rechts .

RS Zeichen grin

us Zeichen blau

Der auffélligste Unterschied ist der, daB beim Commodore-
ASCII anstelle der Kleinbuchstaben Grafikzeichen liegen.
Sollte anstelle des Normalmodus der Klein-/GroBschriftmo-
dus eingeschaltet sein, findet man anstelle der GroBbuchsta-
ben die kleinen.

Jetzt haben wir alle nétigen Kenntnisse, um die CHRGET-
Routine in unserem Computer zu verstehen.

25. Die CHRGET-Routine

Das Kurzel CHRGET kommt von »Get a character«, was bei
uns heiBt: »Hole ein Zeichen«. Es handelt sich um eine sehr
haufig benutzte Routine unseres Basic-Interpreters, die - wie
schon vorhin erwahnt - komplettin der Zeropage steht. Wenn
Sie mit dem SMON mal nachsehen wollen, dann geben Sie
den Befehl
D 0073 008B
ein. Sie haben dann die komplette Routine vor sich:

0073 E6 7A INC 7A
0075 DO 02 BNE 0079
0077 E6 7B INC 7B
0079 AD 2502 LDA 0225
007C C9 3A CMP #3A
O07E BO OA BCS 008A
0080 C9 20 CMP #20
0082 FO EF BEQ 0073
0084 38 SEC

0085 E9 30 SBC #30
o087 38 SEC

0088 E9 DO SBC #DO
008A 60 RTS

C64/VC 20

Kurs

Eventuell sieht die Zeile 0079 bei Ihnen anders aus. Das
liegt dann an den Speicherstellen 7A und 7B, welche einen
Zeiger darstellen (LSB=7A und MSB=7B), der bei lhnen
gerade auf einen anderen Platz zeigt als auf $0225.

Diese CHRGET-Routine besteht aus drei Teilen:

Zeilen 0073 bis 0079
Weiterstellen des CHRGET-Zeigers und Einladen des
dadurch angezeigten Speicherzelleninhaltes in den Akku.
Zeilen 007C bis 0082
Prufroutinen
Zeilen 0084 bis 008A
Flaggen-Routinen

Im ersten Teil haben wir schon gleich etwas neues vor uns:
ein sich selbst verédnderndes Programm. Die Speicherstelle
(aus dem Basic-Eingabepuffer), aus der der Akku ein Zei-
chen holt, wird um 1 weitergezéhlt mit INC 7A.

Dabei handelt es sich um das LSB der Adresse und die néch-
ste Zeile pruft, ob ein Uberlauf (255+ 1) stattgefunden hat:

BNE 0079.

Diese Technik kennen wir schon aus den letzten Folgen: Bei
Uberlauf wird die Z-Flagge auf 1 gesetzt und der BNE-Befehl
fiihrt keinen Sprung herbei. Den Offset von 02 kénnen wir
leicht nachrechnen: Der Programmzahler steht schon auf
0077. Die Zieladresse 0079 ist also noch 2 Byte entfernt.
Hat eine Uberschreitung des Hochstwertes 255 stattgefun-
den, dann muB das dazugehdérige MSB um 1 erhéht werden.
Dies tut die nachste Zeile: INC 7B

In beiden Féllen ist nun der Zeiger 7A/7B um eine Stelle
weitergeriickt und der Inhalt der dadurch angezeigten Spei-
cherstelle wird in den Akku geladen. Zwei Dinge kénnen wir
uns aus diesem kurzen Programmteil merken:

1) Wie man eine 16-Bit-Zahl hoch- (oder auch herunter-) zahit
und

2) eine Moglichkeit, Zeiger einzusetzen. Wir werden noch
eine Reihe anderer Zeigertypen kennenlernen und sehen,
daB es nicht immer so direkt zugeht wie hier.

Im zweiten Teil finden wir die Prifroutinen. Die Vergleichsbe-
fehle beschranken sich auf den Akkuinhalt, also CMP.
CMP # 3Atestet, in welcher Beziehung das im Akku befindli-
che Zeichen zum Wert $3A = dezimal 58 steht. Erinnern wir
uns an das Schema in Bild 14:

1) Commodore-ASCII-Code im Akku gréBer als 58, also Zei-
chen hinter dem Doppelpunkt (Buchstaben, Grafikzeichen,
einige Sonderzeichen). Dannist die Carry-Flagge = 1, N-und
Z-Flagge sind O.

2) Im Akku steht genau der Code 58, also der Doppelpunkt.

Dann sind Carry-Bit und Z-Flagge = 1, nur die N-Flagge = O.
3) Der Code des Zeichens im Akku ist kleiner als 58 (das
wiéren alle Zahlen, einige Sonderzeichen und Steuerzei-
chen). Indiesem Fallist die N-Flagge = 1. Die beiden anderen
Flaggen zeigen Null.

Der nun folgende Befehl BCS O08A uberprift die Carry-
Flagge. Wenn sie gesetzt ist, wenn also der Code im Akku
gréBer oder gleich dem eines Doppelpunktes (58) ist, springt
der Programmzéahler zum RTS. Der Code (und auch die Flag-
gen) wird unveréndert zum aufrufenden Hauptprogramm wei-
tergegeben. Zur Ubung kénnen Sie ja nochmal den Offset
nachrechnen. Der Rest des Programms wird nur noch durch-
laufen, wenn Codes kleiner als 58 im Akku stehen.

Die nachste Zeile CMP #20 dient zum Vergleich des
Space-Codes $20 = dezimal 32 (Leertaste). Die Flaggen
treten dann, wie schon oben beim ersten Vergleich gezeigt,
je nach Akku-Inhalt auf. Durch die Verzweigung BEQ 0073
erfolgt ein Ricksprung zum Beginn der CHRGET-Routine
dann, wenn die Z-Flagge gesetztist, also ein Space-Code im
Akku liegt. Somit werden die Leerzeichen einfach Gbersprun-
gen und das nachste Zeichen geholt. Alle anderen Zeichen,
die bis hierher durchgehalten haben, werden nun im letzten

Teil der CHRGET-Routine einer Prozedur unterworfen, dieich
Flaggen-Routine genannt habe. '

Durch zwei aufeinanderfolgende Subtraktionen, die insge-
samt den Wert im Akku unverandert lassen (es wird 256
abgezogen), wird die Carry-Flagge beeinfluBt. Verfolgen wir,
was da passiert:

SEC dient als Vorbereitung fir die folgende Subtraktion. ;‘
SBC # 30 zieht vom Akku-Inhalt $30 = dezimal 48 ab. Wir
wissen inzwischen, daB das der Addition des Zweierkomple- |
mentes entspricht. Dieses ist (rechnen Sie mal nach!)
1101 0000.

Nehmen wir mal an, wir hatten den Code der Zahl 4 (also dezi-
mal 52 oder $34) im Akku stehen. Die Rechnung sieht dann
SO aus:

52 001
1101

-

(1) 0000 0100

0100
0000

Das Ergebnis ist also 4, der Ubertrag wird vernachlassigt.

Als anderes Beispiel sei nun der Code fur das Ausrufungs-
zeichen im Akku (dezimal 33 = $21 = binar 0010 0001). Die
Rechnung ist dann:

33 0010 0001
+ 1101 0000
1111 0001

Das Ergebnis ist —15.
Alle Codes, die nicht fur Zahlen stehen, haben nach dieser
Subtraktion ein negatives Ergebnis im Akku hinterlassen und
durch das »Borgen« das Carry-Bit geléscht.
Nun machen wir weiter ab Zeile 0087:
SEC
SBC #DO .
Wir ziehen $D0 = dezimal 208 ab. Das Zweierkomplement
ist: ...Doch da kommen wir ins Stocken! Denn dieses Zweier-
komplement ist nicht mehr mit 8-Bit-Zahlen darzustellen.
Schon die Zahl 208 im Binarformat (1101 0000) wirde als
negative Zahl angesehen werden, weil Bit 7 gleich 1 ist. Wir
machen es uns einfach und sagen, daB sich das Zweierkom-
plement wie bisher bilden 14Bt, aber dabei das Carry-Bit mit
einbezogen wird. Unser Zweierkomplement ist dann also:
0011 0000 und das Carry-Bit ist geléscht. Nun nehmen wir
unser erstes Beispiel. Dort war nach der Subtraktion im Akku
eine 4 verblieben:

0000 0100
+ 0011 0000
0011 0100

Das ist wieder unser urspringlicher Wert dezimal 52 =
$34 = Code fir die Zahl 4. Das Carry-Bit bleibt geléscht.

Im zweiten Beispiel mit dem Ausrufungszeichen stand
noch im Akku eine —15:

1111 0001
+ 0011 0000
(1) 0010 0001

Da haben wir wieder den Code fur das Ausrufungszeichen
($21 = dezimal 33) im Akku und ein gesetztes Carry-Bit.
Was kommt also bei der CHRGET-Routine heraus?

1) Alle Zeichen auBer dem Space werden unveréndert an das
aufrufende Programm Uiber den Akku weitergegeben. Space
wird unterdrickt.

2) Bei allen Zeichen auBer bei den Zahlen ist das Carry-Bit
gesetzt.

27

Kurs

C 64/VC 20

3) Manche der aufrufenden Routinen Gberprifen auBer dem
Zustand der Carry-Flagge auch den der Z- oder N-Flagge, die
ja beim ersten CMP-Befehl ebenfalls gesetzt werden. So lie-
fert die CHRGET-Routine noch weitere Informationen.

In der einschlagigen Literatur stoBen Sie auch auf eine
Routine, die CHRGOT genannt wird. Es handelt sich dabei
ebenfalls um die hier beschriebene CHRGET-Routine, nur
erfolgt der Einsrrung nicht bei $0073, sondern bei $0079.
Der Zeiger $007 A/7B wird in diesem Fall nicht weitergestellt.
Das vorher schon einmal in den Akku geladene Zeichen wird
damit noch einmal angesprochen (gotist die Vergangenheits-
form von get).

Mit dem CHRGET-Programm haben wir eines der wichtig-
sten Unterprogramme unserer computerinternen Software
kennengelernt. Will man sich Interpreter-Routinen zunutze
machen, stolpert man standig darliber. AuBerdem aber liegt
die CHRGET-Routine im RAM. Das bedeutet, daB wir sie
ohne weiteres flir unsere Zwecke verandern konnen. Ein Bei-
spiel fir so eine Anderung hat Christoph Sauer in seiner Serie
Uber den »glasernen VC 20« in der Ausgabe 9 (Seite 158)
gezeigt. Dort wird die CHRGET-Routine nach dem LDA ange-
zapft und auf das Pi-Zeichen geprift, das neuen Befehlen
vorangestellt wurde. Sehen Sie sich das Programm dort (auf
Seite 160f.) mal genau an, viel kann man durch Nachvollzie-
hen fremder Programme fir die eigene Programmiertechnik
lernen.

