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Assembler ist 
keine Alchimie
Den kompletten Assembler-Kurs in einem 
Stück wünschten sich viele 64’er-Leser. In 
diesem Sonderheft können wir diesen 
Wunsch realisieren. Der Kurs soll nicht 
unbedingt ein Buch über Maschinenspra­
che ersetzen, er wird Ihnen jedoch helfen, 
diese Sprache leichter zu verstehen.

Vermutlich hat es Ihnen auch schon ab und zu in den 
Fingern gejuckt, wenn Sie von Wunderdingen gelesen 
haben, die man per Maschinensprache mit dem 

Computer machen kann. Vielleicht haben Sie sogar schon 
mal nichtsahnend angefangen einzutippen, was Sie als 
Assemblerlisting sahen. Doch schon nach dem ersten »C000 
LDA # $00« und RETURN weigerte sich der Computer mit 
einem lapidaren »SYNTAX ERROR«. Wieso, werden Sie sich 
gefragt haben, das ist doch nun die Sprache unserer 
Maschine, nämlich Maschinensprache, was habe ich falsch 
gemacht?

Dann sind Sie sicherlich mal auf diese merkwürdigen 
Basic-Programme gestoßen, in denen ein langer Wurm von 
DATA-Zeilen mit einem kleinen FOR..NEXT.. POKE-Kopf 
vorne und einem SYS-Schwanz hinten enthalten ist, und die 
man Basic-Lader nennt. Sie haben fleißig Zahlen eingetippt - 
das Ganze hoffentlich sofort gespeichert-, vorschriftsmäßig 
mit dem SYS-Befehl gestartet und auf einen scheintoten 
Computer geschaut, der nur noch durch Aus- und Einschal- 
ten wiederzubeleben war. Wenn Sie dann nach langer Fehler­
suche den irrtümlich eingetippten Punkt durch ein Komma 
ersetzt haben (oftfinden Sie auch keinen Fehler, denn bei lan­
gen DATA-Sequenzen schlägt der Druckfehlerteufel mit Vor­
liebe zu), werden Sie sich gefragt haben, warum in aller Welt 
dieses kleine Mißgeschick den ganzen Computer abstürzen 
läßt. Sie merken vermutlich schon, daß mir das alles und noch 
mehr (worüber ich schamhaft schweige) passiert ist. Die Kon­
sequenz war, daß ich losging, um ein schlaues Buch zu erwer­
ben. Aber merkwürdig, damals tauchte der Begriff »Maschi­
nensprache« in keinem Titel auf. Irgendwann begriff ich, daß 
Assembler und Maschinensprache irgend etwas miteinander 
zu tun haben.

Aber da fing das ganze Elend erst richtig an: Da gab es 
6502-, Z80-, 8080-, 8085-, 6800-Assembler, da waren 
irgendwelche Schaltpläne, anscheinend, wie man wo was 
hinlötet- für mich als Nichtelektroniker eine Art moderner 
Kunst-, da war von CPU, Bussen, negativen Flanken, Zwei­
phasentakten die Rede.

Ich habe mich furchtbar geärgert über die Geheimsprache, 
die es dem Uneingeweihten verwehrt, etwas zu verstehen. 
Seither hat sich einiges verändert. Die Geheimnisse sind 
keine mehr und ich werde Ihnen in dieser Serie ohne ver­
schlüsselte Sprache die magischen Zirkel der Assembler- 
Alchimisten offenbaren. Heute gibt es auch Bücher über 
»Maschinensprache auf dem Commodore 64« und es sei 
Ihnen angeraten, ruhig auch das eine oder andere durchzu­
arbeiten. Sie werden allerdings feststellen, daß die meisten 
davon gerade dort auf hören, wo es anfängt spannend zu wer­
den: bei der Benutzung von Routinen des Betriebssystems
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und des Interpreters. Deswegen soll der Schwerpunkt dieses 
Artikels woanders liegen:

Wir werden das notwendige Grundwissen über die Hard­
ware nur ganz knapp behandeln, dann das Vokabular des 
65xx-Assemblers kennenlernen. Den Hauptteil des Artikels 
verbringen wir aber mit Dingen, über die es kaum Literatur 
gibt, nämlich wie man für eine Unzahl von Programmierauf­
gaben nicht nochmal das Rad erfinden muß, weil es schon 
längst in unserem Computer existiert.

Bevor wir loslegen, will ich Ihnen noch etwas Literatur 
empfehlen:
a) Wenn wir über Speicheraufbau, das binäre und das hexa­
dezimale Zahlensystem reden, sollten Sie die Serie »Reise 
durch das Wunderland der Grafik« gelesen haben, die in der 
64’er in den Folgen 1 und 2 (Ausgaben 4/84 und 5/84) diese 
Themen grundlegend behandelt hat. (Auch als Buch unter 
gleichnamigem Titel erschienen.)
b) Als Nachschlagebuch sehr wertvoll ist das Buch von Raeto 
West: C 64 Computer Handbuch. Hier finden Sie auch viele 
Tips und Tricks.
c) Später wird Ihnen dieses Buch fast unentbehrlich vorkom­
men: R. Babel, M. Krause, A. Dripke: Systemhandbuch zum 
Commodore 64 (und VC 20), München 1983

Weitere Literaturempfehlungen werde ich Ihnen von Fall zu 
Fall geben und Sie finden sie auch in der Bücherecke. Gerade 
zu unserem Computer erscheint fastjeden Monat ein neues 
Buch und es ist nicht einfach, die Spreu vom Weizen zu 
trennen.

1. Einige Begriffsklärungen

Zunächst einmal muß ich Sie enttäuschen: Ich glaube kaum, 
daß Sie mit Ihrem Computer je einmal in Maschinensprache 
verkehren werden! Maschinensprache, das ist die einzige, 
die der Computer direkt versteht, das sind vorhandene oder 
nicht vorhandene Stromimpulse oder Magnetisierungszu­
stände, die bei unserem Computer durch 8-Bit-Binärzahlen 
auszudrücken sind. Was wir mit unserem Computer reden 
werden ist Assembler. Mit dem Computer sprechen soll hei­
ßen: Mit dem Gehirn unseres Computers, dem Prozessor, oft 
auch CPU (von Central Processing Unit=Zentraler Arbeits­
baustein) genannt, verkehren, also ihm Befehle zu geben. 
Solche CPUs werden bei verschiedenen Firmen hergestellt, 
sind daher unterschiedlich aufgebaut und auch unterschied­
lich ansprechbar. Ein weit verbreiteter Prozessortyp ist der 
6502, der das Gehirn des C 64 und auch des VC 20 ist. 
Genau genommen ist das Gehirn des C 64 allerdings der 
6510, eindem6502fastidentischer Prozessor. Aufden klei­
nen Unterschied werden wir noch zu sprechen kommen. 
Beide (6502 und 6510) sind in 6502-Assemblerzu program­
mieren und wenn wir diese Sprache sprechen, sind für uns 
alle 6502-Computer zugänglich: Commodore, Apple, Atari 
und einige andere. Nun wissen Sie aber immer noch nicht, 
was Assembler eigentlich ist. Das englische Wort »assemble« 
heißt auf deutsch etwa montieren, zusammenstellen. Es han­
delt sich also um eine Programmiersprache und weil sie sehr 
eng am Computer orientiert ist, spricht man von einer 
»maschinenorientierten« Programmsprache im Gegensatz 
zu »problemorientierten« Programmsprachen wie Basic, Pas­
cal, Cobol etc., die - so sollte esjedenfalls sein - aufjedem 
Computertyp gleich aussehen.

Ein Assembler ist aber noch etwas anderes, nämlich ein 
Software-Instrument, das einen in Assembler geschriebenen 
Befehl in die Maschinensprache übersetzt. Man spricht vom 
Vorgang des Assemblierens. Das umgekehrte leistet ein 
Disassembler, welcher uns Maschinensprache durch Rück­
übersetzung lesen hilft. Um die Verwirrung noch etwas zu 
steigern, sage ich Ihnen auch noch, was ein Monitor ist. In

diesem Zusammenhang ist kein Bildschirmgerät damit 
gemeint, sondern ebenfalls ein Software-Instrument, das den 
Einblick in die Register und Speicher des Computers 
gewährt.

Damit Sie nun den Überblick völlig verlieren, sei abschlie­
ßend zu diesem Sprachenwirrwarr noch erzählt, daß 
Software-Pakete, die sowohl Assembler als auch Disassem­
bler als auch Monitor enthalten und noch eine Menge anderer 
brauchbarer Dinge, oft als »Assembler« angeboten werden. 
Das ist ein alter Trick der Alchimisten, verschiedenen Dingen 
den gleichen Namen zu geben!

2. Basic contra Assembler

Um das Nachfolgende deutlich zu machen, schalten Sie bitte 
Ihren Computer an und tippen die beiden folgenden Pro­
gramme ein, die beide genau dasselbe tun: Das obere Viertel 
unseres Bildschirmes mit dem Buchstaben A füllen (beim 
VC 20 ist es die obere Hälfte). Zunächst einmal in Basic: 
10 FOR 1=1024+255 TO 1024 STEP-1
20 POKE I, 1:POKE 1+54272,14
30 NEXT I

Für den VC 20 (Grundversion und 3-KByte-Erweiterung) 
istzu setzen: anstelle von 1024jetzt 7680, statt 54272jetzt 
30208 und statt 14 die 6. Wenn Sie mehr als die 6,5 KByte 
im VC 20 haben, dann setzen Sie statt 1024jetzt 4096, statt 
54272 jetzt 34304 und ebenfalls statt 14 die 6. Das Pro­
gramm braucht 55 Byte + 7 Byte für die Variable I, macht 
zusammen 62 Byte Speicherplatz. Es geht ganz schnell und 
wenn Sie es schaffen, können Sie ja mal mitstoppen, wie 
lange es von RUN bis READY braucht: zirka 4 Sekunden.

Jetzt dasselbe in Assembler. Weil wir aber noch nicht 
soweit sind, erst mal als Basic-Lader, der uns das Programm 
in den Speicher bringt (wir kommen dazu gleich noch). 
Geben Sie also NEW ein und dann:
10 FOR l=7000 TO 7000+16
20 READ A:POKE l,A:NEXT I :END
30 DATA 160,255,162,14,169,1,153,255, 
3,138,153,255,215,136,208,244,96

Beim VC 20 geben Sie bitte statt der 14 (Zeile 30,4.Zahl) 
eine 6 ein. Starten Sie den Basic-Lader mit RUN und nach 
dem READY geben Sie NEW und CLR ein: wir brauchen ihn 
nicht mehr. Ab Speicherstelle 7000 stehtjetzt unser Assem­
blerprogramm als Maschinencode. Daß es wirklich dasselbe 
tut wie das Basic-Programm erfahren Sie durch SYS 7000. 
Da hatten Sie vermutlich gar keine Zeit mehr, auf die Stoppuhr 
zu drücken! (5,4 Millisekunden etwa dauert das ohne die 
Zeit, die der Basic-Interpreter für den Befehl SYS benötigt). 
Außerdem braucht das Programm 17 Byte Speicherplatz.

Genau das ist es, was die Assemblerprogrammierung so 
reizvoll macht: Der Speicher faßt mehr an Programm und die 
Ausführung des Programmes geht fast 1000mal so schnell! 
Dazu kommen natürlich noch einige andere Kriterien, denn 
viele Probleme sind zum Beispiel in Basic nicht lösbar, son­
dern nur mit dem vielseitigeren Assembler.

Unser Computer ist darauf vorbereitet, daß wir ihn in Basic 
ansprechen. Er enthält im Normalfall sofort nach dem Ein­
schalten ein stets präsentes Übersetzungsprogramm, den 
Interpreter, welcher unsere Basicanweisungen für ihn ver­
ständlich interpretiert. Auch das ist ein Unterschied zu 
Assemblerprbgrammen: Ist ein solches Programm erst ein­
mal assembliert (also als Maschinensprache im Speicher vor­
handen), braucht man kein Übersetzungsprogramm mehr. 
Basic-Programme dagegen müssen beijedem Durchlaufvon 
vorne bis hinten ständig übersetzt werden, sie laufen nicht 
ohne vorhandenen Interpreter. Wie so ein Interpreter im Prin­
zip arbeitet und was ihn von einem sogenannten Compiler
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unterscheidet, können Sie im 64’er, Ausgabe 4/84 und im 
64’er Sonderheft 6 (Top-Themen) im Artikel von M. Törk über 
seinen Strubs-Precompiler nachlesen.

Dort sehen Sie dann auch, daß ein Compiler zwar ein Basic- 
Programm enorm beschleunigen kann, aber bei weitem nicht 
an die Geschwindigkeit reiner Assemblerprogramme heran­
reicht, vom Speicherplatzbedarf ganz zu schweigen.

3. Wie sag ich’s meinem Computer?

Leider haben weder derC64 noch der VC 20 einen Assem­
bler implementiert. (Sie merken, daß jetzt von dem Software- 
Paket die Rede ist!). Es gibt einen etwas mühseligen Weg, 
dieses Handicap zu umgehen: den Basic-Lader. Wie ist also 
der Weg, mit einem solchen Lader eigene Maschinenpro­
gramme in deh Computer zu bekommen?

a) Erstellen des Assemblerprogrammes. Das zu lernen ist 
die Hauptaufgabe in diesem Artikel. Das Ergebnis wird eine 
Kette von Befehlen sein, zu denen zum Beispiel der Befehl 
RTS gehört.

b) Jedem Befehl in Assembler entspricht in Maschinen­
sprache ein Binärcode in einer Speicherstelle. Diese Codes 
sind in Listen nachschlagbar: RTS entspricht dem Binärcode 
0110 0000.

c) Der Code muß in eine Speicherstelle eingegeben wer- 
, den. Das geschieht von Basic aus mit dem POKE-Befehl. 

Weil aber Basic keine Binärzahlen kennt, muß der Code ins 
Dezimalsystem umgerechnet werden. Glücklicherweise sind 

. in den Tabellen meist schon die Codes als Dezimal- oder 
‘ wenigstens als Hexadezimalzahlen enthalten. RTS ist dezimal 

96 (oder hexadezimal 60, das auch $ 60 geschrieben wer­
den kann). Man POKEt nun an die richtige Adresse den Wert 
96, also zum Beispiel POKE 7016,96

d) Auf diese Weise wird Byte für Byte in der Programmab­
folge verfahren. Das reine POKEn geschieht dann eben in 
der Form wie im oben gezeigten Basic-Lader. Mühsam, müh­
sam! Auch kann man leider nur mit dem PEEK-Kommando 
nachsehen, was denn nun im Speicher steht (PEEK (7016) 
gibt uns den Wert 96, entsprechend RTS).

Ein anderer Weg ist, den in diesem Sonderheft abgedruck­
ten »SMON« abzutippen, oder sich die Leser-Service' 
Diskette zu bestellen.

Assembler (das Software-Paket) gibt es in den unter­
schiedlichsten Ausführungen. Es gibt beispielsweise Direkt-

Assembler, die jede Programmzeile sofort nach dem 
RETURN assemblieren, aber auch 2-Pass-Assembler, bei 
denen das erst nach Abschluß des Programms insgesamt 
durch einen Befehl (zum Beispiel ASSEMBLE) geschieht. Bei 
einigen kann man (ähnlich wie bei Basic mit REM) Kommen­
tare anfügen, bestimmten Programmstellen Namen geben 
(LABEL), ganze Programmabschnitte mit einem Merknamen 
aufrufen (MAKROS) und so weiter. Was Sie für sich bevorzu­
gen, bleibt Ihnen natürlich überlassen. Die in diesem Artikel 
beschriebenen Programme werden am Anfang auf diese 
schönen Erleichterungen verzichten, es wird sozusagen der 
nackte Assembler verwendet. Was Sie aber außer dem rei­
nen Assembler noch brauchen, ist ein Disassembler und ein 
Monitor (ich habe schon erklärt, welchen ich meine), damit 
wir unseren Computer (fast) immer im Griff haben.

4. Wie funktioniert unser Computer?

Weil das Programmieren in Assembler einen viel engeren 
Kontakt zu technischen Einzelheiten unseres Computers 
erfordert, ist es notwendig, ein wenig über diese Innereien 
und ihre Funktion zu wissen. Sehen Sie sich dazu bitte das 
Bild 1 an.