26. Die indizierte Adressierung

Indizieren heiBt, etwas mit einem Index, also einem Zeichen
oder einer Nummer, zu versehen. Beispielsweise bezeichnet
man in der Mathematik die beiden Losungen einer quadrati-
schen Gleichung héaufig als X1 und X2. Dabei ist dann die Zif-
fer (1 oder 2) der Index und X ist eine indizierte GroBe. Man
geht also aus von einer festgelegten Grundmenge (L&sungs-
menge X) und trifft durch den Index eine weitere Unter-
scheidung. »

So ahnlich kénnen wir uns auch die Funktion der indizierten
Adressierung bei der Assembler-Programmierung vorstellen.
Nehmen wir als Beispiel den Befehl

LDA 1500,X

Man spricht hier von einer absolut-X-indizierten Adressie-
rung. Das Assemblerwort LDA ist uns bekannt: Lade den
Akku. Woher soll der fur den Akku bestimmte Inhalt geholt
werden? Aus der Speicherzelle, die sich durch 1500 plus
Inhalt des X-Registers ergibt. Steht also im X-Register zum
Zeitpunkt des Befehlsaufrufes eine 5, dann wird der Akku aus
Speicherzelle 1500+ 5, also 1505, geladen. Das X-Register
kann Werte von O bis $FF (dez. 255) enthalten. Die Ahnlich-
keit sieht also so aus:

Aus einer Gesamtmenge von 256 Adressen, die durch die
Anfangsadresse (bei unserem Beispiel 1500) und die mégli-
chen 256 Belegungen des X-Registers festgelegt sind (die
Grundmenge), werden je nach X-Registerinhalt einzelne
Adressen unterschieden und adressiert. Das X-Register fun-
giertdabei als ein Index, weswegen man auch oft die Bezeich-
nung »Index-Register X« in der Literatur findet.

Ebenfalls als Index-Register kann das Y-Register dienen,
was zum Beispiel zum Befehl

LDX 1500,Y
fuhren kann. Dies ist dann eine absolut-Y-indizierte
Adressierung.

Genauso wie man die normale absolute Adresse (also zum
Beispiel 1500) als Basis der Indizierung durch das X- oder das
Y-Register verwenden kann, ist das auch mit eine Zeropage-
Adresse maoglich. So gibt es zum Beispiel die Befehle

LDY 2B,X

28

oder
STX19)Y

Man nennt diese Art der Adressierung dann Zeropage-
absolut-X-indiziert beziehungsweise -Y-indiziert.

Weil die Zeropage aber nur 256 Adressen umfaBt, anderer-
seits jedoch die Indexregister auch 256 Werte annehmen
kénnen, kann es geschehen (wenn man nicht aufpaBt), daB
die Summe aus der Basisadresse (zum Beispiel $2B) und
dem Indexregisterinhalt gréBer als 256 wird. Wenn zum Bei-
spiel in dem Befehl

LDA FE,X

der X-Registerinhalt 2 betragt, ergdbe sich $FE+$02=
$0100. In diesem Fall wird aber nicht der Inhalt von $0100in
den Akku geladen, sondern der Befehl spricht die Speicher-
stelle $00 an. Der Grund dafr liegtin der Tatsache, daB unser
Prozessoi den Befehl als 2-Byte-Befehl interpretiert - das
2. Byte ist die Zeropageadresse, die sich als Summe ergibt -
und deswegen nur das LSB der Adresse beachtet. Von
$0100 ist das LSB aber $00. Mit anderen Worten: Die Zero-
page-absolut-indizierten Befehle lassen einen Zugriff nur auf
die Zeropage selbst zu. Dieses Verhalten muB man beim Pro-
grammieren beachten.

Wir wollen nochmal zusammenfassen. Vier neue Adressie-
rungsarten haben wir kennengelernt:

Befehl Indizierte Adressierung
Null-Seite-absolut

X Y

absolut

LDA
LDX
LDY
STA

STX
STY
RTS
INX

INY

INC

DEX
DEY
DEC
SED
CLD
BNE
ADC

o+
L+ <

SBC
SEC
BEQ
BCC
BCS
BMI

BPL
BVC
BVS
CMP
CPX
CPY
BIT

CLv

o~~~ —~ ~ —~ ~ — + —~ F —~—~—~ 4 ~—~F ~—~—~F+ 1+ 4+ 1 +
I o~ — — — — — — — 0l — o~ — — 1~~~ ~ 1 4+

S i

I+~~~ ~ -4+ -4+ —— -1 —— 1 —— =

TAX
TAY

TXA
TYA
JMP
JSR

+ anwendbar

- nicht erlaubt

/ weder absolute noch Zeropage-Adressierung
moglich

o~~~ — — — 1
o~ o~ — o~ — — 1
o~ — — o~ — — 1
| o— o~ — — — — 1

Tabelle 5. Anwendbarkeit der indizierten Adressierungs-
arten auf die bisher gelernten Assembler-Befehle.

C64/VC 20

Kurs

Absolut-X-indiziert zum Beispiel LDA 1500,X
Absolut-Y-indiziert zum Beispiel LDA 1500,
Zero-page-absolut-X-indiziert zum Beispiel LDA 2B, X
Zero-page-absolut-Y-indiziert zum Beispiel LDX 2BY

Die Verwendung des Y-Registers als Indexregister ist stark
eingeschrénkt. Nur bei wenigen Befehlen ist sie erlaubt (tat-
séchlich nur LDX und STX bei Zero-page-absolut-indizierter
Adressierung). In der Tabelle 5 sehen Sie, welche bisher
behandelten Befehle wie mit der indizierten Adressierung
verwendet werden durfen.

Es gibt noch zwei weitere Arten einer indizierten Adressie-
rung, auf die wir noch zu sprechen kommen werden.

27. Einige Nachaziigler: Die Befehle BIT,
CLV, NOP und TAX, TAY, TXA, TYA

Wir wollen noch ein biBchen aufraumen: Ein paar Befehle, die
bisher zu keinem Gebiet so richtig paBten, sollen jetzt behan-
delt werden.

BIT: Dieser Befehl heiBt »Bit-Test» und paBt von daher
eigentlichzudenin Kap. 23 behandelten Vergleichsbefehlen.
Die Behandlung der Flaggen ist aber véllig anders. Nehmen
wir das Beispiel

BIT 1500

Folgendes passiert: Der Inhalt der Speicherstelle $1500
wird mit dem Inhalt des Akku UND-verknUpft, das Ergebnis in
der Z-Flagge angezeigt und Bit 7 sowie Bit 6 von $1500 in die
N- beziehungsweise die V-Flagge tbertragen. Weder Akku
noch Inhalt von $1500 veréandern sich dabei.

Das ging ein biBchen holterdipolter. Sehen wir uns das jetzt
mal ganz langsam Schritt fir Schritt an! Zunéchst die UND-
Verknuipfung. Bit fur Bit wird der Akku-Inhalt mit dem Inhalt der
adressierten Speicherstelle UND-verkn(ipft. Dabei gelten fol-
gende Regeln (die Leser der Grafik-Serie kennen das ja

schon):
OUNDO=0
OUND1=0
1UNDO=0
1UND1 =1

Nur dann also, wenn die entsprecheriden Bits im Akku und
in 1600 gleich 1 sind, ergibt sich bei der UND-Verknlpfung
eine 1. Man stellt sowas meist'in einer sogenannten Wahr-
heitstabelle zusammen (Tabelle 6).

UND | © 1
0 ‘ 0 0
1 0 1

Tabelle 6. Wahrheitstabelle der logischen
Verkniipfung UND

Nehmen wir als Beispiel mal an, im Akku stiinde $0A und in
der Speicherstelle $1500 ware $09 enthalten. Die UND-Ver-
knipfung sieht dann so aus:

Akku $0A 0000 1010
1500 $09 0000 1001
UND

0000 1000

Das Ergebnis ist also $08. In der Z-Flagge wird in dem Fall,
daB das Ergebnis der UND-Verkniipfung ungleich Null ist (wie
hier) eine Null angezeigt, sonst eine 1.

Wir haben in unserem Zahlenbeispiel mit dem BIT-Befehl
Uberpruft, ob die Bits 1 und 3 in Speicherstelle $1500
geldscht sind. Dazu haben wir in den Akku eine sogenannte

1 -

Maske (hier also $0A) geladen. Das Ergebnis sagt uns, daB
nicht beide Bits geléscht waren. Ware der Inhalt von $1500
beispielsweise $10 gewesen (0001 0010), hatten wir in der
Z-Flagge eine 1 gefunden. Daher der Name »Bit-Test«: Durch
geeignete Maskenwahl kann praktisch jedes Bit Gberprift
werden. Dabei werden weder der Akku-Inhalt noch der Inhalt
der angesprochenen Speicherstelle verandert.

Der BIT-Befehl hat aber noch mehr Auswirkungen: Die Bits
6und 7 der gepriften Speicherzelle findet man nach Befehls-
ausfiihrung in zwei Flaggen nochmal:

Bit 7 in der N-Flagge
Bit 6 in der V-Flagge

Damit kann man beispielsweise Uberprifen, ob sich am
adressierten Ort eine negative Zahl befindet. Alle drei Flag-
gen koénnen ja nun mit den Branch-Befehlen abgefragt wer-
den. Sie erkennen sicherlich schon, wie vielseitig dieser
merkwirdige BIT-Befehl einsetzbar ist.

Adressierbar ist BIT entweder absolut (wie im obigen Bei-
spiel) oder Zeropage-absolut. Je nachdem liegt er dann als
3-Byte- oder als 2-Byte-Befehl vor.

CLV: Dieser Befehl heiBt »Clear oVerflow-flag¢, also »l6sche
die Uberlauf-Flagge«. Die V-Flagge war -wie Sie sich erinnern
werden -unsere rote Ampel bei Rechenoperationen (siehe
Kap. 16). Es ist ein 1-Byte-Befehl mit impliziter Adressierung
und interessant daran ist, daB es keinen Befehl gibt, der das
Gegenteil -also das Setzen der V-Flagge -bewirkt.

NOP: NOP steht fur »No OPeration«, was bedeutet »keine
Téatigkeit«. Das ist der Nichtstu-Befehl. Er tutaber doch etwas:
Er sorgt daflr, daB der Befehlszéhler weitergezahlt wird und
bewirkt eine Verzégerung von 2 Taktzyklen. NOP ist ein
1-Byte-Befehl mit impliziter Adressierung. Er wird in fertigen
Programmen nur selten verwendet: Zur Erzeugung einer kur-
zen definierten Verzégerung. Meist gebraucht man ihn bei
der Erstellung eines Programmes als Platzhalter oder bei der
Fehlersuche, um zum Beispiel unerwiinschte Spriinge zu
ersetzen.

Die Transporteure: TAX, TAY, TXA und TYA

Abundzuist es nétig, Registerinhalte untereinander auszu-
tauschen. Viele Dinge (Addition, Subtraktion und so weiter)
kénnen nurim Akku geschehen. Wenn wir eine solche Opera-
tion beispielsweise mit dem Inhalt des X-Registers ausfiihren
wollen, verschieben wir diesen Inhalt mit dem Befehl TXA.
»Iransfer X into Accumulator« also »lbertrage X-Register in
den Akku« bedeutet das. Analog verwendet man TYA, um
Y-Register-Inhalte in den Akku zu schieben oder flr den
umgekehrten Weg TAY beziehungsweise TAX (Akkuinhalt ins
Y- beziehungsweise ins X-Register schieben). Genau genom-
men wird nicht Gbertragen, sondern nur kopiert: Die Register,
aus denen verschoben wird, bleiben unverandert. Weil die
jeweiligen Zielorte der Verschiebung (Akku, X- oder Y-Re-
gister) vom neuen Inhalt tiberschrieben werden, kénnen sich
auch Flaggen dndern. Betroffen sind von dieser Moglichkeit
die N-und die Z-Flagge. Alle vier Befehle bestehen aus einem
Byte und kénnen naturlich nur implizit adressiert werden.

28. So springen die Assembler-
Alchimisten: JMP, JSR

JMP und JSR entsprechen ungefihr den vom Basic her
bekannten Befehlen GOTO und GOSUB.
JMP kommt von »JuMP to addressc, also »springe zur ange-
gebenen Adresse«. Nehmen wir uns wieder ein Beispiel vor:
JMP 1500
bewirkt einen Sprung zur Adresse 1500. Das funktioniert so:
In den Programmzahler werden LSB und MSB der Ziel-

29

C64/VC 20

Kurs

adresse geladen. Das war dannauch schon der Sprung, denn
der Programmzahler ist der Pfadfinder des Computers: Die
Adresse, die dort steht, wird als nachste bearbeitet. Schalten
Sie doch mal den SMON ein (oder einen anderen Monitor)
und sehen Sie sich das mit folgenden Befehlen an:

1400 JMP 1500
Dort unterbrechen wir den Computer mit
1500 BRK

So weit, so gut: Wir starten mit dem SMON-Kommando G
1400 und erhalten eine Registeranzeige mit dem Programm-
zdhlerstand 1501. Genau das hatten wir ja erwartet.
Weniger durchschaubar ist das folgende Beispiel:

1400 LDA #00
1402 LDX #16
1404 STA 1300
1407 STX 1301
140A JMP (1300)
Dazu gehért dann noch die Programmzeile:
1600 BRK

Wenn Sie das genauso eingegeben haben und dann mittels
G 1400 starten, erhalten Sie eine Registeranzeige mit dem
Programmzahlerstand 1601.

Schon an der neuen Schreibweise des Argumentesin Zeile
140A werden Sie bemerkt haben, daB hier nicht mehr die nor-
male absolute Adressierung wie zuvor angewendet wird. Dies
isteine neue Form: Die indirekte Adressierung. Indirekt des-
wegen, weil wir nicht mehr direkt die Zieladresse angeben,
sondern einen sogenannten Vektor. Ein Vektor besteht aus
zwei aufeinander folgenden Speicherzellen (hier also 1300
und 1301), die in der Form LSB/MSB die eigentliche Ziel-
adresse enthalten. Das LSB von $1600 ist $00. Das haben
wir Uber den Akku nach $1300 geladen. Das MSB $16 kam
durch das X-Register an seinen Platz $1301:

Zieladresse 16 00
MSB LSB
t t
Vektor 1301 1300

Das ist die Methode der toten Briefkasten, die in Kreisen
der Assembler-Alchimisten anscheinend genauso beliebt ist
wie bei Agenten. So wie diese im hohlen Baum die Treffpunkt-
anschrift hinterlegt finden, verlaBt sich unser Computer auf
die Speicherstellen 1300 und 1301 fur die Angabe der
Zieladresse.

Diese Artder Adressierungistim wahrsten Sinn des Wortes
ein Unikum: Es gibt sie namlich nur fir den JMP-Befehl! Davon
wird allerdings dann auch recht haufig Gebrauch gemacht,
zum Beispiel im Betriebssystem unseres Computers. Aber
dariber und Uber die Vektoren, die dazu verwendet werden,
soll ein andermal berichtet werden.

Wir dirfen namlich nicht den anderen Sprungbefehl JSR
vergessen. JSR steht fur »dump to SubRoutine«, was einge-
deutscht etwa bedeutet »springe zum Unterprogramme.
Genauso wie in Basic Unterprogramme durch GOSUB Zei-
lennummer aufgerufen werden, kann das auch hier gesche-
hen durch JSR Adresse. Hier ist nur die absolute Adressie-
rung méglich. Das erste Beispiel soll uns zeigen, wie dieser
Befehl funktioniert:

1400 JSR 1500
Dort soll dann erstmal stehen:
1500 BRK

Noch nicht starten!! Zunachst einmal verzeihen Sie mir
diese Programmierer-Todstinde: Aus einem Unterprogramm
heraus den Programmablauf zu beenden! Ich werd's auch nie
wieder tun. Hier geschieht das nur zu Lehrzwecken. Was lauft
ab: Der Programmzahlerinhalt plus 2 wird auf den Stapel
gelegt und dann die Adressse 1500 in den Programmzahler
geladen. Ebenso kurz wie unklar! Was ist denn ein Stapel?
Also langsam, Schritt fur Schritt.

30

Der Sinn von Unterprogrammen ist ja, daB der Computer
nach Ende der Bearbeitung wieder ins aufrufende Hauptpro-
gramm zurtckkehrt. Er muB sich aber dazu irgendwo merken,
von wo aus er zum Unterprogramm gesprungen ist. Dazu ver-
wendet er den Stapel. Dasist ein Speicherbereich ($0100 bis
$01FF), der direkt vom Prozessor aus verwaltet wird. Die
genaue Architektur und Handhabung dieses »Prozessor-
Stack« werden wir noch in einer spéteren Folge kennenler-
nen. Uns soll hier nur interessieren, daB es einen Zeiger gibt,
der auf den nachsten freien Platz im Stapel weist und daB die-
ser Speicher von oben nach unten geflit wird (wie in Basic
bei den Strings). Wenn Sie mit Hilfe des SMON mal in den Sta-
pel hineinsehen wollen, dann geben Sie doch mal ein M 0100
O1FF. Was nun genau bei lhnen drin steht, ist sehr von der vor-
herigen Nutzung lhres Computers abhéngig. Der Mikropro-
zessor nutzt den Stapel bei sehr vielen Tatigkeiten. Es kommt
auch nur auf den Teil des Stapels an, der durch den Stapelzei-
ger als gefullt bezeichnet wird. Der Stapelzeiger wird beim
SMON in der Registeranzeige als SP angezeigt. Wenn |hr Sta-
pelzeiger (prifen Sie das doch mal durch Eingabe von R) nun
zum Beispiel F6 zeigt, dann bedeutet das, daB alle Stapel-
platze von $01F6 an abwirts frei und die oberhalb bis $01FF
besetzt sind. Beim Nachsehen mit M 01F0 O1FF finden Sie
dann beispielsweise:

:01F0O 20 00 20 AA C1 FA CO 46

:01F8 E1 E9 A7 A7 79 A6 9C E3

Die Speicherstelle, auf die der Stapelzeiger weist, ist unter-
strichen. Nun starten wir mit G 1400 unser kleines verbote-
nes Testprogramm. Es meldet sich die Registeranzeige. Im
Stapelzeiger steht jetzt F4 (oder eben Ihr vorhergegangener
SP minus 2). Wenn wir nun wieder im Stapel nachsehen mit
M 01FO O1FF, dann finden wir im Gegensatz zur obigen
Anzeige nun:

:01F0O 20 AA C1 FA CO 02 14 46

-ttt
:01F8 E1 E9 A7 A7 79 A6 9C E3

Unterstrichen ist wieder das Ziel des Stapelzeigers, der
jetzt zwei Platze weitergertickt ist, um der durch Pfeile
gekennzeichneten Adresse 1402 (als LSB/MSB) Raum zu
schaffen. $1402 ist das letzte Byte des JSR-Befehls. Wie wir
den Programmzahler kennen, ist er im allgemeinen immer
einen Schritt voraus. Hier liegt er aber einen zurtick, falls er
nach Beendigung des Unterprogrammes an der notierten
Adresse weitermacht. Dazu kommen wir gleich noch. Was wir
am Programmzéhler aber auch noch nach Ablauf unseres kur-
zen Beispielprogrammes ablesen kénnen, ist die Tatsache,
daB die Sprungadresse 1500 in ihn geschrieben wird, somit
der Sprung dann also stattgefunden hat.
Nun bauen wir das kleine Programm etwas um:

1400 JSR 1500
1403 BRK

Das Unterprogramm soll nur aus dem Ricksprung bestehen:
1500 RTS

Verlangen Sie nun noch vor dem Start eine Registeranzeige
mit R und merken Sie sich den Wert des Stapelzeigers. Dann
starten Sie das Programm mit G 1400 und achten Sie auf die
neue Registeranzeige. Zwei Dinge interessieren uns:

1) Der Wert des Stapelzeigers ist unveréndert geblieben.
2) Der Programmzéahler weist nun auf $1404.

Wenn Sie nun nochmal mit dem M-Befehl des SMON in den
Stapel sehen, werden Sie unter Umstéanden zwar noch die
Adresse 1402 dort finden (dann namlich, wenn wir den Stapel
seit dem letzten Programm nicht verdndert haben). Wie Sie
aber inzwischen wissen, hatte durch den neuen JSR-Befehl
nochmal 1402 dort eingetragen sein missen. Das stand da
auch einige Mikrosekunden lang... bis der RTS-Befehl wirk-
sam wurde. RTS macht ziemlich viel:

1) RTS holt die auf dem Stapel gespeicherte Adresse ab, und
schreibt sie in den Programmzahler.

(= -

Kurs

C 64/VC 20

2) RTS vermindert dabei den Stapelzeiger um 2.
3) RTS addiert zum Programmzéahler eine 1.

Deswegen kann das Programm also bei $1403 weiterlau-
fen und der Programmzéhler nun hinter dem BRK-Befehl
stehen.

Machen Sie doch mal etwas anscheinend total Verr{icktes:
Starten Sie mit G 1500. Es gibt da zwei Méglichkeiten, was
geschehen kann: Entweder stand da noch vom ersten unter-
brochenen Testprogramm die Adresse 1402. Dann endete
nun alles mit einer Registeranzeige, bei der der Stapelzeiger
um 2 héher gerutscht ist.

Oder dastand diese Adresse nicht mehr. Dann befinden Sie
sich nun wieder im Basic. Wieso eigentlich? Als nachste
Adresse finden Sie auf dem Stapel $E146 (dez.57670).
Diese Adresse + 1 wird ja durch RTS in den Programmzahler
gerufen. Ein Sprung an diese Adresse ist ein Sprung in ein
Programm des Betriebssystems. Haben Sie ein ROM-
Listing? Dann sehen Sie mal nach: Dort steht der Befehl...RTS.
Dies neuerliche RTS holt nun jedenfalls die ndchste Adresse
vom Stapel: $A7E9 (dez.42985). Diese Adresse + 1im Pro-
grammzahler fahrt unseren Computer in die Basic-
Interpreter-Schleife, also ins Basic zuriick.

Wir haben so viel Uber den Stapel gehort, daB wir JSR fast
schon wieder aus den Augen verloren haben. Deswegen
nochmal eine kurze Ubersicht:

a) JSR speichert den Programmzahlerwert des letzten Bytes
des Befehls auf dem Stapel zum Beispiel 1402,

b) stellt dabei den Stapelzahler um 2 zurtick zum Beispiel von
$F6 nach $F4

c) schreibt in den Programmzahler die angegebene Ziel-
adresse, zum Beispiel 1500

d) Das Unterprogramm wird abgearbeitet bis der RTS-Befehl
auftaucht.

e) Dann wird die gemerkte Adresse +1 in den Programmzah-
ler geschrieben, zum Beispiel 1402+1=1403

f) und dabei der Stapelzahler wieder um 2 erhdht, zum Bei-
spiel von $F4 wieder zu $F6

g) Das Programm lauft nun wieder nach dem JSR-Befehl wei-
ter, zum Beispiel also bei 1403.