Da sehen wir zunächst unseren Mikroprozessor, der meist 
eine Menge Funktionen in sich vereinigt (dazu kommen wir 
noch). Im Prinzip ist das unsere CPU (Zentraler Arbeitsbau­
stein). Der Prozessor steht über eine Reihe von Leitungen mit 
dem Rest des Computers in Verbindung. Diese Leitungen 
werden im Fachjargon BUSSE genannt. Da ist zunächst ein­
mal der sogenannte Adreßbus, auf dem 16-Bit-Adressen 
transportiert werden, die der Prozessor erzeugt, und die die 
Herkunft oder auch das Ziel von Daten festlegen, die über 
den Datenbus laufen. Dieser kann 8-Bit-Daten transportie­
ren, und zwar schreibend oder lesend, also zum Beispiel vom 
Prozessor zum RAM (schreibend), vom RAM zum Prozessor 
(lesend) und so weiter. Außerdem gibt es da noch einen Steu­
erbus, der verschiedene Synchronisationsaufgaben durch­
führen hilft. Links vom Prozessor ist ein Taktgeber angedeu­
tet. Damit nichts durcheinander kommt, läuft alles im Compu­
ter sozusagen im Gleichschritt. Diese Uhr ist gewissermaßen 
der Trommler, den Sie vielleicht von den alten Ruder- 
Galeeren kennen. Dann sehen Sie einen ROM-Bereich, also 
einen Nur-Lese-Speicher (Read Only Memory). Daß man hier 
nur herauslesen kann, ist durch den Pfeil zum Datenbus

Stromvereorgung
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gekennzeichnet. Doppelpfeile finden wir aber beim RAM 
(Random Access Memory), einem Speicher für beliebigen 
Zugriff, also lesend und schreibend, und bei den Ein- und 
Ausgabebausteinen, die den Kontakt des Computers mit der 
übrigen Welt erlauben, also auch mit uns. Dieses Aufbauprin­
zip finden wir bei allen 8-Bit-Computern.

5. Das Innenleben eines Mikroprozessors

Um es gleich nochmal zu sagen: Was hier erzählt wird, ist 
nicht dazu geeignet, Elektronik-Freaks den totalen Durch­
blick zu geben. Wenn Sie das aber gerne möchten, dann 
sehen Sie sich zum Beispiel die Blockschaltbilder an im »Pro­
grammer’s Reference Guide« für den Commodore 64 auf 
Seite 404 oder im »MOS-Hardware-Handbuch« auf Seite 34. 
Auch Rodney Zaks’ Buch »Programmierung des 6502« ist zu 
empfehlen. Er hat sich viel Mühe gegeben, sich verständlich 
auszudrücken. Mir kommt es nur auf den allgemeinen Über­
blick an. Den sollen Sie bekommen, wenn wir uns jetzt 
zusammen Bild 2 betrachten.

Da sehen Sie zunächst als Herzstück des Prozessors, die 
ALU (Arithmetik Logical Unit), also den arithmetisch­
logischen Baustein. Die ALU hat die Fähigkeit, Rechen­
operationen auszuführen mit Daten, die sie über den Daten­
bus und normalerweise vom Akkumulator erhält. Das Ergeb­
nis wird ebenfalls im Akkumulator abgelegt (daher auch der 
Name: von akkumulieren, etwas ansammeln). Der Akkumula­
tor ist das Register, das uns als Programmierer am häufigsten 
beschäftigen wird. Er ist die Sammel- aber auch die Verteiler­
stelle für fast alle Daten, die wir hin- und herschieben wollen. 
Sowohl der Akku (so werde ich ihn, in der Hoffnung auf Ihr 
wohlwollendesVerständnis, künftig bezeichnen) alsauch alle 
anderen Register, das heißt, die höchste Zahl, die darin bear­
beitet werden kann, ist 255 (binär 1111 1111). Nahezu 
ebenso oft wie den Akku werden wir die beiden sogenannten 
Index-Register X und Y benutzen. Warum man sie 
Index-Register nennt, werden Sie noch im Verlauf des Kurses 
sehen. Als nächstes zum Prozessor-Statusflaggen-Register 
(hier P genannt). Man findet darin angezeigt, ob eine Rechen­
operation ein negatives Ergebnis hatte, ob eine Null aufge­
taucht ist oder ob ein Übertrag stattgefunden hat. Auch die­
ses Register wird uns noch häufig begegnen. Das Stapelregi­
ster, auch Stackpointer (Stapelzeiger) genannt, gibt uns Aus­
kunft über den Füllungsgrad eines 256 Byte großen

speziellen Speichers, der vom Prozessor direkt verwaltet 
wird. Auch damit werden wir noch oft zu tun haben. Schließ­
lich kommen wir zur vorhin erwähnten Ausnahme, zum Pro­
grammzähler (PCL, PCH). Das ist ein 16-Bit-Register, das 
sich aus zwei 8-Bit-Registern (PCL für das LSB und PCH für 
das MSB) zusammensetzt und daher alle 65535 Speicher­
plätze ansprechen kann. Hier ist immer die Adresse des 
nächsten abzuarbeitenden Befehls enthalten.

Ich will an dieser Stelle nicht in die Einzelheiten der Be­
fehlsabarbeitung einsteigen (das können Sie auch bei Rod­
ney Zaks nachlesen, wenn Sie es genau wissen wollen). Es 
soll nur gesagt sein, daß sich die Verarbeitung in drei Schritte 
unterteilen läßt:
a) den nächsten Befehl holen
b) den Befehl decodieren
c) den Befehl ausführen

Zu c) ist noch zu sagen, daß es Befehle gibt, die der Pro­
zessor ohne weitere Angaben ausführen kann. Für andere 
müssen erst noch weitere Daten aus dem Speicher geholt 
oder dort abgelegt werden. Deswegen brauchen die Befehle 
unterschiedliche Zeiten zur Ausführung. Die Zeit wird als 
Anzahl von sogenannten Taktzyklen in den Befehlstabellen 
angegeben. Unser Computer hat eine Taktfrequenz von rund 
1 MHz, was bedeutet, daß ein Taktzyklus etwa eine Mikrose­
kunde (10-6 Sekunden) dauert. Auf diese Weise wurde die 
Zeitdauer für unser kleines Demonstrationsprogramm zu 
Anfang berechnet. Auch das werden Sie noch lernen.

6. Der Speicher unseres Computers: 
eine Straße mit 65536 Hausnummern

Dieser Artikel ist für den VC 20 und den C 64 geschrieben. 
Den Speicheraufbau des Commodore 64 finden Sie in der 
April-Ausgabe ’84 dieserZeitschriftabSeite 119. Deswegen 
soll hier nur der des VC 20 gezeigt werden. Man muß beim 
VC 20zwei Konfigurationen unterscheiden — sehrzum Leid­
wesen der Benutzer. In Bild 3 ist die Aufteilung gezeigt, die 
in der Grund- und der um 3 KByte erweiterten Version 
vorliegt.

In Bild 4 sehen Sie die Speicheraufteilung, die bei mehr als 
6,5 KByte eingestecktem Speicher gültig ist.

Wenn Sie die VC 20 Speicherarchitekturen mit der des 
C64 vergleichen, werden Sie eine Reihe von Unterschieden

Bild 2. Aufbauschema eines 6510-Prozessors
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feststellen. Genau besehen gibt es an den wichtigen Punk­
ten aber eine Menge Gemeinsamkeiten! DerVC 20 kennt nur 
Speicher-Häuser mit Erdgeschoß, im Gegensatz zum C 64,

wo manche Bereiche sogar zwei Etagen haben (soll heißen: 
mehrfach belegt sind). Durch die Eigenart des C 64 aber, im 
Normalfall das Basic-ROM, die Ein- und Ausgabebausteine 
und das Betriebssystem eingeschaltet zu haben, kann man

ihn eigentlich genauso behandeln wie einen VC 20, bei dem 
die genannten ROM-Bausteine, - und zwar das Basic-ROM 
—, um 8 KByte verschoben sind. Die Unterschiede der ROM- 
lnhalte können fast vernachlässigt werden. Wir werden im 
Einzelfall darauf zu sprechen kommen. Bei den Ein- und Aus­
gabebausteinen liegen allerdings größere Unterschiede.

Die Seiten 0 bis 3 (eine Seite oder auch page enthält 256 
Byte und man zählt oft auch in diesen Seiten, wenn vom Spei­
cher die Rede ist), sind sich ebenfalls sehr ähnlich und die 
wenigen Unterschiede werden uns ebenfalls noch beschäfti­
gen. Der Bildschirm liegt bei der Grundversion und der mit der 
3-KByte-Erweiterung von 7680 bis 8191, in der Version mit 
mehr als 6,5 KByte von 4096 bis 4607 und beim C 64 von 
1024 bis 2047. Der Bildschirmfarbspeicher liegt - bei glei­
cher Reihenfolge - von 37888 bis 38399, beziehungsweise 
von 38400 bis 38911 und schließlich von 55296 bis 
56295. Der Basic-RAM-Bereich beginnt beim C 64 im Nor­
malfall bei 2048 und endet bei 40959. Beim VC 20 ist das 
natürlich wieder von der jeweiligen Erweiterung abhängig 
(Tabelle 1).

Grundversion :Basic-Start 4096 Basic-Ende 7679
+3-K-Erweiterung : —” — 1024, — ”— 7679
+ 8-K-Erweiterung : —” — 4608, — ”— 16383
+ 16-K-Erweiterung : —” — 4608, — ”— 24575
+ 24-K-Erweiterung : — — 4608, — ”— 32767

Tabelle 1. Basic-Start und -Endadressen beim VC 20 mit 
verschiedenem Speicherausbau

Dies gilt - wie Sie leicht auch aus Bild 4 sehen können - 
auch dann, wenn zu den 8 KByte/16 KByte/24-KByte- 
Erweiterungen noch die 3-KByte-Erweiterung und die 
’KByte-Erweiterung im hohen Speicherbereich (40960 bis 
49151) verwendet werden. Diese letztgenannten Adressen­
bereiche sind dann gut als geschützte RAM-Bereiche für 
Maschinensprache zu verwenden, ebenso wie beim C 64 
der Speicherabschnitt von 49152 bis 53247.

7. Auskunft über das Befinden unseres 
Computers: die Register-Anzeige

Bisher haben wir uns mit dem Innenleben unserer Computer 
auseinandergesetzt und die wichtigsten Teile der Hardware 
kennengelernt. Jetzt kommen wir zur Software, nämlich zum 
Assembler. Wenn Siejetzt den SMON einschalten, meldet er 
sich mit einer Registeranzeige (Bild 5).

Die angezeigten Werte sind Beispiele, wie sie beim C 64 
auftreten können. PC ist der Programmzähler, der immer auf 
den nächsten zu holenden Befehl zeigt. (Der Wert $E147 
rührt vom SYS-Aufruf, mit dem ich meinen Assembler starte). 
IRQ zeigt uns an, auf welche Adresse der sogenannte 
Interrupt-Vektor gestellt ist. Das ist das Byte-Paar 788 (LSB) 
und 789 (MSB). Auf den Wert $EA31 zeigt es im Normalfall.

Die nächsten acht Angaben beziehen sich auf das Prozes­
sorstatusregister, das wir zuletzt P genannt haben. Die 
Bedeutung der einzelnen »Flaggen« zeigt Ihnen Bild 6.

AC ist der aktuelle Inhalt des Akkus. XR zeigt an, was im 
X-Register und YR was im Y-Register enthalten ist. SP (von 
Stackpointer = Stapelzeiger) gibt uns Auskunft über den 
freien Platz im Stapelregister. Damit wissen wir genau, was in 
diesem Moment in unserem Computer vorgeht. So fremd 
Ihnen das alles im Augenblick noch vorkommt, bald werden 
Sie mit dieser Registeranzeige auf vertrautem Fuß stehen.
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8. Wie sieht ein Assemblerprogramm aus?

Das menschliche Gehirn hat dem des Computers vieles vor­
aus. Dazu gehört beispielsweise, daß ein Mensch allerlei 
Dinge gleichzeitig tun kann: gehen, sprechen, Musik hören, 
lächeln, Handbewegungen ausführen, womöglich dabei 
auch noch etwas kauen und so weiter. Ein Computer ist dazu 
nicht imstande. Er erledigt eine kleine Aufgabe nach der 
anderen. Weil er das so schnell macht, hat es für uns den 
Anschein, es geschähe alles gleichzeitig. Das Maschinen­
programm ist eine Kette solcher kleiner Aufgaben. Das erste 
Glied daraus, das wir kennenlernen wollen ist der Befehl

LDA.
Das bedeutet: Lade den Akkumulator. Alle Assembler- 

Befehlsworte bestehen aus drei Buchstaben wie dieser hier 
auch. Wir haben in der ersten Folge schon gesagt, daß einem 
solchen Befehl eine 8-Bit-Codezahl entspricht. Das ist hier 
$A9oderbinär 1010 1001 oderschließlichdezimal 169. Die 
Codezahl muß in einem Speicherplatz stehen, zum Beispiel 
in $1500 (entspricht dez. 5376). Assemblerlistings sehen 
dann so aus:

1500 LDA
Hier tritt also die Speicherplatznummer mit einem nachfol­

genden Befehl anstelle der von Basic gewohnten Zei­
lennummer.

Es fehlt noch etwas Entscheidendes: Was soll denn in den 
Akku geladen werden? Genauso wie es in Basic Befehle gibt, 
die für sich alleine stehen können wie CLR oder LIST, gibt es 
auch im Assembler solche Befehle. Weitaus häufiger sind 
aber hier Befehle, die ein Argument erfordern (in Basic zum 
Beispiel PEEK(100). Dabei ist 100dasArgument). In Assem­
bler gibt es zwei Sorten von Argumenten. Solche, die in 
einem Speicherplatz unterzubringen sind und andere, die 
zwei Byte brauchen. Mit dem Befehlswort (hier also LDA) 
zusammen, existieren in Assembler also 1-Byte-Befehle, 
2-Byte-Befehle und 3-Byte-Befehle.

PC IRQ NV-BDIZC AC XR YR SP
E147 EA31 10110000 00 00 00 F8

Bild 5. Eine Registeranzeige

N V — B D J Z C

Negativ- Über- unbe- Abbruch- Dezimal- Interrupt- Zero- Carry-
Flagge lauf- nutzt Flagge Flagge Flagge (Null) (Über-

Flagge Flagge trag)
Flagge

Bild 6. Das Prozessor-Status-Register P: die Flaggen

Bild 7. Die ersten sieben Befehle

Befehls­
wort

Adressierung Byte­
anzahl

Code Dauer 
in 
Takt­
zyklen

Beein­
flussung 
von 
Flaggen

HEX DEZ

LDA unmittelbar^ 2 A9 169 2 N, Z
absolut 3 AD 173 4 N, Z

LDX unmittelbar 2 A2 162 2 N, Z
absolut 3 AE 174 4 N, Z

LDY unmittelbar 2 A0 160 2 N, Z
absolut 3 AC 172 4 N, Z

STA absolut 3 8D 141 4 keine
STX absolut 3 8E 142 4 keine
STY absolut 3 8C 140 4 keine
RTS implizit 1 60 96 6 keine

Das Argument von LDA ist also das, was in den Akku soll. 
Laden wir deshalb mal eine 1 in den Akku:

1500 LDA #$01
Wir haben jetzt einen 2-Byte-Befehl erzeugt. Was aber 

bedeuten »#« und »$« dabei? $ ist leicht zu erklären. Die 
große Mehrzahl der Assembler nimmt bei Zahlenangaben 
Hexadezimalzahlen an. Bei einigen muß man dies durch das 
$-Zeichen kennzeichnen. Manche Assembler lassen auch 
Binärzahlen, Dezimalzahlen und sogar ASCII-Zeichen als 
Argumente zu. Für jede Eingabeart steht dann vor dem Argu­
ment ein Zeichen, das die Art des Argumentes angibt, zum 
Beispiel häufig »!«für Dezimalzahlen oder»%«für Binärzah­
len. Nun zum #-Zeichen. Es gibt viele Arten, den Akku zu 
laden. Direkt mit einerZahl - wie wir hier—, aberzum Beispiel 
auch mit dem Inhalt eines anderen Speichers und so weiter. 
Man spricht von der sogenannten Adressierung.

Es gibt eine ganze Menge davon und jede wird auf eindeu­
tige Weise gekennzeichnet. Wenn wir in unserem Akku eine 
Zahl laden, dann ist das die »unmittelbare« Adressierung und 
die kennzeichnet man mit dem #-Zeichen.

Wenn in Speicherstelle $1500 die Codezahl für LDA steht, 
dann muß die 1 in der Speicherstelle $1501 stehen, wie es 
sich für einen 2-Byte-Befehl gehört. Wenn Sie nun die 
Assemblerzeile eingegeben haben und (RETURN) drücken, 
dann taucht auf dem Bildschirm eine Fehlermeldung auf (bei 
vielen Assemblern). Wir müssen vorher nämlich noch unse­
rem Software-Instrument sagen, jetzt zu assemblieren. Wie 
das geschieht, ist auch wieder von Assembler zu Assembler 
verschieden. Die meisten erwarten, daß man vor der Zeile 
noch ein A eingibt (zum Beispiel bei dem C 128):

A 1500 LDA #$01
Wenn Sie jetzt (RETURN) drücken, zeigt der Bild­
schirm:
A 1500 LDA #$01
A 1502

und meistens einen blinkenden Cursor, der auf die nächste 
Eingabe wartet. $ 1502 ist die nächste freie Speicherstelle, 
und wenn beim Programmablauf der Programmzähler nach 
demLDA #$01 auf$1502 deutet, dannerwarteterdortden 
nächsten Befehl. Wenn dort Unsinn steht, dann stürzt der 
Computer im allgemeinen ab, je nachdem, welcher Code 
dann hier zufällig enthalten ist. Wir haben ja 256 Möglichkei­
ten dafür: $00 bis $FF. lm Gegensatz zu Basic, wo man durch 
den Interpreter die Möglichkeit hat, Zeilennummern zu bauen 
wie man will, muß hier das Programm eine ununterbrochene 
Perlenschnur von Befehlen in Speicherstellen sein. Durch 
einige Befehle läßt sich dieses Prinzip allerdings durch­
brechen.