Nun sollte eigentlich auch klar sein, warum ein Aussprung
aus einem Unterprogramm oder ein Abbruch im Unterpro-
gramm eine Programmierer-Todsinde ist: Der Stapelzeiger
wird nicht zurlickgestellt. Die gemerkte Riucksprungadresse
versauert allmahlich auf dem Stapel. Noch schlimmer sind sol-
che Sachenin einer Schleife, wo mehrfach aus dem Unterpro-
gramm ausgebrochen wird: Hier ist der Stapel bald voll Mll
und der Computer beendet seine Zusammenarbeit mit dem
Programmierer. Weil aber Basic-Programme nichts anderes
sind als eine Folge von Maschinenprogrammen, die je nach
Befehl durch den Interpreter aneinandergereiht werden, ist
das auchin Basic eine Todsiinde. Wir wollen aber nicht so hart
mit uns umgehen: Wenn wir gelernt haben, wie man mit spe-
ziellen Assembler-Befehlen im Stapel herumschaufeln kann,
dann haben wir bei richtiger Anwendung von vorneherein
jedenfalls in diesem Punkt die Absolution erhalten.

29. Alles flieBt: FlieBkommazahlen

Jeder, der tiefer in die Geheimnisse der Assembler-Alchimie
eindringen will, muB sich vertraut machen mit der haufigsten
Art der Zahlenverarbeitung in unserem Computer. Das ist die
Handhabung von FlieBkommazahlen (auch Gleitkommazah-
len genannt). Wir werden dazu folgende Fragen zu kléren
haben:

1) Was sind FlieBkommazahlen?

2) Wie sehen sie im bindren Zahlensystem aus?

3) Wie behandelt unser Computer positive und negative
FlieBkommazahlen?

bAEr,

4) Wie kénnen wir als Programmierer EinfluB nehmen auf die
Verarbeitung dieser Zahlen im Computer?

Die Behandlung dieser vier Fragen wird uns eine ganze
Weile beschéftigen. Fangen wir mit der ersten an: In Stan-
dardwerken der Mathematik werden Sie lange suchen mis-
sen, um den Begriff »FlieBkommazahl« zu finden. Im deut-
schen Sprachraum gibt es haufiger die Bezeichnung »wis-
senschaftliche Zahlendarstellung«. Das klingt sehr hochge-
stochen und ist eigentlich ganz einfach. Leser der
Grafik-Serie werden sich vielleicht noch erinnern: Die Zahl
1000 kann man auf verschiedene Weise darstellen:

1000 =10 * 10 * 10 = 103 (in Basic 1013)

Die hochgestelite Zahl (in Computerschreibweise: Die Zahl
hinter dem Hochpfeil) ist hier gleich der Anzahl der Stellen
minus 1 (1000 hat vier Stellen, also ist die Hochzahl eine 3).
Diese Hochzahl nennt man Exponent (vom lateinischen expo-
nere = anzeigen, herausheben). Nehmen wir nun einige
andere Zahlen:

200=2*100=2 * 1012
oder
2500=2,5*1000=2,5* 1013

Ich glaube, jetzt beginnt es lhnen klarzuwerden, daB man
auf diese Art wohl alle Zahlen irgendwie darstelien kann. Man
dréselt die Zahlen auseinander, bildet ein Produkt, von dem
der eine Multiplikator durch 10 teilbar ist (durch die Basis
unseres normalen Zahlensystems). Genauer gesagt: Ein Fak-
tor (also in den Beispielen 1000 oder 100) ist darstellbar als
Potenz von 10. Der andere Faktor (in den Beispielen 1 oder 2
oder 2,5) wird Mantisse (vom lateinischen manitissa =
Zugabe, Anhang, Schleppe) genannt. Sehen wir uns nochmal
2500 an:

2500= 2,56*1000= 2,5*10t3
= 25* 100= 25*10t12
= 250* 10= 250*10t1
= 2500 * 1=2500* 1010

Das letzte war nur der Volistandigkeit halber, denn irgend-
eine Zahlhoch Oistimmer 1. Man kann auch aus der 2500 fol-
gendes machen:

2500=0,25 * 10000= 0,25* 1014
oder = 0,025 * 100000 = 0,025 * 10t5
und so weiter. Oder anders herum:
2500 = 25000*0,1 = 25000 * 101-1
= 250000 * 0,01 = 250000 * 10t-2
und so weiter.
Dabei bedeutet:
102=1/102= 0,01

Man kann sich das merken, indem man die Anzahl der Stel-
len z&hlt, um die man das Komma verschiebt. Diese Anzahl
addiert man dann zur Hochzahl. Zur Erlduterung:

0,12345 = 1,2345 * 10!

Wir haben das Komma um eine Stelle nach rechts gerickt,
weshalb wir die Hochzahl -1 schreiben miissen (vorher war
da namlich unsichtbar die Hochzahl O0: und 1010=1).

0,12345 = 123,45 * 10-°

Hier wurde das Komma um drei Stellen nach rechts ver-
schoben. Daher der Exponent -3. Sie sehen folgenden
Zusammenhang:

Komma eine Stelle nach rechts verschoben: Exponent
+ (-1).

Zum Beispiel
0,1234*102=1,234*10"3

Komma eine Stelle nach links verschoben: Exponent +1.
Zum Beispiel
3,14*102=0,314*10"°

Verstehen Sie nun, warum man diese Art der Zahlendar-
stellung FlieBkomma- oder Gleitkommazahlen nennt?

Vielleicht sehen Sie aber noch nicht den Sinn der FlieBkom-
mazahlen ein. Dazu gebe ich lhnen zwei einsichtige Bei-

31

C 64/VC 20

Kurs

spiele. Der Atomkern eines Heliumatoms wiegt etwa (halten
Sie sich fest):
0,000 000 000 000 000 000 000 000 006 643 kg.

Sehr unbequem, diese ganzen Nullen immer mitzuschlep-
pen. Wir verschieben deshalb das Komma um 27 Stellen
nach rechts und schreiben dann

6,643*1072" kg.

2. Beispiel: Wir haben einen Ballon mit diesem Gas geflit.
Bei normalen Temperatur- und Luftdruckbedingungen befin-
den sich in einem Kubikzentimeter im Ballon ungefahr (noch-
mal festhalten!):

26 900 000 000 000 000 000 Heliumatome

Wieder eine recht unangenehme Nullschlepperei. Wir ver-
schieben das Komma um 19 Stellen nach links und erhalten
2,69*107'° Heliumatome. Fein, nicht wahr!

Abgesehen von der héheren Bequemlichkeit: Der Compu-
ter miBte allerhand Speicherplatz zur Handhabung der vielen
Nullen bereitstellen. Mit BCD-Zahlen kénnten wir zwar jede
Zahl erfassen, hatten aber immer unterschiedlich viele Bytes
zu verarbeiten. Wenn wir FlieBkommazahlen verwenden,
kénnen wir - wie Sie noch sehen werden - jede (na sagen wir
mal: fast jede) Zahl in der gleichen Anzahl Bytes auf-
bewahren.

Vom Basic her kennen Sie FlieBkommazahlen auch (hier
wird das Komma allerdings durch den Punkt ersetzt, entspre-
chend der angloamerikanischen Schreibweise). Das sind
die, wo man zum Beispiel schreibt 6.02E23 oder
6.02E+23, was dann bedeutet 6,02 * 10-23, E steht dort fur
Zehnerexponent. Durch die Art, wie FlieBkommazahlen im
normalen Computerdasein gespeichert werden, ergeben
sich obere und untere Grenzen. Die héchste in Basic verar-
beitbare Zahlim C 64 ist

+1.70141183*10-38

GroBere Zahlen verursachen in Basic einen OVERFLOW
ERROR. Was in Maschinensprache mit gréBeren Zahlen
geschieht, ist weitgehend unsere Sache. Die dem Betrag
nach kleinste verarbeitbare Zahl ist

+ 2.93873588*10-3°

In Basic arbeitet bei Unterschreitung der Computer einfach
mit einer Null weiter. Fir die Behandlung in Maschinenspra-
che sind ebenfalls wir als Programmierer verantwortlich.

Fur diesmal sei's genug der Zahlenspiele: Spater werden
wir uns weiter mit FlieBkommazahlen befassen.

30. Die USR-Funktion

komma-Akkumulator 1, von uns kinftig einfach FAC genannt.
Der FAC belegt die Speicherstellen 97 bis 102 ($61 bis $66).
Wenn das eventuell in Basic benétigte Ergebnis dort auch in
der vorgeschriebenen Form abgelegt wird, kann es im Basic--
Programm weiterverwendet werden. Keine Angst, dazu kom-
men wir bei der weiteren Behandlung der FlieBkommazahlen
noch ganz ausfuhrlich zu sprechen. Heute soll uns das noch
nicht belasten. Als Argument kann man namlich auch irgend-
eine bedeutungslose GroBe, ein sogenanntes Dummy ange-
ben, das dann gar nicht weiter verwendet wird. Der USR-Be-
fehl dient in diesem Fall lediglich dem bequemen Ansteuern
eines Maschinenprogrammes.

Woher weiB unser Computer beim USR-Befehl, welche
Maschinenroutine er im 64-KByte-Speicher bearbeiten soll?
Beim SYS-Befehl ist das klar: Das Argument sagt es:

SYS 24345
'aBt den Programmzéhler auf dez.24345 zeigen. Aber wenn
wir eingeben:

USR(24345)
dann packt der Computer die Zahl 24345 als FlieBkommava-
riable in den FAC und meldet dann einen SYNTAX ERROR.
Das liegt daran, daB der Basic-Interpreter beim USR-Befehl
einen der oben kennengelernten indirekten Springe
vollfthrt:

JMP (311)

$311/312 (in dezimal 785/7 86) ist also ein Vektor, und der
weistim Normalfall zu einer Routine, die den SYNTAX ERROR
ausgibt (dez. 45640). Bevor wir also den USR-Befehl geben,
missen wir in diesen Vektor die Startadresse unserer
Maschinenroutine schreiben:

dez. 24345 = $5F19

LSB $19 = dez. 25 in Speicher 785 mit
POKE 785,25

MSB $5F = dez. 95 in Speicher 786 mit
POKE 786,95

Jetzt weiB der Computer, wohin er beim USR-Aufruf sprin-
gen soll, und solange, bis wir den Vektor wieder andern, fuhrt
er bei jedem USR-Befehl unser bei 24345 stehendes
Maschinenprogramm aus. Wir missen nur noch dafir sor-
gen, daB dort dann auch wirklich eines anfangt. Ein Beispiel
werden wir nachher noch behandeln.

31. Der harte Kern:
Nochmal Speicherfragen

Wieder einmal soll uns das Zusammenspiel von Basic und
Maschinensprache beschéftigen. Einen Aufruf von Maschi-
nenroutinen - ndmlich den mit SYS - haben wir schon ken-
nengelernt. Wir POKEten die zu ibergebenden Werte an die
Abrufspeicherstellen. Bei diesen Werten hat es sich um einfa-
che Integerzahlen gehandelt, zum Beispiel die Anzahl der
Glieder einer zu summierenden arithmetischen Reihe. Was
tun wir aber, wenn wir FlieBkommavariable an ein Maschinen-
programm Ubermitteln wollen? GewiB, werden Sie sagen, ler-
nen wir das ja noch und kénnen dann entsprechende POKE--
Kommandos geben. Damit haben Sie auch recht, nur ist das
dann der »harte« Weg. Es gibt auch einen problemlosen »wei-
chen« Weg, ndmlich das USR-Kommando.