Damit wir die Wirkung von Befehlen sehen können, greife 
ich auf einen Befehl vor, der ähnlich dem STOP in Basic einen 
Programmabbruch bewirkt: BRK. Die genaue Funktion soll 
erst später erklärt werden, aber wir sehen jedenfalls dann, 
wenn ein Maschinenprogramm auf einen BRK-Befehl läuft, 
die Registerinhalte angezeigt. Das ist in den meisten Assem­
blern eingebaut. Wir ergänzen jetzt:

A 1502 BRK
Damit erstmal genug. Steigen Sie aus dem Assembler aus 

und starten Sie das Programm. In den meisten Assemblern 
geht das mit

G 1500
oder sonstvon Basic aus mit SYS 5376. Jetzt werden wieder 
die Register angezeigt. Der Programmzähler steht auf 1503, 
im Akku steht 01, alle Flaggen außer der Breakflagge sind 
Null (die unbenutzte Flagge steht immer auf 1). Jetzt ändern 
wir das Argument:

A 1500 LDA #$00
A 1502 BRK

Wir starten wieder und sehen uns die Register an: Pro­
grammzähler 1503, Akku jetzt 00, aber bei den Flaggen hat

9
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sich etwas verändert: Die Zero-Flagge ist auf 1 gesetzt. Wir 
sehen also: Diese Flagge bleibt so lange ungesetzt, solange 
nicht eine Null im Akku auftaucht, erst dann wird sie 1.
Noch einmal ändern wir das Programm:

A 1500 LDA #$FF
A 1502 BRK

Nach erneutem Start steht das Erwartete in den Registern, 
nur bei den Flaggen ist etwas Merkwürdiges passiert: Die 
Vorzeichenflagge steht auf 1. Das bedeutet, im Akku soll eine 
negative Zahl stehen! Nun wissen wir aber, daß $FF = dez. 
255 ist. Dieses Rätsel wird uns noch eine Weile begleiten. Es 
sei hier nur bemerkt, daß kein Fehler vorliegt: Immer wenn in 
einer Zahl das Bit 7 gleich 1 ist, geht die Vorzeichenflagge 
auf 1. Die Lösung des Rätsels werden wir bei den negativen 
Binärzahlen finden.

Wir schließen aus alledem: Der LDA-Befehl beeinflußt die 
Vorzeichen- und die Zeroflagge.

9. Die absolute Adressierung

STA heißt »STore Accumulator«, also »lege Akkuinhalt ab«. 
Wie Sie sich denken können, muß auch hier ein Argument 
auftauchen, nämlich wohin abgelegt werden soll. Wir legen 
unseren Akkuinhalt in die erste Bildschirmspeicherstelle 
(C 64:$0400, VC 20 Grundversion: $1E00, VC 20 mit Er­
weiterung: $1000). Unser Programm muß also so aussehen:

A 1500 LDA #$01 
A 1502 STA $0400 
oder die entsprechende Adresse 
(siehe oben).

Mit diesem STA-Befehl lernen wir eine neue Adressie­
rungsartkennen: die»absolute«Adressierung. Sieistdaranzu 
erkennen, daß kein besonderes Merkmal verwendet wird. 
Die Adresse $ 0400 ist nicht in einem Byte darstellbar, son­
dern wird aufgeteilt auf zwei Bytes. Im Speicher steht jetzt:

1500 LDA #
1501 $ 01
1502 STA
1503 $ 00 »das ist das LSB«
1504$04 »dasistdasMSB«

Hier liegt also ein 3-Byte-Befehl vor und die nächste freie 
Speicherstelle ist $ 1505.

Vom Basic her wissen Sie, daß 1 der Bildschirmcode für 
den Buchstaben A ist und daß manjeder Bildschirmspeicher­
stelle auch eine Bildschirmfarbspeicherstelle zuordnet. Um 
ein eingeschriebenes Zeichen vom Hintergrund abzuheben, 
muß man dort dann eine Farbinformation eingeben. Der Start 
dieses Bildschirmspeichers liegt so:

C 64: $ D800
VC 20 (Grundv.): $9400
VC 20 (Erw. Vers.): $9600.

Der Farbe Schwarz entspricht die Codezahl 0. Wir ergän­
zen unser Programm durch:

A 1505 LDA #$00
A 1507 STA $D800 (oder entsprechender Speicher, siehe 
oben). Die nächste freie Adresse ist nun $150A. Unser Pro­
gramm soll jetzt abgeschlossen sein. Damit der Computer 
aber beim Programmzählerstand $150A nicht Unsinn vorfin­
det, muß - ähnlich wie bei END in Basic - das Programm auf 
irgendeine Weise beendet werden. Das kann durch BRK 
geschehen. Wir wollen aber den dritten Assembler-Befehl 
kennenlernen:

RTS
Das heißt »Return From Subroutine«, also »Rückkehr aus 

Unterprogramm«. In unserem Fall bewirkt das eine Rückkehr 
zum Basic. Wie Sie sehen, ist das ein 1-Byte-Befehl, also 
ohne Argument. Auch hier spricht man von einer Adressie-

rungsart, nämlich der »impliziten«-Adressierung. Man 
erkennt sie am Fehlen des Argumentes. Die Adresse ist impli­
zit, das heißt im Befehl selbst enthalten. Dies ist nämlich ein 
Befehl, der immer an den Programmzähler gerichtet ist. Der 
Computer holt sich vom Stapel-Speicher die dort zuoberst 
liegende Adresse, das ist die, bei der der Computer in ein 
Unterprogramm gesprungen ist oder aber die, bei der der 
Computer Basic verlassen hat. Wir ergänzen also noch:

A 150A RTS
und starten das Programm, zum Beispiel von Basic aus mit 
SYS 5376. Natürlich taucht dann in der linken oberen Ecke 
des Bildschirmes ein schwarzes A auf. Hier noch der 
BäsiC'Lädor'
10 FOR l=5376 TO 5386:READ A:POKE l,A:NEXT l:END 
20 DATA 169,1,141,0,4*,169,0,141,0,216*,96.

Die mit * markierten Zahlen müssen für den VC 20 verän­
dert werden: Grundversion: 30 und 148.
Erweiterung: 16 und 150.

10. Vier neue Befehle

Eine Kombination von LDA mit STA ist vergleichbar mit dem 
POKE-Befehl in Basic. Man kann in Assembler nicht direkt 
eine Zahl in einen Speicher einschreiben, sondern muß den 
Umweg über den Akku machen. Außer dem Akku eignen sich 
dazu aber auch das X-Register und das Y-Register. Hierfür 
gibt es die Befehle LDX (lade X-Register), STX (lege X- 
Register-Inhaltab), LDY (ladeY-Register) undschließlichSTY 
(lege Y-Register-Inhalt ab). Sie können das übungshalber an 
unserem kleinen Programm ausprobieren. An dem folgenden 
Programm sehen Sie noch eine Eigenart der drei Register 
(Akku, X-Register, Y-Register):

A1500 LDA #$01
A 1502 LDX #$00
A 1504 LDY #$02
A 1506 STA $0400
A 1509 STX $D800
A150C STY $0401
A 150F STX $D801
A 1512 STA $0402
A 1515
A 1518

STX 
RTS

$D802

Für den VC 20 werden die entsprechenden Speicherstel­
len für Bildschirm- und Bildschirmfarbspeicher eingesetzt. 
Dieses Programm druckt - wie erwartet - »ABA« in die linke 
obere Ecke des Bildschirms. Dabei ist das X-Register dreimal 
ausgelesen worden und der Akku zweimal. Sie sehen also, 
daß die Registerinhalte durch die STA-, STX-, STY-Befehle 
nicht verändert werden.

Wir wollen noch etwas ausprobieren. Bisher haben wir den 
LDA-Befehl nur mit der »unmittelbaren« Adressierung ken­
nengelernt. LDA, LDX, LDY können auch »absolut« adressiert 
werden.

A 1518 LDA $D800
Damit laden wir den Inhalt der Speicherstelle $ D800 (beim 

VC 20 die anderen Adressen des Bildschirmfarbspeichers) 
in den Akku. Der Inhalt ist seit $1509 eine Null. Jetzt weiter:

A 151B STA $0403
A 151E STX $D803
A1521 RTS

Das müßte beim Ablauf des Programms noch einen Klam­
meraffen (@mit Bildschirmcode 0) an die vierte Stelle plazie­
ren, was Sie durch SYS 5376 leicht nachprüfen können. Sie 
sehen, daß man mit diesen sieben Befehlen schon eine 
Menge anfangen kann.

Wir kommen noch einmal zur Adressierung. Ich hatte Ihnen 
gesagt, daß LDA # $01 ein 2-Byte-Befehl mit unmittelbarer
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Adressierung ist (ein Byte für LDA und eines für 01), LDA 
$D800 ist ein 3-Byte-Befehl (ein Byte für LDA, je eines für 
das LSB und das MSB von $D800) mit absoluter Adressie­
rung. Da werden Sie sich doch sicher schon gefragt haben, 
wo die Adressierung bleibt! Wenn aber kein Byte für die 
Adressenmarkierung (zum Beispiel #) reserviert ist, muß die 
Kennzeichnung irgendwie anders sein. Wenn Sie einen 
Disassembler zur Verfügung haben, dann sehen Sie sich 
damit unser Programm an. Fast jeder Disassembler gibt 
neben dem Assemblertext auch Byte für Byte in Hexadezi­
malzahlen die Codes an. Wenn Sie nun die beiden Befehle 
LDA #$O1 und LDA $d800 von den Codes her untersu­
chen, sehen Sie folgendes:

1500A9 01 LDA#$O1 
und

1518AD00D8 LDA$D800
Offensichtlich gehörtjeweils das erste angezeigte Byte zu 

LDA. Sie sind aber verschieden! Wir sehen daraus, daß die 
Codezahl für einen Befehl gleich zwei Informationen enthält: 
das Befehlswort selbst (LDA) und die Adressierungsart.

Genauso wie man LDA sowohl unmittelbar als auch absolut 
ausführen kann, ist das auch mit LDX und LDY möglich. Bei 
den Befehlen STA, STX, STY ist eine unmittelbare Adressie­
rung sinnlos. Für RTS kennt man nur eine implizite Adressie­
rung. Wir fassen das alles in Bild 7 zusammen.

In den letzten Spalten von Bild 7 ist noch angegeben, 
inwieweit durch diese Befehle das Prozessorstatusregister 
beeinflußt wird, so wie wir es für den Befehl LDA schon aus­
probiert haben. In der vorletzten Spalte sehen Sie, wie lange 
die Ausführung eines Befehls dauert. Wenn sie für einen Takt­
zyklus etwa eine Mikrosekunde rechnen, dann müßten Sie 
jetzt ausrechnen können, wie lange unser letztes Programm 
zur Bearbeitung braucht: 48 Mikrosekunden. Ein vergleich­
bares Basic-Programm braucht dazu etwa hundertmal so 
lange: zirka 0,05 Sekunden.

Das Rechnen mit Binärzahlen funktioniert genauso wie das 
mit Dezimalzahlen. Es gilt also 

0+0=0 
0+1=1 
1+0=1 
1+1=10

wobei binär 10 gleich dezimal 2 ist. Als Beispiel können wir 
mal 2 + 1=3 im Binärsystem rechnen:

10 entspricht dez. 2
+01 entspricht dez. 1_______________

11 , was ja dezimal 3 ergibt.
Die Addition erfolgt also spaltenweise wie beim gewohnten 
dezimalen Addieren. Auch mit dem Übertrag läuft es wie im 
dezimalen. Beispiel: 2+2=4:

10 entspricht dez. 2
+10 entspricht dez. 2_______________
100, was dezimal eine 4 ergibt.

In der zweiten Spalte wurde nach der Regel verfahren: 
1 +1 =10. Rechnen wir noch 3+3=6:

11 entspricht dez. 3
+11 entspricht dez. 3______________
110, was dezimal eine 6 ergibt.

In der ersten Spalte wurde gerechnet 1 + 1 = 10, wobei nach 
dem alten Motto: 0 hin, 1 im Sinn die 0 unter den Strich 
gesetzt wurde. In der zweiten Spalte wird dann so verfahren: 
1 +1 +1 (das ist die 1, die wir »im Sinn« hatten) = 11. Ich meine, 
daß Sie ohne Probleme die folgenden Übungsaufgaben 
lösen und dann jeweils dezimal das Ergebnis nachprüfen 
können: 10+5, 7 + 1, 16+16, 240+16, 62+65.

12. Eine Zauberformel der Assembler- 
Alchimisten:

INX, INY, INC, DEX, DEY, DEC?

11. Die Zahlen der Assembler-Alchimisten

Ein bißchen von Assembler-Alchimie verstehen Sie jetzt 
schon mit diesen sieben Befehlen. Wir wollen uns nun die 
Zahlen ansehen, die hier Verwendung finden: das Binär­
system und das Hexadezimalsystem.

Die einzigen Ziffern, die unser Computer kennt, sind 0 und 
1. Sie stehen für»Strom an«oder»Strom aus«, oderfür»keine 
magnetische Erregung« oder »magnetische Erregung«. Des­
halb ist es für uns als angehende Assembler-Alchimisten von 
großer Bedeutung - wir arbeiten ja ganz eng an der Hardware 
- dieses binäre Zahlensystem handhaben zu können. Das 
Hexadezimalsystem kennt der Computer eigentlich gar nicht. 
Wir verwenden es deswegen, weil es in einem besonders 
engen Zusammenhang mit Binärzahlen und dem Aufbau 
unseres Computers steht: Die größte einstellige Hex-Zahl ist 
$F, das entspricht genau 1111 im Binärsystem, also dem 
maximalen Füllungsgrad eines halben Bytes, das Nibble 
genannt wird. Ein ganzes Byte kann maximal $FF enthalten 
(binär 1111 1111) und der gesamte Speicheradressenbereich 
unseres Computers geht bis $FFFF (dezimal 65535). Eine 
einstellige Hex-Zahl paßt also in ein Nibble, eine zweistellige 
in ein Byte und*eine dreistellige oder vierstellige in zwei Byte, 
weshalb man solche Hex-Adressen auch recht leicht in das 
LSB und das MSB (auch Low- und High-Byte genannt) auftei­
len kann:

$ D8 00
MSB LSB

Rechnen werden wir mit Hexadezimalzahlen nicht, dazu 
benutzen wir dann das Dezimalsystem oder - wenn es sich 
um computerinterne Vorgänge handelt - das Binärsystem.

Wirwissenjaschon, daß man diese »Zauberformeln« entzau­
bern kann. INX heißt einfach »INCrement X-Register«, also 
Inhalt des X-Registers um 1 erhöhen. Es wird Ihnen sicher 
einleuchten, daß INY dasselbe mit dem Y-Register tut. Etwas 
weniger deutlich ist das bei INC. Das bedeutet »INCrement 
memory«, also zähle zum Inhalt einer Speicherstelle eins 
dazu. INX und INY enthalten alles, was dem Computer zu 
sagen ist, sind also offensichtlich 1-Byte-Befehle mit der in 
der letzten Folge schon kennengelernten impliziten Adres­
sierung. Bei INC muß dem Computer noch gesagt werden, 
welche Speicherstelle er um 1 erhöhen soll. Es gehört also 
noch eine Adresse dazu. Das läßt diesen Befehl im allgemei­
nen zu einem 3-Byte-Befehl werden.

Das Umgekehrte leisten die Befehle DEX, DEY und DEC. 
Sie bedeuten nämlich »DECrement X-Register«, also »zähle 
das X-Register um eins herunter«, beziehungsweise das 
Y-Register oder - bei DEC - die angegebene Speicherstelle. 
Für die Adressierungsart und die Anzahl Bytes pro Befehl gilt 
hier das gleiche wie für die INX...-Befehle. Sehen wir uns das 
an einem kleinen Beispiel an:

1500 LDA #00
1502 LDX #01
1504 STA D800
1507 STX 0400
150A INX
150B STA D801
150E STX 0401
1511 DEX
1512 STA D802
1515 STX 0402
1518 BRK
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Wenn Sie das kleine Programm mit G 1500 starten, dann 
sollten Sie in der linken oberen Ecke des Bildschirms ABA in 
schwarzer Schrift stehen haben. Was ist geschehen? Wir 
haben den lnhaltdes Akkus (=0, also Farbcode für schwarz) in 
das Bildschirm-Farbregister geschrieben (#D800), dann 
den Inhalt des X-Registers (1 = POKE-Code für den Buch­
staben A) in die erste Bildschirm-Speicherzelle (#0400). 
AnschließendwurdedasX-Registerum 1 erhoht(2 = POKE- 
Code für den Buchstaben B) und dieser Inhalt in die zweite 
Bildschirmzelle geschrieben. Außerdem mußte natürlich 
auch dieser Bildschirm-Farbspeicherplatz mit dem Farbcode 
0 belegt werden. Durch DEX wurde das X-Register wieder 
heruntergezählt, somit wieder ein A erzeugt und in die dritte 
Bildschirmstelle gedruckt.

Sie haben sicher schon bemerkt, daß man auf diese Weise 
Abläufe mitzählen kann. Soll zum Beispiel ein Vorgang 20 mal 
wiederholt werden, dann packt man ins X-Register (oder ins 
Y-Register oder in eine andere Speicherstelle) den Anfangs­
wert 0, läßt den Computer eine Arbeit ausführen, erhöht das 
entsprechendeRegisteroderdieSpeicherzelleum 1 mitlNX, 
INY oder INC, prüft dann, ob dieser Inhalt schon 20 geworden 
ist und so weiter. Wie man diese Prüfung vornimmt, dazu 
kommen wir erst später bei den BRANCH-Befehlen. Das ist 
also ähnlich wie in Basic bei den FOR...NEXT-Schleifen: Dort 
wird eine Variable als Zähler verwendet, hier ein Register 
(oder eine Speicherstelle). Ebenso wie in Basic bei diesen 
Schleifen kann man auch hier rückwärts zählen mit DEX, DEY 
oder DEC. Das hat oft gewisse Vorzüge, was uns aber noch 
nicht kümmern soll.

Wenn wir diese Befehle als Zähler verwenden, sollten wir 
im Auge behalten, daß eine Speicherstelle (auch ein X- oder 
Y-Register) Zahlen nur von 0 bis 255 enthalten kann. Die 
höchste 8-Bit-Zahl ist ja:

dez. 255 = bin. 1111 1111
+ 1 1

ergibt: (1)0000 0000
Wenn wir also über 255 hinauszählen, ergibt sich wieder 

0 und so weiter, weil ein Überlauf stattgefunden hat. Das 9.Bit 
paßt nicht mehr in das Byte hinein. Um nochmal genau sehen 
zu können, was unser Computer da tut, probieren Sie einmal 
aus:

1500 LDA #01
1502 BRK

Das soll uns die Register zunächst mal im Ausgangszu­
stand zeigen. Nach G 1500 werden sie angezeigt:

AC XR YR N V - BDI ZC
01 00 00 0 0 110 000

lm Akku stehtjetzt die dort eingeladene 1. Nun wollen wir 
das X-Register laden mit255 (also $FF). Dazu ändern wir das 
Programm:

1502 LDX #FF
1504 BRK

Nach erneutem G 1500 zeigen die Register:
AC XR YR N V - BD I ZC
01 FF 00 1 0110 000

lm X-Register steht nun die Zahl $FF. Bei den Flaggen hat 
sich die N-Flagge (die negative Zahlen anzeigen soll) auf 1 
geschaltet!

Nun wollen wir das X-Register über 255 hinauszählen. Wir 
verändern das Programm nochmal:

1504 INX
1505 BRK

Der Start mit G 1500 liefert uns die folgende Register­
anzeige:

AC XR YR N V- BDI ZC
01 00 00 0 0 110 010

Wie erwartet, ist der Überlauf des X-Registers eingetreten: 
Es istjetzt Null. Die N-Flagge hat ihren gewohnten Wert 0 wie­

der angenommen und die Z-Flagge, die uns anzeigt, ob die 
letzte Operation eine Null erzeugt hat, ist jetzt gesetzt. Bei 
weiterem Hochzählen verschwindet die Z-Flagge wieder:

1505 INX
1506 BRK

G 1500 liefert den Registerinhalt:
AC XR YR N V- BDI ZC
01 01 00 0 0 110 000

Das gleiche passiert bei Verwendung des Y-Registers als 
Zähler, wie Sie leicht durch Austauschen aller auf X bezoge­
nen Befehle feststellen können. Sehr nett ist es, diesen 
Befehlsablauf einmal für den INC-Befehl auf die Speicher­
stelle $0400 (Bildschirmspeicher links oben) bezogen 
ablaufen zu lassen. Wenn man darauf achtet, daß kein Hoch­
scrollen des Bildschirms eintritt, kann man das Ergebnis 
außer in den Registern auch noch als Zeichen auf dem Bild­
schirm verfolgen. Der Beginn der Befehlsequenz ist dann 
sinnvollerweise:

1500 LDA #FF
1502 STA 0400
1505 BRK

lm folgenden setzt man dann anstelle von INX immer INC 
0400 ein.

Was passiert beim Herunterzählen unter Null? Sie können 
das mit der gezeigten Befehlskette leicht verfolgen, indem 
Sie immer statt INX jetzt DEX setzen und die Register nicht 
mit $FF, sondern mit 01 laden. Es zeigt sich, daß beim Herab­
zählen nach der Null wieder 255 (=$FF) im Register zu fin­
den ist. Die Reaktion der N- und der Z-Flagge auf den jeweili­
gen Registerinhalt ist die gleiche wie beim Hochzählen.

Es ist uns nun deutlich, daß diese sechs Befehle die N- 
Flagge und die Z-Flagge beeinflussen können. Diese Tatsa­
che wird später noch eine große Rolle spielen, wenn es um 
die bereits erwähnte Schleifenkontrolle geht.

13. Noch ein alchimistischer Zahlentrick: 
BCD

Die Assembler-Alchimisten haben noch viel mehr Arten der 
Zahlen- und Zeichendarstellung auf Lager. Eine davon ist die 
Codierung als BCD-Zahlen. BCD kommt vom englischen 
»binary coded dezimal«, was bedeutet: Binär codierte Dezi­
malzahlen.

Zwischendurch möchte ich noch eine Bemerkung loswer­
den, die Sie als Trost auffassen sollen: Auch wenn wir später 
andere Zahlendarstellungen kennenlernen werden, es wird 
nicht so schwierig! Sogar so komplette Idioten wie Computer 
verstehen das, obwohl man ihnen alles haarklein vorkauen 
muß.

Wenden wir uns nun wieder den einfachen BCD-Zahlen zu. 
Alle Zahlen von 0 bis 9 lassen sich binär mit nur 4 Bit 
ausdrücken:

Binär Dezimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

Die weiteren Werte 1010 bis 1111 werden in der BCD- 
Codierung nicht benutzt. Liegt nun eine Dezimalzahl (zum 
Beispiel 12) vor, dann wird jede Stelle dieser Zahl (also die 1

12
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und die 2) getrennt binär codiert. In unserem Beispiel mit der 
12 wäre das dann 0001 für die 1 und 0010 für die 2. Somit 
ist die 12 im BCD-Code 0001 0010. Jede Ziffer erhält so ihr 
Nibble. Eine Zahl im BCD-Format hat deswegen keine feste 
Anzahl von Bytes, sondern die Byte-Zahl hängt von der 
Anzahl der Stellen ab. Die Zahl 1984 beispielsweise braucht 
2 Byte: 0001 1001 1000 0100.

Schwierig gestaltet sich das Rechnen mit diesen Zahlen 
wegen der sechs unbenutzten Codes. Aber auch da habe ich 
einen Trost für Sie: Wir werden damit nicht rechnen. Wozu 
das ganze dann, werden Sie sich fragen? Der Grund für das 
alles ist, daß BCD-Zahlen im Gegensatz zu den Zahlen mit 
festem Format (die sonst verwendet werden) so eingegeben 
und verarbeitet werden können, wie sie vorliegen. Das ist im 
kaufmännischen Bereich manchmal notwendig, wo eben 
1000mal0,1 Pfennige1 MarkergebenundFehlerunzulässig 
sind. Sollten Sie also vor dem Problem stehen, mit BCD- 
Zahlen rechnen zu müssen, grämen Sie sich nicht: Unser 
Prozessor kennt den Dezimalmodus. Er ist dann eingeschal­
tet, wenn die Dezimal-Flagge auf 1 gesetzt ist.

Damit sollen Sie dann auch noch gleich zwei neue Befehle 
kennenlernen: SED und CLD. Der erstere hat nichts mit Par­
teien zu tun, sondern ist die Abkürzung für »SEt Dezimal­
flag«, also setze die Dezimalflagge. So schalten Sie den 
Dezimal-Modus ein. Wie Sie sicher schon messerscharf 
geschlossen haben, heißt CLD »CLear Dezimal-flag«, also 
setze die Dezimalflagge auf Null, wodurch dieser Modus wie­
der auszuschalten ist.

Wichtig! Wenn Sie argwöhnen, daß in einem Programm 
irgendwann mal die Dezimal-Flagge gesetzt sein könnte, 
dann gehen Sie auf Nummer sicher und schieben Sie vor eine 
Rechenoperation, die nicht im Dezimalmodus laufen soll, ein 
CLD.

Beide Befehle sind 1-Byte-Befehle mit implizierter Adres­
sierung. Sie beeinflussen lediglich die Dezimalflagge.

Wie schon mal betont: Der Computer ist strohdumm. Er 
kann nicht einmal auf normale Weise voneinander abziehen! 
Deswegen geht er den komplizierten Weg: Er addiert eine 
negative Zahl. Nur: Wie sehen negative Binärzahlen aus? Wir 
werden diese Frage in drei Etappen beantworten.
a) Man könnte eine Flagge setzen, die 1 ist bei negativen und 
0 bei positiven Zahlen. Bei einigen Fließkommazahlen wird 
das auch so gemacht. Hier aber setzt man die Flagge direkt 
in die Zahl ein: Bit 7 jeder Zahl ist jetzt ein Vorzeichenmerk­
mal. Wenn dieses Bit 0 ist, handelt es sich um eine positive, 
wenn es 1 ist, um eine negative Zahl. Auf diese Weise ist also 
+ 1 wiebisher0000 0001,wohingegen—1 jetzt1000 0001 
hieße. Damit wird allerdings der Zahlenbereich, der durch ein 
Byte auszudrücken ist, verschoben. 255=binär 1111 1111 
kann so nicht mehr verwendet werden. Die größte Zahl, die 
jetztausgedrücktwerdenkanri,istO111 1111 =dezimal127. 
DiekleinsteZahlistdann1111 1111 =—127. Probierenwir 
mal aus, wie sich damit rechnen läßt:

+ 10 0000 1010
—6 1000 0110

ergibt 1001 0000 = -16, 
was offensichtlich falsch ist, denn nach Adam Riese sollte 
+4 herauskommen. So kann man also nicht rechnen!

MannenntdieseArtderZahlendarstellungübrigens»signed 
binary«-Format, also in Deutsch: markierte Binärzahlen, 
b) Der nächste Schritt ist das sogenannte Einerkomplement. 
Dabei tritt für die positiven Zahlen keine Änderung ein. Die 
negativen entstehen aus den positiven durch Komplement­
bildung, das heißt jedes Bit der positiven Zahl wird in sein 
Gegenteil verkehrt, wie es das folgende Beispiel zeigen soll: 

0000 1100 ist + 12,
dann ist das Einerkomplement:

1111 0011 =—12.

Interessanterweise taucht hier auch wieder das Merkmal 
der »signed binary«-Zahlen auf: die 1 in Bit 7 bei negativen 
Zahlen. Beschränkt man sich auf den Zahlenbereich, der für 
die »signed binary«-Zahlen gültig war, dann hätten wir jetzt 
beide Darstellungsweisen miteinander vereint. Nun müssen 
wir natürlich noch feststellen, ob man so auch rechnen kann.

+8 0000 1000
—6 1111 1001

in Einerkomplementdarstellung

ergibt (1)0000 0001
was 1 mit einem Übertrag ergäbe, jedenfalls nicht 2, wie es 
sich gehört. Also ist auch die Einerkomplementdarstellung 
noch nicht das Gelbe vom Ei.
c) Ich will Sie nicht länger auf die Folter spannen: Wenn man 
zum Einerkomplement einer Zahl noch 1 dazuzählt, erhält 
man das Zweierkomplement. Und genauso werden negative 
Zahlen in unserem Computer gehandhabt. Die positiven Zah­
len bleiben unverändert. Von den negativen bildet man das 
Zweierkomplement wie zum Beispiel hier mit der Zahl —12:

12 0000 1100 
—12 1111 0011 
+ 1 0000 0001

normale Binärdarstellung 
Einerkomplement 
addieren

—12 1111 0100 Zweierkomplement
Jetzt wollen wir auch diese Zahlenart ausgiebig testen: 
Wir rechnen nochmal 8-6:

+8 0000 1000
—6 1111 1010 dasist-6inder

Zweierkomplementdarstellung.

ergibt
(1)0000 0010

also 2 mit einem Übertrag, der ignoriert wird. Das Ergebnis 
ist richtig. Wenn bei einer solchen Rechnung eine negative 
Zahlherauskommt, istsie nichtleichtzu erkennen. Insolchen 
Fällen kehrt man das Vorzeichen um, indem man das Zweier­
komplement berechnet. Das machen wir mal am Beispiel 
5—6:

+5 0000 0101
—6 1111 1010 dasistwiederunserZweier-

komplement von 6, also —6

ergibt1111 1111
das ist —1 in der Zweierkomplementdarstellung. Zur Kon­
trolle nun die Vorzeichenumkehr durch Umrechnen ins Zwei­
erkomplement:

Einerkomplement davon 0000 0000
plus 1 0000 0001

ergibt 0000 0001
also wie erwartet +1.

Auf diese Weise rechnet unser Computer mit negativen 
Zahlen. Negative ganze Zahlen speichert er im Zweierkomp­
lement-Format. Auch wenn wir nun etwas vorgreifen müssen, 
wollen wir uns das ansehen. Dazu schalten Sie am besten 
erst einmal den Computer aus und laden dann den SMON 
beziehungsweise ihren Assembler. Dann bauen wir ein klei­
nes Basic-Programm:

10A%=-12
20 END

14. Wie Variable im Speicher stehen

Noch nicht RUN eingeben! Zuerst schalten Sie den Maschi­
nensprachmonitor ein und wir sehen uns das Programm so 
an, wie es im Speicher steht. Der Basic-Speicher des C 64
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beginnt im Normalfall bei $0800. Wir geben also den Moni­
torbefehl M 0800.

Uns genügen schon die Speicherplätze bis $081C. Nun 
sehen wir das nackte Basic-Programm im Speicher, so wie es 
uns C. Sauer in seinem Artikel »Der gläserne VC 20, Teil 1« 
im 64’er, Ausgabe 9/84 auf Seite 156 beschrieben hat.

In Bild 8 ist unser Speicherinhalt kommentiert zu sehen. 
Das Programm endet im Speicherplatz $0813. Das Kennzei­
chen für Programmende sind zwei aufeinanderfolgende 
Bytes mit dem Wort Null. Dahinter werden die Variablen abge­
legt, sobald das Programm gestartet wird. Wir steigen aus 
dem Monitor durch X aus und starten das Programm mit RUN. 
Jetzt sehen wir nochmal in den Speicher. Bis $0813 hat sich 
nichts verändert. Danach aber istjetzt in 7 Bytes die Variable 
A% abgelegt. Das zeigt Bild 9.

Zunächst einmal die Bytes $0814 und $0815: Hier wird 
der Variablenname und -typ angegeben. Der Typ ist aus den 
Bits 7 zu erkennen. Sind beide (wie hier) gleich 1, dann han­
delt es sich um eine Integervariable (also eine ganze Zahl). 
Läßt man die Kennbits außer acht, zeigt sich, daß in $0814 
der Code für den Buchstaben A steht und $0815 nur den 
Wert 0 enthält. Nun zum Rest: Der C 64 legt Integers in nur 
2 Byte ab - die restlichen 3 Byte $0818 bis $081A bleiben 
unbenutzt. Das ist auch dann der Fall, wenn danach noch wei­
tere Variable kommen. Es bringt also keine Speicher­
ersparnis (VC 20-Benutzeraufgepaßt!), wenn man mit Ganz­
zahlvariablen arbeitet!

In $0817 steht $F4, welches binär ausgedrückt 1111 
0100 ist. Das kennen wir noch von weiter oben als die —12 
im Zweierkomplement-Format. Woher kommt $FF in Spei­
cherzelle $0816? Wie gesagt, die Integers werden in 2 Byte 
gespeichert, und wenn wir —12 in 16 Bit ausdrücken, dann 
sieht das so aus:

+12 0000 0000 0000 1100
Einerkomplement: 1111 1111 1111 0011 
plus 1 0000 0000 0000 0001

ergibt —12: 1111 1111 1111 0100

MSB LSB
als 16-Bit-Zweierkomplement. “^^ -$F4

Die größte positive ganze Zahl, die man in 2 Byte aus­
drücken kann, ist 32767, was binär

0111 1111 1111 1111
ergibt. Die kleinste ist

1000 0000 0000 0000
also —32768. Das ist der Grund dafür, daß der C 64 Integers 
größer als 32767 oder kleiner als —32767 dankend mit 
ILLEGAL QUANTITY ERROR ablehnt, wenn sie als Argument 
verwendet werden. (Die Zahl —32768 kann als Ergebnis Von 
lQgischen Operationen auftauchen.)