USR ist ein Basic-Befehl und rihrt her von »USeR callable
machine language subroutine, also »durch den Benutzer auf-
rufbares Maschinensprachunterprogramme«. Darin liegt
eigentlich noch nichts Neues gegeniiber dem SYS-Befehl. Im
Gegensatz zu SYS - wo das Argument die Einsprungadresse
des Maschinenprogrammes ist - Ubergibt USR als Argument
eine beliebige FlieBkommavariable in festgelegter Form an
eine sehr nutzliche Speicherstellenkombination, den FlieB-

32

Die Struktur des C 64-Speichers ist vereinfacht schon in
der Grafik-Serie und zu Beginn dieses Kurses gezeigt wor-
den. Dabei tauchten zwei ROM-Bereiche auf, die wir Basic-
Interpreter und Betriebssystem genannt haben. Diese Unter-
teilung ist nicht ganz korrekt. Wenn Sie tiber ein ROM-Listing
verfligen und beispielsweise das Ende des ROM-Bereiches
von $A000 bis $BFFF sowie den Anfang des oberen ROM
($E00O bis $FFFF) untersuchen, dann stellen Sie fest, daB
ab dez. 49087 ($BFBF) die Basic-Funktion EXP bearbeitet
wird. Der letzte Befehl vor $C000 beendet diese Funktion
aber nicht etwa, sondern dort steht:

JMP EOO0O

Tatsachlich lauft ab $E000 bis $E042 die Bearbeitung der
EXP-Funktion munter weiter, und auch danach finden sich
allerlei Basic-Befehle (SIN, COS und so weiter). Da liegt also
keine klare Trennung vor, sondern ein Mischmasch. Wir soll-
ten uns vielleicht angewdéhnen - statt vom Interpreter und
dem Betriebssystem -, vom unteren und oberen ROM-
Bereich zu sprechen.

Eine andere Unterscheidung ist dagegen sinnvoll: Wie
einige Besitzer neuerer Commodore 64 sicherlich bemerkt

b4 Er,

Kurs

C 64/VC 20

haben, sind Teile der ROM-Routinen im Laufe der Zeit veran-
dert worden. Hauptsachlich geht es bei den aktuellen Neue-
rungen dieser internen Maschinenprogramme um die Farb-
gebung der Zeichen. Man kann eigentlich nie so recht wis-
sen, was den Software-Planern von Commodare noch alles
einféllt. Jedenfalls kénnen deren Ideen manchmal recht dra-
matische Folgen haben, namlich dann, wenn Sie ein fabelhaf-
tes Maschinenprogramm gebaut haben, welches ROM-
Routinen direkt verwendet. Der Programmierer spielt auf
diese Weise eine milde Form des russischen Roulettes.
Glicklicherweise halten sich die Anderungen in Grenzen,
und wir dokumentieren unsere Programme ja auch immer gut
(Sie etwa nicht??). Notwendige Umbauten kénnen also leicht
vonstatten gehen.

Ganz ohne ROM-Routinen-Verwendung kommt man
eigentlichkaumaus. Es gibtaber einen ROM-Bereich, fir den
Commodore verspricht, keinerlei Anderungen durchzufih-
ren: die Kernel-Sprungtabelle.

Das ist ein Programmbereich ($FF81 bis $FFF5), in dem
39 JMP-Befehle enthalten sind (zum Teil in absoluter, aber
auchinindirekter Adressierung). Jeder dieser Sprungbefehle
weist auf die Einsprungadresse eines Maschinenprogram-
mes. Da finden sich alle wichtigen Ein/Ausgabe-Operationen,
Systemtakt- und Uhrsteuerungen und anderes mehr. Wir
werden uns nach und nach damit vertraut machen. In der
Tabelle 7 sind die Kernel-Adressen und ihre Funktion aufge-
fahrt. Manche davon kénnen ohne jede Vorbereitung benutzt
werden, andere brauchen bestimmte Routinen oder Anga-
ben, um sinnvoll zu arbeiten.

Die Absicht von Commodore ist es, daB jeder Aufruf von
zum Beispiel $FFD2 die Ausgabe eines Zeichens bewirkt,
und zwar unabhéngig davon, welchen Computer in welcher
Version wir benutzen. Das Programm, welches diese Zei-

Adresse
HEX dezimal Name Funktion
FF81 65409 CINT Priifen der TV-Norm, Berechnung der Taktfrequenz
FF84 65412 IOINIT Ein/Ausgabe-Reset
FF87 65415 RAMTAS Priifen auf freien Basic-RAM
FFBA 65418 RESTOR Initialisieren der I/0O-Vektoren
FF8D 65412 VECTOR Lesen und Setzen der I/O-Vektoren
FF90 65424 SETMSG Setzen des Ausgabe-Modus
FF93 65427 SECOND Ausgeben der Sekundéradresse nach LISTEN
FF96 65430 TKSA Ausgabe der Sekundéradresse nach TALK
FF99 65433 MEMTOP Lesen/Setzen des Speicherendes
FF9C 65436 MEMBOT Lesen/Setzen des Speicheranfangs
FF9F 65439 SCNKEY Abfragen der Tastatur
FFA2 65442 SETTMO Setzen der Time-Out-Flagge
FFA5 65445 ACPTR Zeichen vom seriellen Port in Akku lesen
FFA8 65448 ClouT Zeichen vom Akku auf seriellen Port ausgeben
FFAB 65451 UNTLK Sendet UNTALK an seriellen Bus
FFAE 65454 UNLSN Sendet UNLISTEN an seriellen Bus
FFB1 65457 LISTEN Sendet LISTEN an Gerate per seriellen Bus
FFB4 65460 TALK Sendet TALK an Gerate per seriellen Bus
FFB7 65463 READST Liest I/O-Status in den Akku
FFBA 65466 SETLFS Festlegung der Parameter fiir OPEN
FFBD 65469 SETNAM Festlegung des Filenamens
FFCO 65472 OPEN Offnet spezifizierten File
FFC3 65475 CLOSE SchlieBt spezifizierten File
FFC6 65478 CHKIN Offnet einen Eingabekanal
FFC9 65481 CHKOUT Offnet einen Ausgabekanal
FFCC 65484 CLRCHN SchlieBt Ein- und Ausgabekanale
FFCF 65487 CHRIN Holt vom aktiven Eingabekanal ein Zeichen in den Akku
FFD2 65490 CHROUT Sendet Akku-Inhalt auf aktiven Ausgabekanal
FFD5 65493 LOAD LOAD und VERIFY von Programmen
FFD8 65496 SAVE Speichern von Programmen
FFDB 65499 SETTIM Uhrzeit setzen
FFDE 65502 RDTIM Uhrzeitlesen
FFE1 65505 STOP STOP-Taste abfragen
FFE4 65508 GETIN Zeichen aus dem Tastaturpuffer in den Akku lesen
FFE7 65511 CLALL SchlieBen aller Kanale und Files
FFEA 65514 UDTIM Uhr um 1/60 Sekunde weiterzahlen
FFED 65517 SCREEN Lesen des Bildschirmformates
FFFO 65520 PLOT Lesen/Setzen der Cursor-Position
FFF3 65523 IOBASE Lesen der Startadresse der Ein- und Ausgabebausteine

Tabelle 7. Kernel-Routinen

:

chenausgabe letztendlich ausfuhrt, kann sich &ndern, kannin
ganz andere Speicherbereiche gelegt werden. An der Stelle
$FFD2 wird aber immer ein JMP mit der Einsprungadresse
stehen. Leiderist diese Sprungtabelle viel zu knapp gehalten.
Es gibt so viele interessante ROM-Routinen, die wir alle ohne

diese schone Sicherheit anspringen missen.

32. Die Urzelle eines Programmprojektes

Wir sind jetzt soweit, daB wir die Urzelle eines Programm-
projektes, welches uns eine lange Zeit begleiten wird, auf-
bauen kénnen. Wir wollen etwas unter den Teppich kehren.
Der Teppich, das sind die uns bislang nicht zugéngigen
RAM-Bereiche unter den ROMs. Haben Sie das nicht auch
schon mal erlebt, daB Sie wahrend einer Programmarbeit
plétzlich feststellen, Sie bendtigen zum Beispiel fur eine
Zwischenrechnung ein weiteres Programm, oder Sie walzen
Listen und denken sich, ein kleiner Hilfsbildschirm wére jetzt
von Nutzen, oder....

Mit diesem heute zu startenden Programm wére all das und
noch viel mehr realisierbar. Es soll auf einfache Weise belie-
bige Speicherbereiche unters ROM schieben und sie wieder
hervorholen kénnen.

Naturlich braucht die Entwicklung dieses Projektes einige
Zeit, zumal wir noch vieles lernen missen. Deswegen sind wir

VERSCHIE-
BEN 2

Oberes ROM
ausschalten

Aktuelle Bildschirmfarb- Aktuelle Adresse unter
speicherzelle — Y-Reg. oberem ROM — Akku
.

VERSCHIE-
BEN 1

Aktuelle Bildschirm-
speicherzelle — Akku

j

Akku — unter Aktuelle Adresse unter
oberes ROM oberem ROM + 28
— Akku
Y-Register — Akku [
Akku — aktuelle
AKKu — unter 4 Bildschirmspeicherzelle

oberes ROM + 28

Y-Register -~ Akku 4

Akku — aktuelle Bild-
schirmfarbspeicherzelle

X-Register
negativ
?

X-Register
negativ
P)

LSB der Startadresse
von VERSCHIEBEN 2
— Akku

I Oberes ROM
Akku — LSB wieder einschalten

des USR-Vektors |

LSB der Startadresse
von VERSCHIEBEN 1
— Akku

Akku — LSB des
USR-Vektors

RTS

RTS

. Bild 17. Das FluBdiagramm zu dem im Text erklarten
Programm.

33

C 64/VC 20

Kurs

in dieser ersten Urzelle noch sehr eingeschrénkt: Wir ver-
schieben zuerst einmal nur eine Bildschirm-Kopfzeile unter
den oberen ROM-Bereich. Auch in dieser einfachsten Ver-
sion gibt es noch einige Programmteile, die Sie erst nach der
néchsten Ausgabe verstehen werden. Aberirgendwann mis-
sen wir ja mal anfangen, Nagel mit Képfen zu machen.
Unser Maschinenprogramm soll durch die USR-Funktion
aufgerufen werden. Wie wir es in dieser Ausgabe gelernt
haben, muB deshalb vor dem ersten Aufruf eine Initialisierung
durch Belegen des USR-Vektors mit unserer Startadresse
stattfinden. Die Startadresse soll $02B6 (dez. 694) sein,
denn dort gibt es einen freien RAM-Bereich bis inklusive
$02FF (dez. 767), der weder andere Programme noch
Kassettenoperationen stort. Das MSB $02 ist dezimal auch 2
und wird nach 786 gePOKEt:
POKE 786,2
Das LSB $B6 ist dezimal 182 und soll in 785 geschrieben
werden:
POKE 785,182
Damit ist der USR-Vektor gestellt und wir brauchen uns
nicht mehr weiter darum zu kimmern: Jeder USR-Aufruf wird
nun den Start des Programmes bewirken. Nun zum Programm
selbst. In Bild 17 finden Sie ein FluBdiagramm dazu.
Zundchst konstruieren wir den Teil, der die erste Bild-
schirmzeile nach $EO00 und folgende Speicherstellen
schiebt. Das X-Register verwenden wir als Index und laden es
mit dez.40 = $27.
Schalten Sie also den SMON ein und starten Sie den
Assembler mit:
A 02B6
Dann geben Sie ein:
02B6 LDX #27
Nun packen wir das letzte Zeichen der obersten Bild-
schirmzeile in den Akku:
02B8 LDA 0400,X
Indas Y-Register legen wir die dazugehérige Farbe aus dem
Bildschirmfarbspeicher:

Dasselbe tun wir mit dem Farbcode, der ab $E028+$27
abwarts gespeichert wird. Leider kann man STY nicht X-indi-
ziert-absolutadressieren (siehe Tabelle 5). Deshalb schieben
wir zuerst den Y-Registerinhalt in den Akku:

02C1 TYA
02C-
2 STA EO028,X

Damit ist das letzte Zeichen der Kopfzeile verschoben. Wir

zéhlen das X-Register um 1 herunter:

02C-
5 DEX
Der X-Index weist nun auf das vorletzte Zeichen, mit dem
sich alles ab $02B8 wiederholt. Wenn das X-Register bis 0
heruntergezahlt ist, weist es auf das erste Zeichen der Kopf-
zeile. Die Schleife muB dann noch einmal durchlaufen werden
und ein weiteres Herabzihlen des X-Registers erzeugt $FF,
was zum Setzen der N-Flagge fuhrt. Das ist dann unser
Signal, daB die gesamte Kopfzeile Gbertragen wurde. Die
N-Flagge wird durch den BPL-Befehl getestet:
02C-
6 BPL 02B8
So weit, so gut. Wir hatten natirlich auch das X-Register
von O an hochzihlen kénnen. Zum Beenden der Schieife
wére dann aber ein CPX-Befehl erforderlich gewesen, der
jedesmal den X-Registerinhalt mit der Zahl $27 vergleicht.