Damit will ich Sie erstmal von den Zahlenspielereien erlö­
sen. Sie können die Art des Abziehens von Zahlen durch 
Addieren des Zweierkomplementes bis zum nächsten Mal an 
weiteren Beispielen üben. Wenn Sie das mit 16-Bit-Zahlen 
tun, werden Sie bald feststellen, daß noch nicht alles so funk­
tioniert wie es sollte...

Wir können jetzt übrigens auch das Rätsel lösen, weshalb 
bei positiven Zahlen (zum Beispiel LDA #FF) die Negativ- 
Flagge auf 1 geht: Die Flagge wird immer dann gezückt, wenn 
eine Zahl auftritt, die in Bit 7 eine 1 aufweist. Ganz einfach, 
gell?

15. Ein wirkungsvolles Zweiglein: BNE

Vermutlich raucht Ihnen nach soviel Zahlensalat der Kopf. 
Deshalb sollen Sie zur Entspannung noch einen neuen 
Assembler-Befehl kennenlernen und auch gleich ein nützli­
ches Programmbeispiel dazu.

BNE heißt »Branch if Not Equal zero«, was man übersetzen 
kann mit »verzweige, wenn ungleich Null«. Genauer gesagt: 
Es wird dann verzweigt - also zu einer angegebenen Adresse 
gesprungen —, wenn die Z-Flagge (die haben wir bei den 
INX,DEX...-Befehlen genauer untersucht) nicht gesetzt ist, 
also 0 zeigt. Sehen wir uns das mal an der nachfolgenden 
Verzögerungsschleifean, deren Flußdiagramm Bild 10 zeigt.

Das Programm dazu:
1500 LDX #FF
1502 LDY #FF
1504 DEY
1505 BNE 1504
1507 DEX
1508 BNE 1502
150A BRK

Zunächst einmal werden das X- und das Y-Register als Zäh­
ler initialisiert (also mit einem Ausgangswert geladen). Mit 
dem vorhin behandelten Befehl DEY wird dann das Y-Regi­
ster um 1 heruntergezählt, wasjetzt $FE ergibt. Für die Null­
flagge (Z) bedeutet das den Inhalt 0, denn es liegt kein Grund 
vor, sie zu setzen (also eine 1 dort anzuzeigen), weil noch 
keine Null aufgetreten ist. Bei der nachfolgenden Prüfung 
durch BNE wird also eine Verzweigung nach 1504 das Er­
gebnissein, woraufdasY-Registerweiterverringertund dann 
die Z-Flagge erneut geprüft wird und so weiter. Das geht so 
lange, bis nun wirklich endlich die Null im Y-Register erreicht 
ist. In diesem Fall zähltDEX nun das X-Register herunter und 
der nächste BNE-Befehl führt zum Sprung nach 1502, wo 
das Y-Register wieder auf $FF gesetzt wird. Auf diese Weise 
wird die äußere Schleife 255mal und die innere 65025mal 
durchlaufen.

0800 00 0C 08 0A 00 41 25 B2

080C 
Koppeladresse

000A
Zeilennr.10

A %
Token

0808 AB 31 32 00 12 08 14 00

Token
1 2 Zeilen­

ende
0812

Koppeladresse
0014 

Zeilennr.20

0810 80 00 00 00 FF FF FF FF

END 
Token

Zeilen­
ende

Programm­
ende ,

Leerer Speicher
Variablenname und -typ Variablenwert

Speicher­
stelle 0814 0815 0816 0817 0818 bis 081A

Byte 1 2 3 4 5-7

Inhalt
C1 80

1100 0001 1000 0000

Kennbits 7 für Integer 
0100 0001 0000 0000 

65 
Code für A

FF 
1111 1111

MSB

F4 
1111 0100

LSB 
von

-12

00 00 00

unbenutzt bei 
Integerzahlen

Bild 8. Der Monitor zeigt das nackte Programm im 
Speicher

Bild 9. So werden Integer-Variable aus Basic- 
Programmen vom C 64 im Speicher eingerichtet
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Sie haben beim Eingeben des Programmes vermutlich 
etwas gestutzt, als derAssembler nach dem BNE 1504 als 
nächste Adresse statt dem erwarteten 1508 eine 1507 aus­
gegeben hat. Der Befehl sieht zwar wie ein 3-Byte-Befehl 
aus, istabernur ein 2-Byte-Befehl! Dasliegtan derspeziellen 
Art der Adressierung von solchen Branch-Anweisungen: Der 
sogenannten relativen Adressierung, die wir aber erst später 
mit den anderen Branch-Befehlen behandeln werden.

Wenn Sie das Programm mit G 1500 starten, werden Sie 
- obwohl alles in Maschinensprache schnell läuft - eine merk­
liche Verzögerung feststellen, bevor die Registeranzeige auf­
taucht. Noch längere Verzögerungen lassen sich ohne weite­
res erreichen, indem man mehr Schleifen ineinanderschach­
telt. Dabei verwendet man dann den DEC-Befehl.

In der Tabelle 2 sind auch die Zyklen angegeben, die die 
neu gelernten Befehle zur Abarbeitung benötigen. Mit sol­
chen Angaben lassen sich recht genau definierte Zeiten ein-

Bild 10. Flußdiagramm zur Verzögerungsschleife

stellen, in denen der Computer nichts anderes tut als durch 
das Programm zu flitzen. Wozu das dient, braucht wohl kaum 
noch gesagt werden: Wenn Sie zum Beispiel einen Text auf 
dem Bildschirm lesen wollen, bevor das Programm weiter­
läuft oder wenn Sie mit Peripherie arbeiten, die langsamer als 
das Programm istoder... Allerdings muß noch gesagt werden, 
daß es noch elegantere Methoden zur Verzögerungs-Pro­
grammierung gibt als das Lahmlegen des Computers, aber 
dazu kommen wir erst später.

16. Herr Carry und der V-Mann

Neun neue Befehle haben wir bisher kennengelernt und wir 
wissen nun, wie unser Computer ganze Zahlen (sogenannte 
Integers) abspeichert. Zur Erinnerung: Das geschieht im 
Zweierkomplement-Format. Das Bit 7 einer 8-Bit-Zahl dient 
dabei als Vorzeichen-Merkmal: Wenn es 0 ist, liegt eine posi­
tive Zahl vor, die genauso aussieht, wie wir bislang immer 
Binärzahlen kannten. Ist das Bit 7 aber eine 1, dann haben wir 
es mit einer negativen Zahl in der Zweierkomplement-Darstel­
lung zu tun. Wenn wir - wie unser Computer - zur Verarbei­
tung ganzer Zahlen 16 Bits (also 2 Bytes) verwenden, dann ist 
eben Bit 15 anstelle von Bit 7 das Vorzeichenbit.

Wenn Sie ein bißchen mitsolchen Zahlen gerechnet haben, 
konnten Sie sicher feststellen, daß zwar oft das richtige 
Ergebnis herauskam - aber leider nicht immer.

Keine Angst, wir sind nicht ins Krimi- oder Agentenmilieu 
gewechselt! Wir haben es mit zwei Flaggen zu tun, der Carry- 
und der V-Flagge. »To carry« heißt auf deutsch etwa »tragen«. 
In der Registeranzeige ist diese Flagge immer mit C gekenn­
zeichnet. Was wird denn hier getragen? Das ergründen wir am 
besten an einem Beispiel. Dazu rechnen wir mit normalen 
Binärzahlen (also ohne Rücksicht auf Vorzeichenbits). Wir 
zählen die Zahlen 128 und 130 zusammen:

128 10000000
+ 130 + 1000 0010

258 (1)0000 0010
Das Ergebnis 258 ist richtig - auch in der Binärdarstellung 

- nur es paßt nicht mehr in 8 Bits. Ein Bit wurde überTRAGEN 
in ein extra dafür vorgesehenes Plätzchen: In das Carry-Bit. 
Jedesmal also, wenn so ein Übertrag in einer Rechenopera­
tion des C 64 stattfindet, zeigt die Carry-Flagge eine 1 (Bild 
11).

Je nach Art der von uns programmierten Aufgabe können 
wir nun dieses Carry-Bit weiterverarbeiten. Es gibt Situatio­
nen, in denen man es einfach ignorieren darf (dazu kommen

Tabelle 2. Die neuen Befehle

Befehls­
wort

Adressie­
rung

Byte­
anzahl

Code 
Hex

, Dez Dauer in
Taktzyklen

Beein­
flussung 
von 
Flaggen

INX implizit 1 E8 232 2 N,Z
INY implizit 1 C8 200 2 N,Z
INC absolut 3 EE 238 6 N,Z
DEX implizit 1 CA 202 2 N,Z
DEY implizit 1 88 136 2 N,Z
DEC absolut 3 CE 206 6 N,Z
SED implizit 1 F8 248 2 1 - D
CLD implizit 1 D8 216 2 0 - D
BNE relativ 2 D0 208 2 —

+ 1 beiVerzweigung
4-2 bei Überschreiten
einer Seitengrenze
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Bild 11. Das Carry-Bit als Bit 8 einer Rechenoperation

wir gleich noch) oder aber solche, wo man es weiter in der 
Rechnung verwendet. Schließlich kann es auch noch einen 
Fehler anzeigen: Dann nämlich, wenn das größte zulässige 
Ergebnis 11111111 sein darf. Natürlich kann das Carry-Bit 
auch gesetzt werden, wenn man in der Zweierkomplement­
form rechnet. Die Verhältnissesind dann aber für ein leicht 
überschaubares Beispiel des Übertrages zu verwickelt, wie 
Sie gleich sehen werden.

Wenn wir nämlich mit den Zweierkomplement-Zahlen 
rechnen, dann interessieren uns auch Fälle wie bei der Addi­
tion von 64 und 66:

64 01000000
+ 66 +01000010

(-126) 1000 0010
Das ist offensichtlich falsch. Bei der Addition ist durch das 

Zusammenzählen der Bits 6 plötzlich Bit 7 gesetzt worden. 
Da wir es aber mit einer Zweierkomplementzahl zu tun haben, 
bei der dieses Bit 7 eine negative Zahl anzeigt, folgt ein Feh­
ler. Es ist also von Bedeutung, so einen Überlauf (englisch: 
’overflow’) erkennen zu können um eine entsprechende pro­
grammtechnische Reaktion zu starten. Es wird die Überlauf- 
Flagge V auf 1 gesetzt. Leider ist die Sache aber nicht so ein­
fach, daß sie immer gesetzt würde, wenn von Bit 6 nach Bit 7 
ein Übertrag stattfindet. Gesetzt wird diese V-Flagge nur in 
folgenden zwei Fällen:

1) Es findet ein Übertrag von Bit 6 nach Bit 7 statt, aber kein 
äußerer Übertrag (wie beim Carry)

2) Es findet kein interner Übertrag von Bit 6 nach Bit 7 statt, 
aber ein äußerer Übertrag passiert.

Merken kann man sich das am besten so: Immer dann, 
wenn gewissermaßen das Vorzeichenbit 7 »versehentlich« 
verändert wurde, wird die V-Flagge auf 1 gesetzt. Das ist ein 
harter Brocken! Wir sind es ja gewohnt, daß wir uns um diese 
Dinge beim Computer eigentlich gar nicht mehr kümmern 
müssen. Außerdem würde dasja erfordern daß man sich bei 
allen Operationen vorher überlegen muß, welche Fehler also 
durch »versehentliches« Vorzeichenändern passieren kön­
nen! Genauso ist es - in der Programmierpraxis wird Ihnen 
aber das ganze Problem nicht mehr so groß vorkommen. Wir 
wollen uns dieses Zusammenspiel der Überträge von Bit 6 
nach Bit 7 und von Bit 7 nach Bit 8 (also in Carry-Bit) noch 
anhand einiger Beispiele klarer machen.

Im obigen Beispiel der Addition von 64und 66 haben wir 
einen Fall schon behandelt: Es fand ein Übertrag von Bit 6 
nach Bit 7 statt, aber kein äußerer Übertrag in Carry-Bit. Des­
wegen wurde dann auch die V-Flagge gesetzt. Das Problem 
läßt sich hier ganz einfach lösen zum Beispiel durch Verwen­
dung von 16-Bit-Zahlen:

64 0000 0000 0100 0000
+ 66 + 0000 0000 0100 0010

130 0000 00001000 0010

Bei 16-Bit-Zahlen istja Bit 15 das Vorzeichenbit, welches 
hier keine Änderung erfährt.

Der andere Fall tritt auf bei der Addition von zwei negativen 
Zahlen wie -125 und -64:

-125 10000011
- 64 11000000

(+67) (1)01000011

Auch das ist offensichtlich falsch: Es hat wieder »verse­
hentlich« ein Vorzeichenwechsel stattgefunden. Dies ist also 
der Fall, wo zwar ein Übertrag ins Carry-Bit stattfand aber kein 
Übertrag von Bit 6 nach Bit 7. Auch dieses Problem läßt sich 
durch Verwendung von 16-Bit-Zahlen lösen. Eine kleine Trai­
ningsaufgabe für Sie!

Man kann also sagen: Immer dann, wenn bei 8-Bit-Rech- 
nungen der mittels Zweierkomplementzahlen darstellbare 
Bereich (127 bis -128) über- oder unterschritten wird, fuhr­
werkt man im Vorzeichen-Bit herum und verfälscht das 
Ergebnis. Dann leuchtetwie eine rote Ampel die Überlauf(V)- 
Flagge auf und sagt uns, daß wir besser in diesen Fällen mit 
16-Bit-Zahlen arbeiten sollten.

Nun noch zum Ignorieren des Carry-Bits, das ich weiter 
oben erwähnt habe. Bei allen 8-Bit-Rechenoperationen mit 
Zweierkomplementzahlen kann das Carry-Bit vernachlässigt 
werden. Zwei Beispiele sol|en das wieder illustrieren. Wir 
addieren +4 und -2:

+4 0000 0100
+ -2 + 11111110

~2 (1)0000 0010
Das Carry-Bit wird außer acht gelassen. Anderes Beispiel: 

Wir addieren zwei negative Zahlen, -4 und -6:

-4 11111010
+ -2 + 11111110

~6 (1)1111 1000

Auch hier kann man (sogar: muß man) das Carry-Bit ver­
nachlässigen. Beide Ergebnisse sind richtig.

Nun wissen Sie alles über die Art, wie unser Rechner mit 
ganzen Zahlen arbeitet. Probieren Sie mal ein paar Aufgaben 
aus zur Übung.

Wir verlassen jetzt den Zahlendschungel und widmen uns 
der Praxis.

17. Der Computer rechnet: ADC, CLC

ADC ist der erste Arithmetik-Befehl des 6502 (und natürlich 
auch des 6510), den wir kennenlernen. Er bedeutet »ADd 
with Carry«, also »addiere mit Carry-Bit«. An einem 8-Bit- 
Beispiel wollen wir uns das mal ansehen. ZAHL1 und ZAHL2 
sollen addiert werden. Beide sollen positive 8-Bit-Zahlen 
sein, die so klein sind, daß kein Überlauf zu erwarten ist. Die 
ZAHL1 wird in den Akku gegeben:

LDA #ZAHL1
Wenn wir nun den Befehl

ADC #ZAHL2
folgen lassen, sorgt die ALU (arithmetisch-logische Einheit, 
siehe Folge 1) dafür, daß beide Zahlen addiert werden und das 
Ergebnis im Akku erscheint. ZAHL1 ist dann vom Ergebnis 
überschrieben worden. An sich ist damit alles erledigt. Weil 
wir aber häufig wissen wollen, was denn nun bei der Addition 
herausgekommen ist, speichern wir den Akku-Inhalt noch 
irgendwo ab mittels »STA Speicherstelle«. Außerdem war daja 
noch die Sache mit dem Carry-Bit. Wir haben oben festge­
stellt, daß bei einer 8-Bit-Addition kein Carry-Bit berücksich-
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tigt werden soll. Nun gibt es aber eine ganze Menge von Vor­
gängen in einem Assembler-Programm, die das Carry-Bit 
beeinflussen. Man kann eigentlich vor einer Addition nie ganz 
sicher sein, ob es denn nun 1 oder 0 ist. Weil jedoch ADC 
auch das Carry-Bit mitaddiert, sollte man dafür sorgen, daß es 
vor dem Zusammenzählen wirklich gelöscht ist. Dazu gibt es 
den Befehl CLC was die Abkürzung für »CLear Carry«, also 
»lösche Carry-Bit« ist. Sei ZAHL1=12 und ZAHL2=7, dann 
würde unser vollständiges 8-Bit-Additions-Progrämmchen 
also lauten:

1200 CLC
1201 LDA #$0C
1203 ADC #$07
1205 STA 1500

Sehen wir mal davon ab, daß dieses Programm natürlich 
unsinnig ist (das kann man ja im Kopf schneller rechnen!), 
dann erkennen wir: CLC ist ein 1-Byte-Befehl mit impliziter 
Adressierung, welcher sich nur auf die C-Flagge (also das 
Carry-Bit) auswirkt. ADC ist in der hier verwendeten Form ein 
2-Byte-Befehl und liegt in der »unmittelbar« genannten 
Adressierung vor. Wie wir oben gesehen haben, kann ADC - 
je nach Art der Rechnung - auf einige Flaggen wirken: Da 
wären zunächst natürlich die V-Flagge und die C-Flagge. 
Dann aber kann beim Auftreten eines gesetzten Bit 7 auch die 
N-Flagge und beim Überschreiten von $FF eventuell auch die 
Z-Flagge verändert werden.

Viel interessanter wird unser Mini-Programm schon, wenn 
man anstelle von

1201 LDA #$0C
jetzt die absolute Adressierung verwendet, zum Beispiel 

1201 LDA 1400
Weil das ein 3-Byte-Befehl ist, verschiebt sich natürlich der 

Rest des Programmes um 1 Byte. So kann man immerhin 
schon zu unterschiedlichen Inhalten von 1400 den gleichen 
Betrag addieren.

Am interessantesten allerdings ist die Tatsache, daß auch 
ADC absolut adressierbar ist. Wir können so zum Beispiel den 
Inhalt der Speicherzelle 1300 zum Inhalt der Zeile 1400 hin­
zuzählen und dann das Ergebnis in 1500 ablegen:

1200 CLC
1201 LDA 1400
1204 ADC 1300 ‘
1207 STA 1500

Hier ist der ADC-Befehl dann 3 Byte lang geworden.
Vergessen Sie bitte nicht - das gilt vor allem für die nachfol­

genden Rechenoperationen - dann, wenn die Wahrschein­
lichkeit besteht, daß der Dezimal-Modus eingeschaltet ist 
(also die D-Flagge auf 1 gesetzt ist), noch den Befehl CLD vor 
solche Programme zu stellen.

Solche 8-Bit-Rechnungen kommen recht häufig vor: Wenn 
man in Schleifen nicht mit mehrfach wiederholten INX (bezie­
hungsweise INY oder INC, DEX, DEY oder DEC) arbeiten will, 
addiert man eben immer die Sprungweite mittels ADC hinzu. 
DerAkku kann nichtalsZählerdienen, denn es gibtfürihn kei­
nen Befehl, der dem INX und so weiter vergleichbar wäre, 
weswegen man ihn - sollte es nötig sein - mittels ADC 
hochzählt.

Häufiger und in der Praxis bedeutender sind 16-Bit-Rech- 
nungen. Wie Sie sicher noch aus den vorangegangenen Fol­
gen wissen, teilt man so eine 16-Bit-Zahl auf in zwei Byte (das 
LSB und das MSB). Nehmem wir für unser nachfolgendes 
Beispiel wieder an, daß die Zahlen so gebaut sind, daß kein 
Überlauf zu befürchten ist. ZAHL1 hätten wir vorher in die 
Speicherstellen 1300 (LSB) und 1301 (MSB) gepackt, 
ZAHL2 liegt in den Zellen 1400 (LSB) und 1401 (MSB). 
Zunächst wieder die Vorbereitungsmaßnahmen:

1200 CLD
1201 CLC

Dabei ist CLD nicht immer nötig, wie schon gesagt. Nun 
addieren wir zuerst die LSBs:

1202 LDA 1300
1205 ADC 1400
1208 STA 1500

Ein Überlauf kann hiernichtstattgefunden haben, denn das 
Vorzeichenbit ist ja im MSB als Bit 15 enthalten, wohl aber 
kann ein Übertrag stattgefunden haben: Das Ergebnis könnte 
größerals255 ($FF) gewesen sein. Wardas der Fall, dann ist 
jetzt eine 1 im Carry-Bit. Wir addieren nun die MSBs:

120 BLDA 1301
120 EADC 1401
1211 STA 1501

Egal, was im Carry-Bit stand: Es wurde jetzt hinzuaddiert. 
Das Ergebnisunserer Rechnung stehtnun in 1500 (LSB) und 
1501 (MSB). Sehen wir uns das ganze nochmal am Zahlen­
beispiel an. Wir addieren die Zahlen 2176 (binär: 0000 1000 
1000 0000) und 1009 (binär: 0000 0011 1111 0001). Die 
Speicherinhalte sind dann:

1300 1000 0000 LSBZahl1
1301 00001000 MSB
1400 11110001 LSBZahl2
1401 00000011 MSB

Jetzt addieren wir die LSBs:
1300 10000000
1400 11110001
Carry 0

1500 01110001
Carry: 1

Nun folgt der zweite Teil der Addition mit den MSBs:
1301 00001000
1401 00000011
Carry: 1

1501 00001100
Damit steht nun das Ergebnis 3185 (binär 

00001100 0111 0001) säuberlich aufgeteilt in LSB (Spei­
cher 1500) und MSB (Speicher 1501) fest. Das Carry-Bit 
steht auch nach vollendeter Rechnung noch auf 1, so daß es 
vor erneuter Addition wieder mit CLC zu löschen ist.

Damit wäre alles über die Addition berichtet. Wie immer in 
Programmiererkreisen die Empfehlung: üben, üben,....

Wir wenden uns jetzt der gegenläufigen Operation zu: der 
Subtraktion.

18. Noch mehr Rechnen: SBC, SEC

Daß das Abziehen von Zahlen im Computer durch das Hin­
zuzählen des Zweierkomptementes geschieht, haben wir mit 
viel Gehirnschmalzverbrauch schon in vorangegangenen 
Abschnitten erfahren. Nun sollen Sie die dazu nötigen 
Befehlsworte des Assemblers kennenlernen. Zunächst ein­
mal ist da SBC. Das heißt »SuBtract with Carry« oder auf 
deutsch etwa »ziehe unter Berücksichtigung des Carry-Bits 
ab«. Ebenso wie bei der Addition mit ADC, wirkt das Argument 
des SBC-Befehls auf den Akku-Inhalt ein - wobei das Ergeb­
nis im Akku landet, diesen also überschreibt. Komplizierter ist 
hier die Verwendung des Carry-Bits, worauf wir aber nicht 
detailliert eingehen wollen. (Wen es interessiert: Nachlesen 
in LA. Leventhal, »6502 Programmieren in Assembler«, 
3. Auflage, München 1983, Seite 3-100). Für uns soll einfach 
die nicht ganz korrekte Analogie zum »Borgen« bei der Sub­
traktion ausreichen. Für den Fall, daß ein solches Borgen ein­
treten muß, sollte auch das dazu nötige Carry-Bit vorhanden
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sein (also auf 1 gesetzt sein). Wie Sie sicherlich schon er­
raten haben, heißt SEC »SEt Carry«, also »setze das Carry- 
Bit«(auf1).

Merke:VoreinerAddition immerLöschen desCarry-Bits 
mit CLC, 
vor einer Subtraktion immer Setzen des Carry-Bits mit 
SEC!

Zwei Beispiele für die Subtraktion sollen das bisher 
Gesagte erläutern: Zunächst eine 8-Bit-Subtraktion von 
ZAHL1 (in Speicherzellle 1300) minus ZAHL2 (in Zelle 
1400). Das Ergebnis wird nach 1500 geschrieben:

1200 CLD
1201 SEC
1202 LDA 1300
1205 SBC 1400
1208 STA 1500

SBC kann - wie hier - absolut adressiert werden, aber auch 
unmittelbar (also zum Beispiel SBC #$40). Der Befehl ist 
dann im ersten Fall ein 3-, im anderen Fall ein 2-Byte-Befehl. 
SEC ist ebenso wie vorher schon CLC ein implizit adressier­
barer 1 -Byte-Befehl.

Das zweite Beispiel ist eine 16-Bit Subtraktion. In den Spei­
chern steht vor dem Aufruf dieser kleinen Routine:

1300 ZAHL1 LSB
1301 ZAHL1 MSB
1400 ZAHL2 LSB
1401 ZAHL2 MSB

Das Ergebnis soll nach 1500 (LSB) und 1501 (MSB) 
gebracht werden:

1200 CLD
1201 SEC
1202 LDA 1300
1205 SBC 1400
1208 STA 1500

Jetztsind die beiden LSBsvoneinanderabgezogen und die 
Differenz abgespeichert als LSB des Ergebnisses.

120B LDA 1301
120E SBC 1401
1211 STA 1501

Damit ist die Aufgabe beendet. Auch die MSBs sind subtra­
hiert und das MSB des Ergebnisses steht in 1501.

SBC beeinflußt die gleichen Flaggen wie der Befehl ADC.

19. Ein Programmprojekt

Damit die so kennengelernten Arithmetik-Befehle nicht so 
trocken auf weiter Flur stehen, wollen wir nun ein Programm 
entwickeln, aus dem zweierlei zu lernen ist:
1) Die Anwendung bisher gelernter Befehle und
2) ein häufig angewendetes Verfahren, Assemblerpro­
gramme in Basic-Programme einzubinden.

Besonders dieser zweite Aspekt scheint noch vielen 
Lesern unklar zu sein (das zeigen mir Zuschriften). Es gibt 
eine ganze Reihe von Möglichkeiten, zum Einbau von 
Assembler-Routinen in Basic-Programme; die werden wiralle 
nach und nach kennenlernen. Von Ihnen wurde der SYS- 
Befehl sicherlich schon häufig angewendet (zum Beispiel für 
SYS 58640 und vorherigem POKE214,Zeile und POKE211, 
Spalte zum Setzen des Cursors an die Stelle Zeile, Spalte). 
Damit haben Sie ein Maschinenprogramm aufgerufen, das im 
System unseres Computers schon enthalten ist. 58640 ist 
die Startadresse des Programmes und man kann diesen SYS- 
Befehl eigentlich wie eine Art »GOTO Maschinenprogramm- 
Startadresse« ansehen. Nichts hindert uns also, auf diese

Weise eigene Assembler-Programme anzuspringen! Das 
Problem liegt nun nur noch darin, wie man Parameter, die 
unsere Maschinenroutine benötigt, übergeben kann. Eine 
offensichtliche - aber leider auch relativ langsame - Methode 
ist das POKEn der Werte im LSB/MSB-Fbrmat in die Spei­
cherzellen, aus denen sie sich unser ML-Programm dann 
abholt. Wir wollen dieses Verfahren nun an einem Programm­
beispiel verwenden.

Eine arithmetische Reihe werden viele von Ihnen schon 
kennen. Wenn man A als erstes Glied, D als Differenz und N 
als die Anzahl der Glieder bezeichnet, dann ist die Summe 
einer solchen Reihe:

S=A+(A+D)+(A+2*D)+...... +(A+(N-1)*D)
Ein Beispiel ist die Summe der ersten zehn ganzen Zahlen: 

S=1+2+3+4+5+6+7+8+9+10
HieristA=1, D=1 undN=10. DaßdieSummeSim Beispiel 

55 ist, kann man schnell berechnen, was aber, wenn wir 
wesentlich mehr als nur zehn Glieder haben? Es gibt natürlich 
auch Formeln zur Berechnung von S. Aber eigentlich ist es 
ganz reizvoll, ohne solche Formeln den Computer die Summe 
bilden zu lassen. Wir bauen also ein Programm zur Berech­
nung der Summe der ersten N ganze Zahlen, wobei N frei 
gewählt werden kann. Das Ergebnis soll eine 16-Bit-Zahl sein, 
also nicht größer als 32767. Das beschränkt uns bei N auf 
Werte von 1 bis 255 (Warum, können Sieja mal mit dem ferti­
gen Programm ausprobieren). N benötigt also nur 1 Byte 
Speicherplatz und soll in $1300 abrufbar sein. A soll 1 sein 
ebenso wie D. Für eventuelle Programmänderungen ist es 
aber sinnvoll, A und D als 16-Bit-Zahlen aufzubewahren und 
zwar in $1310/1311 (A in LSB/MSB-Fbrmat) und in 
$1320/1321 (D im gleichen Format). Das Ergebnis soll in 
$1400/1401 zufindensein. DasMaschinenprogrammlegen 
wir nach $1200.
Zuerst kümmern wir uns um das Basic-Aufrufprogramm:

Zu diesem Programm gibt es nur noch zu bemerken, daß 
die Zahlen bei POKE, PEEK oder SYS die Dezimalwerte unse­
rer oben gewählten Adressen sind.

Nun endlich zum Assemblerprogramm. Sehen Sie sich 
dazu bitte das Flußdiagramm im Bild 12 an.

Wir bereiten den Ablauf vor, indem wir aus $1300 die 
Anzahl der Glieder ins X-Register laden und zur Vorbereitung 
der Addition das Carry-Bit löschen. Schalten Sie also bitte 
den SMON ein und tippen Sie A1200 <RETURN>. Es 
erscheint die Startadresse 1200. Jetzt können Sie Zeile für 
Zeile das Assembler-Programm eingeben (nach jeder Zeile 
ejn RETURN, das die nächste Zeilennummer erzeugt):

1200 LDX 1300
1203 CLC

Die nächsten sechs Zeilen summieren jeweils das neueste 
Glied zur bis dahin erzeugten Summe. Jetzt zu Beginn ist

10 REM * *AUFRUF SUMME ARITHMETISCHE REIHE* *
20 POKE5120,0:POKE5121,0:REM ERGEBNISSPEICHER AUF 

NULL
30 PRINTCHR$(147)CHR$(17)CHR$(17)
40 INPUT”ANZAHLDERGLIEDERN=”;N
50 IFN<1 ORN>255THENPRINTCHR$(17)"1<=N

< =255”:GOTO40
60 POKE4864,N:REM EINSPEICHERN VON N
70 POKE4880,1:POKE4881,0:POKE4896,1:

POKE4897,O:REM EINSPEICHERN VON A UND D
80 SVS4608:REM AUFRUF UNSERES MASCHINEN­

PROGRAMMES
90 M=PEEK(5121):L=PEEK(5120):REM AUSLESEN DES 

ERGEBNISSES
100 E=256*M + L:PRINTCHR$(17)CHR$(17)
110 PRINT"DIE SUMME DER ERSTEN ”N” GANZEN ZAHLEN 

IST:":PRINTE
120 END
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$1400/1401 noch leer und in $1310/1311 steht noch das 
Anfangsglied A=1. Später mit Durchlaufen derSchleife, steht 
in $1400/1401 immer die bis dahin gebildete Summe und in 
$1310/1311 das letzte Glied der Reihe. Es handeltsich um die 
oben kennengelernte 16-Bit-Addition:

1204 LDA 1400
1207 ADC 1310
120 ASTA 1400

Das neue LSB ist berechnet und in $1400 geschrieben.
1200 LDA 1401
1210 ADC 1311
1213 STA 1401

Das war nun noch das neue MSB. Als nächstes berechnen 
wir das momentan letzte Glied der Reihe durch Addieren von 
D zum alten letzten Glied. Das entspricht dem Basic-Befehl 
A=A+D in einer Schleife. Dies ist eine neue 16-Bit-Addition, 
weshalb wir wieder CLC vorgeben müssen:

1216 CLC
1217 LDA 1310
121 AADC 1320
121 DSTA 1310

Bild 12. Flußdiagramm des Assembler­
programmes »Summe einer arithmetischen Reihe«

Das war wieder das LSB. Nun zum MSB:
1220 LDA 1311
1223 ADC 1321
1226 STA 1311

WirzählennundasX-Registerum 1 herunterundprüfen, ob 
es schon Null geworden ist, ob also schon alle N-Glieder sum­
miert worden sind:

1229 DEX
122 ABNE 1203

Wenn noch nicht alle Glieder berechnet und summiert sind, 
kehren wir an den Schleifenanfang zurück. Ansonsten sprin­
gen wir zurück ins Basic-Aufrufprogramm:

122 CRTS
Wenn Sie beide Programme eingetippt haben, dann spei­

chern Sie sie vorsichtshalber ab (das Assemblerprogramm 
mit dem S-Befehl des SMON). Beim neuen Einladen brau­
chen Sie den SMON nicht mehr. Nach dem Laden unseres 
Maschinenprogrammes (mit ,8,1 bei Diskette oder ,1,1 bei 
Kassette) geben Sie NEW < RETURN > ein, damit die Zeiger 
vor dem Einladen des Basic-Programmes wieder auf Normal­
werte gesetzt werden. Zwischen dem dann eingeladenen 
Basic-Programm und unserer Assembler-Routine ist genug 
Platz. Sollten Sie aber irgendwann mal das Basic-Programm 
vergrößern, schützen Sie bitte unseren Bereich ab $1200.

Unser Assembler-Beispiel ist so aufgebaut, daß auch A und 
D variabel gehalten sind. Sie müßten dann nur noch 
Eingabemöglichkeiten im Basic-Programm schaffen und 
anstelle der Werte 1 oder 0 in Zeile 70 die LSBs und MSBs 
der von Ihnen eingegebenen Größen A und D einPOKEn. Auf 
diese Weise sind dann beliebige ganzzahlige, arithmetische 
Reihen berechenbar, wiezumBeispielS=7+10+13+16+... 
und so weiter. Das überlasse ich Ihrer Basic-Programmier- 
fertigkeit. Nur eines noch: Sie müssen darauf achten, daß die 
Summe S nicht größer als 32767 wird. Ihrer Phantasie sind 
- wie immer in diesem Metier - keine Grenzen gesetzt. Sie 
könnten sich ja mal überlegen, wie man größere Summen 
zulassen kann (wer sagt denn, daß wir Zahlen immer nur in 
2 Byte darstellen dürfen?). OderSie könnten sich überlegen, 
welches eindeutige Merkmal auftritt, sobald der Maximalwert 
überschritten wird (ein Tip: Lesen Sie doch mal den Abschnitt 
über die V-Flagge nach).