MERKE: Indexregister in Schleifen abwaérts zu zihlen, kann
Rechenzeit einsparen!

Ab $02CE soll der umgekehrte Vorgang, also das Zurick-
schieben der vorher gespeicherten Kopfzeile in den Bild-
schirmspeicher geschehen. Das einfachste wére es sicher-
lich, diesen Programmteil mit einem weiteren USR-
Kommando zu starten. Das s&he dann so aus:

1.USR-Befehl - schiebt Kopfzeile unter oberes ROM

2.USR-Befehl - holt Kopfzeile zurtick in Bildschirm-
speicher

3.USR-Befehl - schiebt wieder Kopfzeile unter ROM

4.USR-Befehl - holt sie wieder zuriick und so weiter.

Weil aber das Umstellen des USR-Vektors durch POKEs
vom Basic aus lastig ist, tun wir das einfach immer am Ende
des betreffenden Maschinenprogrammabschnittes. Wir

02BB LDY D800,X
Den Akkuinhalt - also die Bildschirminformation - legen wir
nach $E000+$27:
02BE STA EOO00,X
1 REM 3636363633 336 3 36 36 36 36 36 36 26 30 36 26 36 3 3 36 3036 36 3 36 36 3 3 % 3 £250>
2 REM * * {229>
3 REM * TEST FUER DIE 1. VERSION DES * {139
4 REM * PROGRAMM-FROJEKTES * <@48>
SREM * VERSCHIEBEN VON * {009 >
& REM % SFEICHEREEREICHEN * <193>
7 REM = * <234>
8 REM * HEIMO FONNATH HAMBURG 1984 * <@81>
QD REM %3363 %9 3 3 38 3 3636 3 3636 3 3 36 3 36 3363636 3 3636 963696 39 <P02>
18 REM <1853
15 REM ++++++ USR-VEKTOR EINSTELLEN ++++ <@&65>
20 REM £163%>
25 POKE 785,182:POKE 786,2 {239>
3@ REM 173>
35 REM ++++++ KOPFZEILE ++++++++++++++++ <@13>
40 REM <183

45 PRINT CHR#(147)CHR#(18)"TEST
: BILD #0400=1024, FARBE #DBOO=55296"CHR%(14
&) <a71>
S@ PRINT:PRINT:PRINT“DURCH IRGENDEIN USR-KOMMAN

DO WIRD NUN IM PROGRAMM-MODUS"™ <@20>
55 PRINT"DER ERSTE TEIL DES VERSCHIEBE-PROGRAMM
ES AUFGERUFEN" <11@>

&0 PRINT"DIE KOFPFZEILE WIRD UNTER DAS OBERE
ROM{25PACE>KOPIERT. " <215>
&5 REM <208>
70 REM ++++++ 1. USR-AUFRUF ++++++++++++ <@42>
75 REM £218>
80 A=USR(1) <124

83 PRINT:PRINT"HIER GESCHIEHT DAS DURCH A=USR(1
) IN{4SPACE}ZEILE &5" 132>
9@ PRINT"DABEI IST 1 EIN DUMMY UND MIT A FANGEN
{25PACEIWIR AUCH NICHTS WEITER AN." <@63>
95 PRINT"AUF TASTENDRUCK WIRD DER BILDSCHIRM

{25PACE}GE-LOESCHT" <@29>
100 REM {243>
185 REM ++UEBERSCHREIBEN DER KOFPFZEILE ++ <@46>
11@ REM 253>
115 POKE 198,@8:WAIT 198,1:PRINT CHR$(147) <{@90>
120 REM <@a7>
125 REM +++ NEUBEGINN DES FPROGRAMMES ++++ 173>
130 REM <@17>

135 PRINT CHR#(19)"WAS AUCH IMMER JETZT IN DER
KOPFZEILE{3SFACE}STEHT, ES WIRD BEIM 2.USR"
017>
14@ PRINT"VON DEM ZUVOR DURCH DAS ERSTE USR
GE—-{3SPACE>SPEICHERTE UEBERSCHRIEBEN" <@78>
145 PRINT:PRINT"WENN SIE JETZT EINE TASTE DRUEC

KEN..." <104>
150 POKE 198,0:WAIT 198,1 246>
155 REM {042>
160 REM ++++++ 2. USR-AUFRUF +++++++++++ <@90>
165 REM <@52>
170 A=USR (1) : PRINT <1469>

175 PRINT"IST DIE ALTE KOPFZEILE ZURUECK IN
DEN{ZSPACEYBILDSCHIRMSPEICHER GESCHOBEN. "
<164

188 END £@52>

Bild 18. Test und Demonstration der Verschieberoutine.

Das Programm zeigt das Ein- und Ausschalten einer Kopfzeile auf dem Bildschirm

ba-eTy

Kurs

C 64/VC 20

schreiben also das LSB der Programmfortfihrung ($CE)
nach $311. Das MSB bleibt unverandert $02.

02C8 LDA #CE
02CA STA 0311
02CD RTS

Mit dem RTS sind wir wieder im Basic-Programm gelandet,
welches nun normal weiterverarbeitet wird. Erst ein neues
USR-Kommando - im Programm oder im Direktmodus - star-
tet den zweiten Teil unseres Maschinenprogrammes (weil in
$0311, - der Einsprungpunkt des USR-Befehls - die Start-
adresse der auszufithrenden Routine steht).

In diesem 2. Teil mUssen wir erst einige Befehle geben, die
Sie jetzt vielleicht noch nicht verstehen. Das héngt damit
zusammen, daB zum Herauslesen des RAM unter dem ROM
das ROM ausgeschaltet werden muB (entspricht POKE

1,63):
02CE LDA 01
02D0 PHA
02D1 LDA #35
02D3 STA 01

(Der PHA-Befehl dient hier zur Zwischenspeicherung des
Akku-Inhaltes). Das ist hiermit geschehen und wir kommen
wieder in bekannte Gefilde mit der Ausleseschleife:

02D5 LDX #27

02D7 LDA EOO0O,X
02DA LDY E028)X
02DD STA 0400X
02E0 TYA

02E1 STA D800,X
02E4 DEX

02E5 BPL 02D7

Damit ist die gesamte gespeicherte Kopfzeile wieder
zuriickgeholt und wir kénnen das ROM wieder einschalten:

02E7 PLA
02E8 STA 01
Befehls- Adressierung Byte- Code Takt- Beeinflussung
wort zahl Hex Dez zyklen von Flaggen
LDA absolut,X 3 BD 189 4 NZ
0-page-abs,X 2 B5 181 4 N,Z
absolutY 3 B9 185 4 N.Z
LDX absolutY 3 BE 190 4 NZ
0-page-abs,Y 2 B6 182 4 N,Z
LDY absolut,X 3 BC 188 4 N.Z
0-page-abs, X 2 B4 180 4 NZ
STA absolut,X 3 9D 157 5 /
absolutY 3 99 153 5 /
0-page-abs,X 2 95 149 4 /
STX 0-page-absY 2 96 150 4 /
STY 0-page-abs,X 2 94 148 4 /
INC absolut, X 3 FE 254 7 NZ
0-page-abs,X 2 F6 246 6 N.Z
DEC absolut, X 3 DE 222 7 NZ
0-page-abs,X 2 D6 214 6 N,Z
ADC absolut,X 3 7D 125 4 NVZC
absolutY 3 79 121 4 NVZC
0-page-abs X 2 75 17 4 NVZC
SBC absolut,X 3 FD 253 4 NV,ZC
absolutY 3 Fo 249 4 NVZC
0-page-abs,X 2 F5 245 4 NVZC
CMP absolut,X 3 DD 221 4 NZC
absolutY 3 DS 217 4 NZC
0-page-abs,X 2 D5 213 4 N,Z2C
BIT absolut 3 2C 44 4 NV,Z
0-page-abs. 2 24 36 3 NV.Z
cw implizit 1 B8 184 2 v
NOP implizit 1 EA 234 2 /
TAX implizit 1 AA 170 2 N.Z
TAY implizit 1 A8 168 2 NZ
TXA implizit 1 8A 138 2 N.Z
TYA implizit 1 98 152 2 N.Z
JMP absolut 3 4C 76 3 /
indirekt 3 6C 108 5 /
JSR absolut 3 20 32 6 /

Tabelle 8. Zusammenfassung aller wichtigen Daten der
neuen Befehle

b4er,

Falls nun wieder ein USR-Kommando auftaucht, soll die
Kopfzeile mit dem 1. Programmteil unter das obere ROM
gelegt werden wie am Anfang. Wir miissen deshalb den USR-
Vektor auf $02B6 zurlickschreiben:

O2EA LDA #B6
02EC STA 0311
O2EF RTS

Das wars! Wenn nun im Programm oder im Direktmodus
wieder ein USR-Befehl auftritt, kann das Ganze von vorne
beginnen. In dieser Version wird jedesmal eine neue Kopf-
zeile hin- und wieder zurtickgeschoben. Wenn Sie eine ein-
mal festgelegte Kopfzeile immer wieder benutzen méchten,
dann stellen Sie den USR-Vektor einfach nicht mehr zurick:
Lassen Sie also die Befehle bei 02EA und 02EC weg. Das
Programm endet in dem Fall mit:

02EA RTS

Eine wichtige Bemerkung noch: So bequem der Ort auch
ist, an dem unser kurzes Programm steht, er hat einen gravie-
renden Nachteil: Falls Sie mittels einer RESET-Taste oder per
Software einen Basic-Kaltstart durchfiihren, geht unser Pro-
gramm fléten! Dieser Speicherbereich wird im Reset-
Programm namlich mit lauter Nullen Uberschrieben. Deswe-
gen speichern Sie es bitte bald ab.

In Bild 18 finden Sie ein kleines Testprogramm fiir unsere
Verschieberoutine, und in Tabelle 8 eine Zusammenfassung
aller wichtigen Daten der neuen Befehle.