20. Die Branch-Befehle

Der 6502 (und auch der damit identische 6510) kennt acht 
bedingte Verzweigungen, von denen wir bisher BNE schon 
verwendet haben. Alle diese Branch-Befehle (von branch = 
verzweigen) prüfen Flaggen des Statusregisters.

BNE und BEQ beziehen sich auf die Z-Flagge, die anzeigt, 
ob im Verlauf der letzten Operation eine Null aufgetreten ist. 
Ist das der Fall, steht in der Z-Flagge eine 1. BNE verzweigt 
zur angegebenen Adresse, wenn in der Z-Flagge eine 0 ent­
halten ist. BEQ (»Branch if EQual zero« = »verzweige, wenn 
gleich Null«) tut das tiann, wenn die Z-Flagge auf 1 gesetzt 
ist. Da muß man etwas aufpassen, daß man sich nicht vertut!

BCC und BCS haben ihre Aufmerksamkeit auf die C- 
Flagge, also das Carry-Bit gerichtet. BCC kommt vom engli­
schen »Branch if Carry Clear«, was heißt: »verzweige, wenn 
das Carry-Bit gelöscht ist«. Ein gesetztes Carry-Bit (also 
lnhalt=1) veranlaßt BCS (»Branch if Carry Set« = verzweige, 
wenn das Carry-Bit gesetzt ist) zum Sprung an die angege­
bene Adresse.

Diese vier bedingten Verzweigungen sind an sich die 
bedeutsamsten und am häufigsten verwendeten Branch- 
Befehle. Man kann wohl getrost sagen, daß über 90% der von 
Programmierern verwendeten bedingten Sprünge, damit 
absolviert werden. R. Mansfield warnt sogar ausdrücklich in
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seinem Buch»Machine language for beginners«, einem in 
den USA sehr verbreitetem Werk, vor der Verwendung der 
BefehleBPLundBMI!

Dafür liegt absolut kein einsehbarer Grund vor. Viele pro­
grammtechnischen Aufgabenstellungen lassen sich elegant 
und leicht mit BPL, BMI, BVS und BVC lösen. Man muß nur 
wissen, wie sie funktionieren und - da liegt vermutlich der 
Hund begraben - man muß auch die Art kennen, wie Zahlen 
vom Computer behandelt werden. Genau das aber wissen wir 
und deswegen sollten wir diese Kenntnis für uns auch nut­
zen. Also ohne Scheu heran an die verfehmten Befehle!

BMI und BPL (»Branch on Minus« = »verzweige, wenn 
negativ« und Branch on PLus« = »verzweige, wenn positiv«) 
hängen mit der Negativ-Flagge N zusammen. Das Rätsel die­
ser Flagge konnte in den vorangegangenen Folgen gelöst 
werden: Immer dann, wenn bei einer Operation eine Zahl auf­
trat, deren Bit 7 eine 1 war, wurde die N-Flagge auf 1 gesetzt. 

। Wir wissen jetzt, daß dieses Bit bei 8-Bit-Zahlen das Vorzei­
chenbit ist. Bit 7 sagte uns bei einer 1, daß eine negative Zahl 
im Zweierkomplement-Format vorliegt oder aber überhaupt 
ein Speicherzelleninhalt vorhanden ist, der größer als 0111 

: 1111 = 127ist.BMIführtzumSprungindiesemFall,weildie 
N-Flaggeauf 1 steht. AndernfallsführtBPLzurVerzweigung.

Ebenso einfach sind BVS und BVC zu erklären: Sie bezie­
hen sich auf die V-Flagge, unsere rote Ampel, die Überlauf bei 
Rechenoperationen anzeigt. Kann es was bequemeres 

: geben zur Behandlung solcher Fehlrechnungen als ein 
»Branch on oVerflow Set« = »verzweige, falls die Überlauf- 

I Flagge gesetzt ( = 1) ist« mit BVS? Oder anders herum bei 
BVC »Branch on oVerflow Clear« = »verzweige bei freier 
Überlauf-Flagge«. Wenn man - wie Siejetzt - weiß, unter wel­
chen Umständen diese V-Flagge auf 1 gesetzt wird, sollte 
man ohne Skrupel BVS und BVC ausgiebig benutzen. Man 
könnte damit zum Beispiel programmieren, daß die Rechen­
genauigkeit automatisch von 16-Bit auf 24- oder 32- (oder 
wie es gerade beliebt) Bit gesteigert wird, ohne daß man sich 
bei jeder Programmaufgabe Gedanken über das größtmögli­
che Ergebnis machen muß. Dazu aber ein andermal mehr.

’ Alle hier vorgestellten Branch-Befehle sind ebenso wie 
BNE 2-Byte-Befehle, was an der speziellen Art der Adressie­
rung liegt: Der relativen Adressierung. Tabelle 3 zeigt eine 
Übersicht der neuen Befehleaus den letzten fünf Kapiteln.

Tabelle 3: Die 11 neuen Befehle

Befehls­
wort

Adressierung Byte­
an­
zahl

Code Dauer 
in 
Takt­
zyklen

Beeinflussung 
von Flaggen

hex dez

ADC unmittelbar 2 69 105 2
N,V,Z,C

absolut 3 6D 109 4
CLC implizit 1 18 24 2 0- C
SBC unmittelbar 2 E9 233 2

N,V,Z,C
absolut 3 ED 237 4

SEC implizit 1 38 56 2 1 -C
BEQ relativ 2 F0 2 keine Änderung
BCC relativ 2 90 2 keine Änderung
BCS relativ 2 B0 2 keine Änderung
BMI relativ 2 30 2 keine Änderung
BPL relativ 2 10 2 keine Änderung
BVC relativ 2 50 2 keine Änderung
BVS relativ 2 70 2 keine Änderung

+ 1 beiVerzweigung
+ 2 bei Überschreiten
einer Seitengrenze

21. Die relative Adressierung

Als wir den BNE-Befehl das erstemal verwendet haben, stell­
ten wir fest, daß zum Beispiel BNE 1200 nicht — wie eigent­
lich zu erwarten war — ein 3-Byte-Befehl, sondern ein 
2-Byte-Befehl ist. Damals mußten wir uns mit der Bemerkung 
zufrieden geben, es läge an der besonderen Art der Adres­
sierung, nämlich der relativen Adressierung. Relativ bedeutet 
ja »bezogen auf etwas«. Wenn wir also beispielsweise BNE 
1200 schreiben, liegt es nur an der Benutzerfreundlichkeit 
des SMON und vieler anderer Assembler, daß dieser die so 
geschriebene absolute Adresse 1200 in die richtige Form, 
nämlich die relative umrechnet. In Wahrheit verlangt der 
6502 (und natürlich ebenso der 6510) eine Angabe darüber, 
wieviele Bytes nach vorne oder hinten im Programm er zur 
weiteren Programmverarbeitung springen (verzweigen) soll. 
Es gilt nun also, zwei Fragen zu klären:
1. Relativ wozu wird gesprungen und
2. Wie berechnet sich die Angabe, um wieviele Bytes nach 
vorne oder hinten im Programm der Sprung vollzogen werden 
soll.

Zur Klärung verwenden wir ein hypothetisches Programm­
segment mit einem Sprungbefehl und sehen uns das Disas-
semblerlisting an:

2000 AD 0030 LDA 3000
2003 F0 05 BEQ 200A
2005 A9 00 LDA #00
2007 8D 0030 STA 3000
200A 60 RTS

Dieses Programm-Teilchen lädt den Inhalt der Speicher­
stelle 3000 in den Akku, überprüft dann, ob dieser Inhalt Null 
ist und verzweigt beim Vorliegen der Null zum Rücksprung 
(RTS). Ist der Inhalt von 3000 nicht Null, dann wird 3000 auf 
Null gesetzt. 3000 könnte zum Beispiel eine Ftagge sein.

Der Pfad, dem der Computer bei der Abarbeitung des Pro­
grammes folgt, wird durch den Programmzähler vorbereitet. 
Dieser ist dann, wenn der BEQ-Befehl an der Reihe ist, schon 
einen Schritt weiter, nämlich im Programmzähler steht dann 
die Adresse 2005.

Relativ zu dieser Adresse hat dann der Sprung zu erfolgen. 
Zum Inhalt des Programmzählers muß also die Sprungweite 
(auch häufig Offset genannt) addiert werden. Soweit zur 
Frage 1.

Zur Klärung von Frage 2 listen wir uns mal Byte für Byte 
unser Programm auf:

Byte Inhalt Bedeutung
2000 AD LDA
2001 00 LSB von 3000
2002 30 MSB von 3000
2003 F0 BEQ
2004 05 Offset
2005 A9 LDA #
2006 1 00
2007 2 8D STA
2008 3 00 LSB von 3000
2009 4 30 MSB von 3000
200A 5 60 RTS

Neben der Byte-Nummer ist noch die Entfernung zu 2005 
geschrieben. Daraus ist deutlich zu erkennen, daß die 
Sprungweite, die zum Programmzähler addiert wird, 05 sein 
muß, wenn der Sprung zum RTS erfolgen soll. Für Vorwärts- 
Verzweigungen gilt also: Von der Adresse des Befehls an, der 
auf den Branch-Befehl folgt, zählt man die Byte-Anzahl bis 
zum Sprungziel. Das Ergebnis ist der Offset.
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Nun gibt es genauso häufig Rückwärts-Sprünge. In den bis­
her gezeigten Programmen sind sie mehrmals aufgetreten. 
Wie berechnet man den Offset in diesen Fällen? Sehen wir 
uns wieder das Disassembler-Listing eines solchen Pro­
grammsegmentes an:

1000 A2 00 LDX #00
1002 E8 INX
1003 DOFD BNE 1002
1005 00 BRK

Dieses Progrämmchen tut nichts anderes, als das vorher 
auf Null gesetzte X-Register hochzuzählen, bis es über 255 
läuft (dann tritt ja wieder 0 auf!). Solange der Inhalt des 
X-Registers ungleich Null ist, erfolgt ein Sprung zurück bis 
zur INX-Anweisung in Zeile 1002. Erst wenn die Null durch 
den Überlauf aufgetreten ist, endet das Programm mit einem 
BRK in Zeile 1005.

Wir wissen schon, daß der Programmzähler beim Verarbei­
ten des BNE-Befehls auf 1005 steht. Sehen wir uns auch 
dieses Programm Byte für Byte an:

Byte Inhalt Bedeutung
1000 A2 LDX #
1001 00
1002 3 E8 INX
1003 2 D0 BNE
1004 1 FD Offset
1005 00 BRK

Wieder ist neben der Bytenummer die Entfernung vom 
aktuellen Programmzählerstand angegeben. Wir müssen 
also vom Inhalt des Programmzählers 3 abziehen, um zum 
INX-Befehl in Byte 1002 zu gelangen. Das kennen wir aber 
schon aus den vergangenen Ausgaben: Wenn der Computer 
eine Zahl abzieht, dann addiert er das Zweierkomplement die­
ser Zahl. Hier soll nun 3 subtrahiert werden. Wir berechnen 
das Zweierkomplement:

3 = 0000 0011 (binär)
Das Einerkomplement davon ist:

1111 1100
Dann wird eine 1 addiert

1111 1101
Dies ist das Zweierkomplement. In hexadezimal ausge­

drückt heißt diese Zahl $FD und ist unser Offset. Für 
Rückwärts-Verzweigungen gilt also: Von der auf die Branch- 
Anweisung folgenden Speicherstelle an zählt man die Bytes 
zurück bis zum Sprungziel. Das Zweierkomplement der sich 
dadurch ergebenden Byte-Anzahl ist der Offset.

Das sieht reichlich kompliziert aus, aber zum einen haben 
Sieja einen ganz freundlichen Assembler und nur in seltenen 
Notfällen müssen Sie den Offset berechnen. Zum anderen 
gibt es noch eine Faustregel, mit der man sich das ganze ver­
einfachen kann. Die soll durch folgendes Schema erläutert 
werden:

Byte Inhalt Offset

1995 F9
1996 FA
1997 FB
1998 FC
1999 FD
2000 BNE FE
2001 Offset FF
2002 Programm­

zählerstand
2003 01
2004 02

2005 03

Bei Vorwärtssprüngen ist ohnehin alles klar: Bei einem 
Sprung nach Adresse 2005 müßte man in vorliegendem Fall 
einen Offset von 03 eingeben. Bei Rückwärts-Ver­
zweigungen zählt man einfach von $FF an rückwärts bis zur 
Zieladresse. Eine Verzweigung nach 1996 würde im vorlie­
genden Fall also einen Offset von $FA erfordern.

Eine Einschränkung der relativen Adressierung können Sie 
nun auch sofort verstehen, wenn Sie an Zweierkomplement­
zahlen denken: Der Offset belegt ein Byte. Die größte posi­
tive Zahl in einem Byte ist

0111 1111 = +127 = $7F
und die kleinste negative Zahl ist

1000 0000 = —128 =($80)
Es sind keine größeren Vorwärts-Verzweigungen als um 

127 Byte möglich, weil in diesem Fall ein Offset größer als 
$7F, also mit einem Bit 7 gleich 1 nötig wäre, was aber wieder 
als negative Zweierkomplementzahl verstanden und einen 
Rückwärtssprung verursachen würde. Ähnliches gilt anders 
herum: Es ist kein weiterer Rücksprung als um 128 Byte mög­
lich, weil das im Offset zum gelöschten Bit 7 führen würde, 
also zu einem Offset kleiner als $80, was wiederum anstelle 
des Rücksprunges eine Vorwärts-Verzweigung herbeiführen 
würde.

Darauf sollte man achten beim Erstellen eines Assem­
bler-Programmes, daß man nie weitere Rückwärtssprünge 
als um 128, beziehungsweiseVorwärtssprüngeum 127 Byte 
verlangt. Auch wenn man im Assembler gar nicht auf relative 
Adressierung Rücksicht nehmen muß, weil der Assembler 
sich mit den Absolutadressen begnügt, sollte man wissen, 
daß zum Beispiel folgende Zeile aufgrund dieser Einschrän­
kung nicht möglich ist:

3000 BNE 1000
Die meisten Assembler reagieren auf solch eine Zeile mit 

einer Fehlermeldung (beim Hypra-Ass mit »Branch too far«) 
oder so wie der SMON, der klammheimlich die Programm­
startadresse statt 1000 einsetzt. Aber es ist doch ärgerlich, 
wenn man auf dem Papier ein Programm fertig hat und erst 
beim Eintippen feststellt, daß der Computer das so nicht 
haben will.

22. Zeropage-Adressierung

Weil wir nun gerade mit der Adressierung so schön in 
Schwung sind, stelle ich Ihnen noch eine andere vor: Die 
Adressierung der Zeropage. Was ist die Zeropage? Auf 
deutsch heißt das Nullseite. Am besten versteht man das, 
wenn man sich in Erinnerung ruft, wie Adressen in unserem 
Computer verwaltet werden. Da haben wir doch ein LSB 
(Least Significant Byte) und ein MSB (Most Significant Byte), 
zum Beispiel $1F 04 (mit 1F als MSB und 04 als LSB). Nun 
hat unser C 64 65535 Adressen von $0000 bis $FFFF. Bei 
den ersten 256 Adressen von $0000 bis $00FF ist das MSB 
$00. Man nennt so einen 256-Byte-Block eine Seite (engl. 
page). Weil hier für alle Adressen dieser ersten Seite des 
MSB Null ist heißt sie NuWseite = Zeropage. Messerscharf 
werden Sie schließen, daß man die Seite mit den MSBs $01 
als erste Seite bezeichnet, die mit den MSBs $02 als zweite 
Seite und so weiter.

Wenn wir nun zum Beispiel den Akku mit dem Inhalt der 
Zeropageadresse $00FA laden wollen, dann könnten wir 
schreiben:

3000 LDA 00FA
Unser Mikroprozessor versteht uns aber auch, wenn wir 

nur schreiben:
3000 LDA FA
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Das ist sie, die Zeropage-Adressierung. Anstelle eines 
3-Byte-ßefehls istdasjetzt ein 2-Byte-Befehl, wasSpeicher- 
platz und vor allem Rechenzeit einspart. Auf diese Weise 
kann man von den bisher kennengelernten Befehlen fol­
gende adressieren:
LDA, LDX, LDY, STA, STX, STY, INC, DEC, ADC und SBC

Sie können sich merken, daß man (bis auf zwei Ausnah­
men, die wir noch kennenlernen werden) alle absolut adres­
sierbaren Befehle auch Zeropage-absolut anwenden kann. 
Genauere Angaben über die Codes, die Ausführungszeiten 
und die Beeinflussung der Flaggen (letztere ist identisch mit 
der absoluten Adressierung) entnehmen Sie bitte der ange­
fügten Tabelle 4.