33. Wir stapeln

In Kapitel 28 haben wir beim JSR-Befehl schon den Stapel
etwas kennengelernt. Aber so ganz genau wissen wir’s ja
noch nicht, was dasist. Deswegen jetzt malim Detail: Der Sta-
pel, auch Prozessorstack genannt; ist der Speicherbereich
von dezimal 256 ($100) bis dezimal 511 ($1FF), der direkt
von unserer CPU verwaltet wird. Das ist also die gesamte
Page 1. Ahnlich wie bei der String-Verwaltung geschieht auch
hier das Fiillen von oben nach unten. Das erste Byte, welches
in den Stack geschoben wird, kommt also nach $1FF, das
néachste nach $1FE und so weiter. Voll ist der Stapel, wenn
auch $100 besetzt wurde (siehe Bild 19).

Warum heiBt das Ding nun eigentlich Stapel? Das erkiart
sich aus dem Zugriffs-Prinzip. Man spricht von einer LIFO-
Struktur, von »Last In - First Out¢, zu deutsch »zuletzt hinein -
zuerst heraus«. Das zuerst hineingebrachte Byte befindet
sich am Speicherboden ($1FF), das zuletzt eingebrachte an
der Speicherspitze. Stellen Sie sich einen Stapel Akten vor
(Bild 20).

Offensichtlich wurde der 4. Aktenordner zuletzt auf den
Stapel gesteckt. Er kann zuerst heruntergeholt werden. An
die Akte 1 kommen wir erst heran, wenn alle anderen herun-
tergenommen worden sind. Genauso verhélt es sich mit dem
Prozessorstack: Um an das unterste Byte des Stapels heran-
zukommen, mussen erst Byte fur Byte die darliberliegenden
(nach Bild 19 eigentlich die darunterliegenden) weggeschafft
werden.

Mit dem Prinzip des Stapelspeichers werden Sie sich aus-
kennen, wenn Sie schon mal andere Programmiersprachen
als Basic ausprobiert haben: In Forth beispielsweise operie-
ren Sie standig mit Stapeln. 3

Damit wir - und der Prozessor - den Uberblick Uber den
Stack behalten, gibt es dankenswerterweise noch einen Sta-
pelzeiger (stackpointer), der jeweils auf den néchsten freien
Platz des Stapels weist. Da gibt’s nun aber ein kleines Pro-
blem: Der Stapel belegt die komplette Seite 1.

Ein Stapelzeiger, der auf zum Beispiel $01FE zeigen soll,
miiBte das MSB (also 01) und das LSB (also FE) in zwei Bytes
lagern. Der Stapelzeiger ist aber nur 8 Bit gro8 ... Freundli-
cherweise sorgt unser Mikroprozessor automatisch fiir das

35

Kurs

C 64/VC 20

neunte Bit. Der Zeiger z&hlt also immer von $FF an rickwarts
bis $00 und weist dabei von $1FF bis $100.

Der Stack hat in unserem Computer drei Aufgaben zu
erfullen:

1) Organisation von Unterprogramm-Adressen
2) Zwischenspeicherung bei Unterbrechungen (Interrupts)
3) voriibergehende Datenspeicherung

Die Rolle des Stapels bei Unterprogramm-Aufrufen haben
wirin der letzten Folge schon ausgiebig behandelt. Die soge-
nannten Interrupts heben wir uns noch fir spater auf - dazu
fehlen uns noch ein paar Kenntnisse. Mit der voribergehen-
den Speicherung von Daten befassen wir uns gleich, wenn
wir an die Befehle zur Stackbehandlung herangehen.

Zuvor - weil das hier gerade ganz gut paBt - noch ein paar
Gedanken zur rekursiven Programmierung. Gemeint ist damit
eine Programmstruktur, in der sich ein Unterprogramm selbst
aufruft. Auch GOSUB-Befehle in Basic bewirken Eintrage der
Rucksprungadressen im Stapel. Auf diese Weise ergibt sich
furunseren Computer eine begrenzte Verschachtelungstiefe
bei Unterprogrammaufrufen. Diese wird bei Rekursion
besonders schnell erreicht, und das bewirkt die Ausgabe
einer OUT OF MEMORY-Fehlermeldung.

34. Aktives Stapeln mit
PHA, PLA, PHP, PLP, TSX und TXS

Mit dem Stapel haben wir 256 Speicherplatze fir eine
schnelle Zwischenspeicherung aller mdglichen Daten zur
Verfiigung. Weil der 6510 (und nattrlich auch der 6502) die-
sen Speicherbereich wie die Zeropage behandelt, geht das
Speichern sehr schnell. Man muB nur immer die spezielle
LIFO-Struktur bertcksichtigen.

Im Grunde braucht man eigentlich nur zwei Befehle: Etwas
auf den Stapel schieben (in der Literatur oft als Push-Befehl
bezeichnet) und etwas herunterziehen, das nennt man dann
Pull- oder auch Pop-Befehl.

Unser Prozessor kennt insgesamt sechs auf den Stapel
wirkende Anweisungen:

PHA Damit schreibt man den Akku-Inhalt in den Stapel
(»PusH-Accumulator«). Der Stapelzeiger wird automatisch
eine Position heruntergezahlt (er rechnet ja von $FF an
abwarts!). Der Inhalt des Akku wird dabei nicht verandert.
Deswegen bleibt auch das Status-Register (also die ganzen
Flaggen: NV B D | Z C) unbeeinfluBt.

PLA »Pull Accumulator«. Das ist der umgekehrte Weg: Das,
was zuoberst auf dem Stapel liegt, wirdin den Akku geschrie-
ben. Dadurch wird ein Stapelplatz frei, was den Stapelzeiger
veranlaBt, um 1 zu wachsen. Weil das, was da in den Akku
geladen wird, O sein kann oder auch negativ (also mit gesetz-

tem Bit 7), wird unter Umstanden auch die N- oder die Z-
Flagge verandert.

Weniger mit Datenzwischenspeicherung haben die ande-
ren Befehle zur Stapel-Manipulation zu tun:

PHP Das steht fur »PusH Processor statusk, also »schiebe
das Prozessor-Status-Register auf den Stapel«. Der aktuelle
Flaggenstand kann damit aufbewahrt werden. Das Status-
Byte &ndert seinen Inhalt dabei ebensowenig wir der Akku bei
PHA. Auch hier wird der Stapelzeiger freundlicherweise um 1
herabgezanhit.

PLP »Pull Processor status«, »hole den Prozessor-Status
vom Stapel« ist der umgekehrte Befehl, der (wie bei PLA in
den Akku) das, was zuoberst im Stapel liegt, in das Flaggen-
Register schreibt. Da sollte man héllisch aufpassen, was man
damit einladt: Das ist eine feine Gelegenheit fiir den Compu-
ter, abzustirzen. Der Stapelzeiger wird - wie gehabt - um 1
erhoht.

Nicht direkt mit dem Stapel, sondern mit dem Stapelzeiger
befassen sich die beiden folgenden Befehle:

TSX »sTransfer Stack-pointerinto X<, zu deutsch, »schiebe den
Stapelzeiger ins X-Register« ertffnet die Moglichkeit, den
Stapelzeiger zu lesen. Dabei bleibt er selbst unverindert
erhalten. Weil nunim X-Register alle Werte zwischen $FF und
0 auftreten kdnnen, werden auch die Flaggen beeinfluBt (N-
und Z-Flagge).

TXS Den umgekehrten Weg geht »lransfer X into Stackpoin-
ter« = »ibertrage X-Register-Inhalt in den Stapelzeiger«. Das
ist der einzige Befehl, der es erlaubt, den Stapelzeiger mit
einem von uns kontrollierten Wert zu laden. Der Inhalt des X-
Registers bleibt dabei unverandert, demzufolge interessieren
sich auch die Flaggen nicht dafr.

Alle sechs Anweisungen bestehen nur aus einem Byte und
sind implizit adressiert. Die Stapelzeiger-Befehle TXS und
TSX benétigen zwei Taktzyklen, die Push-Befehle je drei und
die Pull-Befehle vier Taktzyklen zur Bearbeitung.

Esist etwas schwierig, Stapel-Operationen direkt zu verfol-

.gen. Die meisten Assembler - so anscheinend auch der

SMON - gebrauchen ebenfalls diesen Speicherbereich. Ver-
langt man beispielsweise mitdem SMON-Kommando M 0100
O1FF eine Darstellung des Stapelinhaltes, dann findet man
eine ganze Menge Spuren der Arbeit des Assemblers. Ver-
sucht man die zu I6schen oder zu Uberschreiben, zum Bei-
spiel mit dem nachfolgenden kleinen Programm, dann hat der
Assembiler die Miihe schon wieder zunichte gemacht, wie
man durch erneutes M 0100 O1FF schnell sehen kann. Die-
ses kleine Programm soll unterhalb des durch den Stapelzei-
ger bezeichneten Bereichs 32 Nullen in den Stapel
schreiben:

8000 LDA
8002 TSX

#00

1IFF — Byte 1

1FE — Byte 2

IFD —

1IFC — \ %
ll'-:B -

o

Bild 19. So wird der Stapel gefiilit

36

Bild 20. Der Aktenstapel

i -

C64/VC 20

Kurs

Der Stapelzeiger wird ins X-Register gerettet.

8003 LDY #20
8005 PHA
Wir schieben eine Null auf den Stapel.
8006 DEY
8007 BNE 8005
8009 TXS
Nach 32 Eintragungen von Nullen stellen wir den alten
Stapelzeiger wieder her.
800A BRK

Erneutes Kommando M 0100 O1FF zeigt keine Nullen. Erst
wenn wir anstelle des TXS in Zeile 8009 ein BRK schreiben,
den Stapelzeiger also nicht zurtickschreiben, erscheinen
unsere Nullen. Sieht man genau hin, dann stellt man fest, da
unterhalb des durch den Stapelzeiger bezeichneten
Bereichs genau der gleiche Inhalt zu finden ist wie vorher, nur
eben mit dem Stapelzeiger verschoben.

Ganz konnte ich dies Rétsel noch nicht 16sen, muB ich
gestehen, aber fir den Gebrauch des Stapels andert sich
dadurch fur uns nichts. Worauf muB man achten bei Stapel-
operationen? Ganz einfach: Zwischen dem Ablagern eines
Wertes auf dem Stapel und dem Zurtickholen muB fir jeden
Push-Befehl ein Pull-Befehl vorhanden sein, fir jedes weitere
PHA ein PLA, fiur jedes JSR ein RTS. Nur wenn wir auf diese
Symmetrie der Push- und der Pull-Befehle achten (und wie
Sie noch aus der vorhergegangenen Ausgabe wissen, sind ja
JSR und RTS ebenfalls dazuzurechnen), kénnen wir sicher
sein, daB der Stapelzeiger zum Zeitpunkt des Rickholens
eines Wertes vom Stapel auch wirklich darauf deutet. Wenn
man also nicht ganz genau weiB, wie der verwendete Assem-
bler den Stapel nutzt, sollte man auf Operationen mit den
Befehlen TSX und TXS verzichten.

Nun kénnen Sie schon einen Teil der bislang unbekannten
Programmsequenz aus der letzten Folge verstehen. Im zwei-
ten Programmteil hatten wir mit

02CE LDA 01

02D0 PHA
den Inhalt der Speicherstelle 01 in den Akku geladen und auf
den Stapel geschoben. Spater - nach einigen weiteren Ope-
rationen - wurde dann dieser Speicherinhalt wiederherge-
stellt durch

02E7 PLA

02E8 STA 01

Was aber hat es mit dieser Speicherstelle 01 auf sich? Das
soll nun als néchstes erklart werden.

35. Sein oder Nichtsein:
Das Rétsel des Prozessorports

Der Commodore 64 hat 64 KByte an RAM zu bieten. AuBer-
dem aber verfigen wir beim normalen Programmieren Uber
weitere 24 KByte, in denen das Betriebssystem, der Basic-
Interpreter, Ein- und Ausgabebausteine und der Zeichen-
speicher stecken. Wie Sie wissen, umfaBt der AdreBbus aber
nur 16 Bit, was uns lediglich 65536 Speicherzellen, also 64
KByte adressieren 1aBt. Des Ratsels Losung liegt darin, daB
einige Adressenbereiche mehrfach belegt sind. Man kann
das vergleichen mitdem Trick des Kastens mit dem doppelten
Boden. Welcher Kasteninhalt gerade dem Prozessorzugriff
offensteht, wird durch den Prozessorport, das sind die Spei-
cherstellen 00 und 01, gesteuert.

Dr. Helmuth Hauck hat in seiner Serie »Memory Map mit
Wandervorschlagen« (64er, Ausgabe 11 (1984), Seite 135
ff.) die genaue Funktion jedes Bits dieser beiden Speicher-
stellen erklart. Wer noch mehr wissen méchte - auch tiber die
Wirkungsweise der beiden Leitungen »Game« und »Exrom« -
sollte das nachlesen im »Commodore 64 Programmers Refe-
rence Guide« ab Seite 260. Fir uns als angehende Assem-

bler-Alchimisten ist die Speicherstelle 1 aber so wichtig, daB
wir ganz kurz hier nochmal darauf eingehen.

Die Speichersteuerfunktionen haben die Bits O bis 2 der
Speicherstelle 1. Je nach Belegung dieser Bits gestaltet sich
die 64-KByte-Landschaft unseres Computers wie in Tabelle
9 gezeigt.

Was kénnen wir als Maschinen-Programmierer mit dieser
Kenntnis anfangen? Theoretisch stehen uns fir unsere Pro-
gramme damit 64 KByte offen. Praktisch werden wir nur in
den seltensten Féllen auf die Ein- und Ausgabe-Bausteine
verzichten kénnen. Lassen wir ein reines Maschinenpro-
gramm laufen, ohne jeglichen Rickgriff auf Interpreter oder
Betriebssystem, dann haben wir immerhin noch zirka 60
KByte zur freien Verfligung. Benutzen wir Routinen aus die-
sen beiden ROM-Bausteinen, dann missen wir sie allerdings
- zumindest fur den Zeitpunkt des Routineaufrufs - wieder
einschalten. Wenn wir - was wohl meistens der Fall sein wird
- Kombinationen von Basic- und Assemblersprache verwen-
den, kdnnen wir den gesamten Basic-Speicher bis $A000
frei halten, kdnnen auch den bei allen Beispielprogrammen so
beliebten Bereich $C000 bis $D000 leer lassen und packen
unsere Routinen weitgehend unter die ROMs, die dann
jeweils beim Aufruf abgeschaltet werden. So haben wir eine
Menge zusétzlichen Speicherplatz ergattert.

Nun kénnen wir auch den letzten Rest des bislang unklaren
Programms aus Kapitel 32 verstehen. Nachdem wir den
Inhalt der Speicherstelle 1 auf den Stapel gerettet haben (Zei-

‘len $02CE und $02D0), schreiben wir $35 in den Pro-

zessorport:
02D1 LDA #35
02D3 STA 01

$35istbinar 0011 0101. Die Bits O bis 2, auf die es unsin die-
sem Zusammenhang ankommt, bewirken nun das Ausschal-
ten des Interpreters und des Betriebssystems. Die Ein- und
Ausgabe-Bausteine bleiben aktiv. Im weiteren Programmver-
lauf lesen wir die Speicherinhalte ab $E0Q00, wobei wir nun
den RAM-Inhalt erfassen. Das sollte vielleicht nochmal klar-
gestellt werden: Jedes Hineinschreiben in die mehrfach
belegten Speicherbereiche (dabei sind die Ein- und
Ausgabe-Bausteine aber ausgenommen) wird automatischin
den RAM-Bereich umgelenkt. Das istja auch klar: In ein ROM
kann eben nicht geschrieben werden. Deshalb braucht man
dabei die ROMs nicht auszuschalten. Jeder Lesevorgang
greift aber auf die ROMs zu, weshalb man sie in unserem Fall
ausschalten muB. Wie schon oben beim Stapel erklart, schal-
ten wir durch das Zurtickholen des vorher dorthin geretteten
alten Inhalts der Speicherstelle 1 in den Prozessorport wie-
der den Normalzustand ein.

36. Die indirekte Adressierung

Wir werden nun die beiden letzten noch ausstehenden Arten
der Adressierung kennenlernen. Beides sind indirekte Adres-
sierungsarten. Mit dem indirekten JMP-Befehl (zum Beispiel

Speicherstelle 1 $A000-$BFFF $D000-$DFFF $E000-$FFFF
Bits 2 1 0

1 11 Basic /0 Kernel

110 RAM /10 Kernel

1 0 1 RAM 1/0 RAM

1 00 RAM RAM RAM

0o 1 1 Basic Zeichen Kernel

0o 10 RAM Zeichen Kernel

0 0 1 RAM Zeichen RAM

0 0O RAM RAM RAM

Tabelle 9 zeigt, welche Bausteine bei verschiedener Be-
legung der Bits 0 bis 2 des Prozessorports (Speicher-
stelle 1) eingeschaltet sind. (Frei nach Dr. Hauck, 64’er
Ausgabe 11/84, Seite 136)

37

Kurs

C 64/VC 20

~ JMP(0300)) sind wir in Kapitel 28 schon vertraut geworden.
Wir hatten auch gelernt, daB es sich hierbei um einen absolu-
ten Einzelgénger handelt, der nur fir so einen Sprung erlaubt
ist. Ebenso haben wir die indizierte Adressierung zu beherr-
schen gelernt: Das war die Sache mit den Indexregistern X
oder Y. Eine Kombination aus beiden (also der indirekten und
der indizierten) Adressierungsarten sind die indiziert-
indirekte und die indirekt-indizierte Adressierung.
Die indirekt-indizierte Adressierung
Fangen wir mit der sehr héaufig benutzten indirekt-

_indizierten Adressierung an: Man nennt sie auch »indirekt Y«
oder »nach-indizierte indirekte« Adressierung. Am besten
sehen wir uns mal so einen Befehl an:

LDA (FA)Y

Die Klammer erinnert uns an den indirekten JMP-Befehl.

Tats&chlich hat sie hier auch dieselbe Funktion: In FA und FB
steht ein Zeiger auf eine Adresse. Nehmen wir mal an, die
Belegung der Speicher wére:

FA 01

FB 80
undim Y-Register stiinde eine 5. Der Zeiger FA/FB weist also
auf die Speicherstelle 8001. Da haben wir also wieder das
Prinzip des toten Briefkastens. Der Computer guckt in den
hohlen Baum FA/FB (LSBin FA, MSBin FB) und findet dort die
Treffpunktadresse. Nun sind diese toten Briefkdsten aber
~auch den gegnerischen Alchimisten-Agenten bekannt. Es
. kommt also noch ein Trick dazu: Zur dort aufgefundenen
~ Adresse wird der Inhalt des Y-Registers addiert. In unserem
Fall fanden wir also in FA/FB die Adresse 8001, im Y-Register
steht eine 5, somit ist die endguiltige Adresse 8001+5 =
8006. Unser Beispiel »LLDA(FA),Y« bewirkt daher, daB in den
Akku der Inhalt der Speicherstelle 8006 geladen wird. Nach-
indiziert nennen manche die Adressierung deswegen, weil
zundchst dem Zeiger nachgegangen wird, der in unserem
Beispiel auf 8001 weist, und erst danach durch Addition des
Inhalts des Y-Registers die endguiltige Speicherstelie (hier
also 8006) berechnet wird.

Als Zeiger (also die Adresse in der Klammer) sind nur Zero- -

pagespeicherstellen verwendbar, als Indexregister darf man
hier nur das Y-Register gebrauchen. Von den bisher behan-
delten Befehlen kénnen ADC, CMP, LDA, SBC und STA mit
dieser Adressierungsart verwendet werden. Genaueres fin-
den Sie wieder in der Tabelle mit der Befehls-
Ubersicht (Tabelle 10).

Bevor wir uns dem anderen indirekten AdreB-Modus
zuwenden, wollen wir uns (berlegen, wozu man die indirekt-

Befehls- Adressierung Byte- Code Takt- Beeinflussung

wort zahl Hex Dez zyklen vonFlaggen

LDA indirekt X 2 Al 161 6 N,Z
indirekt Y 2 B1 177 5% N.Z

STA indirekt X 2 81 129 6 -
indirekt Y 2 91 145 6 -

ADC indirekt X 2 61 97 6 NVZC
indirket Y 2 7 13 5* NVZC

SBC indirekt X 2 E1 225 6 NVZC
indirekt Y 2 F1 241 5* NVZC

CMP indirekt X 2 C1 193 6 N,ZC
indirekt Y 2 D1 209 5* NZC

PHA implizit 1 48 72 3 —

PLA implizit 1 68 104 4 N,Z

PHP implizit 1 08 8 3 -

PLP implizit 1 28 40 4 alle

TSX implizit 1 BA 186 2 N,Z

TXS implizit 1 9A 154 2 -

* Wenn bei der Befehlsausfilhrung eine Page-Grenze uberschritten wird, muB noch ein Taktzyklus
dazugerechnet werden.

Tabelle 10. Ubersicht der in dieser Folge vorgestellten
Befehle

38

indizierte Adressierung verwendet. Wie Sie sich naturlich
erinnern kénnen, konnte man mit der normalen indizierten
Adressierung, zum Beispiel mit
LDA 8000,Y

durch Variation des Indexregisters (hier das Y-Register) 256
Speicherstellen erfassen (Y von FF herunter bis 00). Willman
mehr als diese 256 bericksichtigen, dann muB eine neue
Basis (im Beispiel also anstelle der 8000) gewahlt werden.
Um das zu illustrieren, sehen wir uns mal den Anfang eines
Programms an, welches den gesamten Bildschirminhalt aus-
liest und nach EOOO schreibt:

1000 LDY #00
1002 LDA 0400y
1005 STA EOOOY
1008 LDA 0500
100B STA E100)Y
100E LDA 0600Y
1011 STA E200)Y
1014 LDA 0700Y
1017 STA E300)Y
101A DEY

101B BNE 1002

Wie Sie sehen, erfordert das durch die Tatsache, daB vier
Bldcke zu je 256 Bytes Ubertragen werden missen, immer-
hin schon 28 Bytes Programmtext. Nun soll die indirekt-
indizierte Adressierung verwendet werden, um dieselbe Auf-
gabe zu I6sen. Wir legen zunachst zwei Zeiger auf der Zero-
page fest:

FA/FB sollen die Bildschirmadresse enthalten
FC/FD die Zieladresse ab E00O.

1000 LDA #00
1002 STA FA
1004 STA FC
Das waren die LSBs der Zeiger, es folgen die MSBs:
1006 LDA #04
1008 STA FB
100A LDA #EO
100C STA FD

Damit sind die Zeiger festgelegt. Es sind vier Blécke zu je
256 Bytes zu Ubertragen. Diese Blockanzahl legen wir ins
X-Register als Zahler:

100E LDX #04
Dann laden wir ins Y-Register ebenfalls einen Zahler (den
Index):
1010 LDY #00
Jetzt kann die eigentliche Ubertragungsschleife starten:
1012 LDA (FA)Y
1014 STA (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>