Zum Thema Geschwindigkeit: Wenn Sie die benötigten 
Taktzyklen von absolut und von O-absolut adressierten 
Befehlen in den Tabellen miteinander vergleichen, werden 
Sie jeweils einen Unterschied von einem Zyklus feststellen. 
Das mag Ihnen läppisch vorkommen. Bedenken Sie aber, daß 
Sie sehr häufig Schleifen programmieren müssen, die meh­
rere 100 Maldurchlaufenwerden, die vielleichtalsoftzuver- 
wendende Unterprogramme dienen... Sie werden bald fest­
stellen, daß da schnell beachtliche Zeitunterschiede auftre­
ten können: Für zeitkritische Programme ist die Verwendung 
der Zeropage-Adressierung dringend geboten.

Dieser Tatsache waren sich leider auch die Schöpfer unse­
res Betriebssystems und des Basic-Interpreters voll bewußt. 
Die Zeropage ist nahezu randvoll mit Speicherstellen, in 
denen sich beide Programmkomplexe tummeln. Fast jede 
Kernel- und Interpreter-Routine notiert sich irgendwelche 
Werte auf der Seite Null. Das macht es uns als 
Assembler-Programmierer nicht gerade leicht, die Zeropage- 
adressierung zu verwenden, wenn wir außerdem den Inter­
preter oder das Betriebssystem benutzen wollen. Es kann 
geradezu katastrophale Folgen haben, einige Zeropage- 
Adressen zu überschreiben. Andere werden ständig neu 
beschrieben durch das Betriebssystem oder den Interpreter, 
was unseren eigenen — vielleicht gerade in so einer Spei­
cherzelle gelagerten — Zwischenwerten den Garaus 
machen würde. Man sollte sich also die ersten 256 Speicher­
stellen ganz genau ansehen, bevor man sie adressiert oder 
aber auf das Betriebssystem und den Basic-Interpreter ver­
zichten. Ersteres erleichtern uns Tabellen der Speicherbe­
legung (zum Beispiel Babel, Krause, Dripke »Das Interface 
Age Systemhandbuch zum Commodore 64«, Interface Age

Be­
fehls­
wort

Adressierung Byte­
an­
zahl

Code Dauer in
Taktzyklen

Beeinflus­
sung von 
Flaggen

Hex Dez

LDA O-Page, abs. 2 A5 165 3 N,Z
LDX O-Page, abs. 2 A6 166 3 N,Z
LDY O-Page, abs. 2 A4 164 3 N,Z
STA O-Page, abs. 2 85 133 3
STX O-Page, abs. 2 86 134 3
STY O-Page, abs. 2 84 132 3
INC O-Page, abs. 2 E6 230 5 N,Z
DEC O-Page, abs. 2 C6 198 5 N,Z
ADC O-Page, abs. 2 65 101 3 N,V,Z,C
SBC O-Page, abs. 2 E5 229 3 N,V,Z,C
CMP unmittelbar 2 C9 201 2

absolut 3 CD 205 4
O-Page, abs. 2 C5 197 3

CPX unmittelbar 2 E0 224 2
absolut 3 EC 236 4 * N,Z,C
O-Page, abs. 2 E4 228 3

CPY unmittelbar 2 C0 192 2
absolut 3 CC 204 4
O-Page, abs. 2 C4 196 3

Tabelle 4: Kenndaten der neuen Befehle und 
Adressierungen

Verlag, oder »Das Commodore 64 Buch, Band 4, Ein Leit­
faden für Systemprogrammierer«, Markt und Technik Verlag) 
und auch die Serie von Dr. Helmut Hauck »Memory Map mit 
Wandervorschlägen«, die seit Ausgabe 11/84 im 64’er 
erscheint.

Ohne Hemmungen dürfen wir nur die Speicherstellen (je­
denfalls beim C 64) $02 und $FB bis $FE nutzen. Weil das 
doch recht mickrig ist, hat jeder Assembler-Programmierer 
spezielle Tips, welche Zellen er noch mit welchen Vorsichts­
maßnahmen benutzt. Wenn man bestimmte Routinen aus 
dem Betriebssystem oder dem Interpreter nicht aufruft, blei­
ben dazugehörige Zeropageadressen unbeeinflußt und sind 
dann für eigene Zwecke nutzbar. Manchmal ist es notwendig, 
den alten Zustand einer Adresse nach Beendigung eigener 
Programme wieder herzustellen, manchmal nicht. Interes­
sant und viel beschrieben in allen möglichen Zeitschriften, 
Büchern etc. ist die Möglichkeit, die Notizen, die sich das 
Betriebssystem oder der Interpreter auf der Zeropage macht, 
zu verändern. Im Prinzip schreibt man damit kleine Teile die­
ser Großprogramme um oder variiert Tabellenteile davon. Wie 
schon Dr. Hauck in seiner Serie sagt, geschieht das im Rah­
men der »Tricks« mit irgendwelchen POKEs mehr oder weni­
ger blind, weshalb auch bevorzugt Abstürze des Computers 
dabei festzustellen sind. Warum Abstürze? Na, stellen Sie 
sich mal ein von Ihnen geschriebenes Programm vor — zum 
Beispiel das aus Kapitel 19zur Berechnung der Summe einer 
arithmetischen Reihe — und POKEn Sie dann anstelle 
irgendeines Befehlscodes, der dorthin gehört, jetzt eine 0 
(also ein BRK) hinein. Die Wirkung dürfte ähnlich sein. Wenn 
man allerdings die Funktion der betreffenden Speicherstelle 
genau kennt, lassen sich recht nützliche Änderungen hervor­
rufen, wie zum Beispiel die Schutz-POKEs für den Basic- 
Speicher durch Verändern der Adressen $33, $34, $37 und 
$38.

Wir werden im folgenden immer dann, wenn wir mit 
Zeropage-Adressierung arbeiten oder Routinen des 
Betriebssystems oder Interpreters untersuchen, spezielle 
Stellen der Nullseite kennenlernen.

Vorhin hatte ich noch angedeutet, daß man dann die Zero­
page fast vollständig nutzen könne, wenn man auf den Basic- 
lnterpreter und das Betriebssystem verzichtet. Das ist tat­
sächlich möglich. Nur wird man dann erstaunt feststellen, 
wieviel Arbeit uns die computerinterne Software abnimmt 
oder anders herum: Viele bislang selbstverständliche Dinge 
werden wir dann plötzlich selbst programmieren müssen, 
und das kann ein hartes Brot sein!

AlsBeispiel für ein Programm, das nicht nur die Zeropage- 
adressierung verwendet, sondern sogar selbst komplett in 
der Zeropage steht, werden wir uns die CHRGET-Routine 
ansehen. Eine Klasse von Befehlen, die dort angewendet 
wird, die Vergleichsbefehle, soll zuvor noch gezeigt werden.

23. Die Vergleichsbefehle: 
CMP, CPX, CPY

Vergleichen heißt in englischer Sprache »to compare«, 
woraus Sie unschwer erkennen können, woher die Bezeich­
nung CMP und die CPs in CPX beziehungsweise CPY kom­
men. Verglichen wird jeweils der Akku-Inhalt (bei CMP), der 
Inhalt des X- (bei CPX) oder des Y-Registers (bei CPY) mit 
Daten, die der Compare-Befehl adressiert. Einige Beispiele 
werden Ihnen das klarer machen:

CMP #FF
vergleicht den Akku-Inhalt mit der Zahl $FF. Hier liegt die 
unmittelbare Adressierung vor, die ebenso für CPX und CPY 
verwendbar ist. Außerdem ist das dann ein 2-Byte-Befehl.

CPX 3000
vergleicht den Inhalt des X-Registers mit dem Inhalt der Spei-
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cherstelle $3000. Die absolute Adressierung ist also auch 
anwendbar (natürlich auch für CMP und CPY). Der Compare- 
Befehl besteht so aus 3 Byte.

CPYA8
vergleicht den Inhalt des Y-Registers mit dem Inhalt der Zero- 
pagestelle $A8. Diese soeben frisch gelernte Zeropage- 
Adressierung ist bei allen drei Vergleichsbefehlen möglich 
und macht aus ihnen 2-Byte-Befehle.

Für CPX und CPY sind das alle Möglichkeiten der Adressie­
rung. CMP erlaubt weitere, die wir noch kennenlernen wer­
den. Nun interessiert uns natürlich noch, wie das Vergleichs­
ergebnis zu erhalten ist! Bei diesen Befehlen geschieht 
merkwürdiges: Die Vergleichsdaten werden vom Inhalt des 
Akkus (beziehungsweise X- oder Y-Registers) abgezogen, 
aber: Weder wird dieser Inhalt noch werden die adressierten 
Daten verändert! Der Trick ist, daß drei Flaggen das Ergebnis 
anzeigen: Die Negativ-Flagge N, die Null-Flage Z und das 
Carry-Bit C. Diese Anzeige geschieht so: (Bild 13)

Bild 13. Flaggen bei den Vergleichsbefehlen

FLAGGE
Akku 

X 
Y

>DATEN
Akku' 

X 
Y

= DATEN
Akku) 

X <DATEN
Y '

N 0 oder 1 0 1 oder 0
Z 0 1 0
C 1 1 0

1) Der Registerinhalt (Akku, X-, Y-Register) ist größer als die 
Vergleichsdaten:
Dann ist das Carry-Bit = 1, die N- und die Z-Flagge =0.
2) Der Registerinhalt ist gleich den Vergleichsdaten:

Dann sind Carry- und Z-Flagge = 1, die N-Flagge = 0.
3) Der Registerinhalt ist kleiner als die Vergleichsdaten: 
Die N-Flagge ist dann =1, Carry- und Zero-Flagge sind 0.

Damit Sie die Übersicht behalten können, ist in Bild 13 das 
ganze als Schema gezeigt.

Sie werden sich vermutlich schon denken können, wie der 
Hase weiterläuft: Mit den Verzweigungsbefehlen prüfen wir 
die Flaggen und springen die gewünschten weiteren 
Programm-Routinen an.

Die Kombination der Compare-Befehle mit den Verzwei­
gungsoperationen wird Ihnen im weiteren Verlauf dieses Kur­
ses noch ganz geläufig werden. Ein Beispiel sehen Sie nach­
her ebenfalls in der CHRGET-Routine. Leider muß ich Sie 
immer noch etwas vertrösten, denn mit Verstand begreifen 
läßt sich diese Routine nur dann, wenn man etwas mehr über 
die Codierung von Zeichen weiß. Deswegen werden wir uns 
nun noch mit dem ASCII-Code und dem Commodore-ASCII 
herumschlagen.

24. Zeichencodierung mit dem ASCII- 
und dem Commodore-ASCII-Code

msn 
lsn

$

$ 

bin.

binär

0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

0 0 000
NUL DLE SP 0 @ P P
NULL DLE SP 0 @ P CHR$(96) CHR$(112)

1 0 001
SOH DC1 i 1 A Q a q
SOH DC1 i 1 A Q CHR$(97) CHR$(113)

2 0 010
STX DC2 " 2 B R b r

STX DC2 " 2 B R CHR$(98) CHR$(114)

3 0 011
ETX DC3 # _3 C S c s

ETX DC3 # 3 C S CHR$(99) CHR$(115)

4 0 100
EOT DC4 $ 4 D T d_________ t

EQT DC4 $ 4 D T CHR$(100) CHR$(116)

5 0 101
ENQ NAK % 5 E U e u
ENQ NAK % 5 E U CHR$(101) CHR$(117)

6 0 110
ACK SYN & 6 F V f v

ACK SYN & 6 F V CHR$(102) CHR$(118)

7 0 111 BEL ETB 7 G W g w

BEL ETB 7 G W CHR$(103) CHR$(119)

8 1 000
BS CAN 8 H X h x

BS CAN ( 8 H X CHR$(104) CHR$(120)

9 1 001
HT EM ) 9 I Y i y
HT EM ) 9 I Y CHR$(105) CHR$(121)

A 1 010
LF SUB * J Z j z
LF SUB J Z CHR$(106) CHR$(122)

B 1 011
VT ESC + ; K [ k

VT ESC + K [ CHR$(107) CHR$(123)

C 1 100
FF FS < L \ I
FF FS < L £ CHR$(108) CHR$(124)

D 1 101
CR GS = M ] m

CR GS = M ] CHR$(109) CHR$(125)

E 1 110
SO RS > N t n

SO RS > N t CHR$(110) CHR$(126)

F 1 111 Sl US / ? _O_ — o DEL

Sl US / ? O CHR$(111) CHR$(127)

ASCII ist die Abkürzung von »American Standard Code for 
Information Interchange« und das heißtauf deutsch »amerika­
nischer Standard-Code zum Informations-Austausch«. Diese 
Zeichenverschlüsselungsart ist international als ISO-7-Bit- 
Code genormt, und es wäre wirklich nett, wenn alle sich 
daran halten würden. Tatsächlich aberfinden wirzum Beispiel 
bei unserem C 64 eine Abart des Normcodes, den 
Commodore-ASCII-Code. Über die damit erzwungenen 
Umrechnungen können alle diejenigen Dramen erzählen, die 
zum erstenmal einen (Nicht-Commodore-)Drucker an ihr 
Gerät anschließen oder aber blauäugig in den Online-Betrieb 
mit anderen Computern eintreten wollten.

Sehen wir uns zunächst einmal den ASCII-Code an. Es 
handelt sich um einen 7-Bit-Code, das heißt 128 Zeichen 
können in nur 7 Bit untergebracht werden (0000 0000 bis 
01111111). Das achte Bit dient bei manchen Operationen mit 
Computer-Peripherie als Paritäts-Bit. Bei dieser Gelegenheit 
soll auch gleich erklärt werden, was Parität in diesem Zusam­
menhang bedeutet. Werden Daten übertragen, muß immer

113 114 117

Bild 14: ASCII-Code Jeweils oben) und Commodore-ASCII 
(msn = most significant nibble; isn = least significant ni.

Bild 15. Grafikzeichen zu den entsprechenden 
CHR$-Codes
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mit Übermittlungsfehlern gerechnet werden. Das Paritätsbit 
dient dazu festzustellen, ob ein Byte korrekt angekommen 
ist. Bei der sogenannten geraden Parität zählt man die Einser 
im Byte zusammen und setzt Bit 7 auf 1 wenn sich eine unge­
rade Zahl ergibt. Mit dem Paritätsbit haben wir dann eine 
gerade Zahl. Ist die Quersumme des Byte schon gerade, 
bleibt Bit 7 eine Null. Ebensogut kann man die ungerade Pari­
tät verwenden, indem dann Bit 7 so gewählt wird, daß sich 
immer eine ungerade Zahl ergibt. Welche Art der Parität zur 
Anwendung kommt, ist Vereinbarungssache. Nehmen wir 
mal an, es sei gerade Parität gefordert und ein Byte mit der 
Information 00010110 soll übermittelt werden. Die Quer­
summe ist 3, also ungerade. Das Paritätsbit muß auf 1 gesetzt 
werden. Wir senden das Byte 10010110. Der Empfänger 
überprüft zunächst auf gerade Parität und verwendet dann 
nur die Bits 0 bis 6. Doppelfehler, die mittels des Paritätsver­
fahrens nicht festgestellt werden können, sind sehr selten. 
Leider kann auf diese Weise nur bemerkt werden, daß ein 
Übertragungsfehler aufgetreten sein muß, aber nicht wel­
cher. Die Information muß dann neu angefordert werden.

Sehen wir uns nun den Commodore-ASCII-Code an. Durch 
die Einbindung der Grafikzeichen brauchen wir mehr als die 
128 Kombinationen. Commodore benutzt deswegen einen 
8-Bit-Code. Mit dem Basic-Befehl CHR$(x) können Sie sich 
alle 256 Möglichkeiten ansehen. Erschwerend kommt aber 
noch hinzu, daß wir nicht nur einen Zeichensatz, sondern 
deren vier zur Verfügung haben, die durch den jeweiligen 
Schreibmodus ansprechbar sind (Klein-/Großschriftmodus, 
Großschriftmodus, beide Modi mit Reverse-ON oder OFF). 
Im Zeichen-ROM liegen insgesamt 512 Muster abrufbereit. 
Zu diesen kommen beim CHR$-Befehl noch eine ganze 
Reihe von Steuerzeichen hinzu... die Verwirrung ist perfekt! 
Wir wollen an dieser Stelle keine Entwirrung vornehmen, son­
dern wir durchschlagen den Gordischen Knoten, indem wir

Bild 16. Die Bedeutung der Abkürzungen im ASCII Code

NUL Null
SOH Start of heading Beginn des Kopfes
STX Start of text Textbeginn
ETX End of text Textende
EOT End of transmission Übertragungsende
ENQ Inquiry Anfrage
ACK Acknowledge Bestätigung
BEL Bell Klingel
BS Backspace Zurücksetzen
HT Horizontal tabul. Horizontaltabulator
LF Line feed Zeilenvorschub
VT Vertical tabulator Vertikaltabulator
FF Form feed Formatvorschub
CR Carriage return Wagenrücklauf/ 

Zeilenwechsel
SO Shift out Rückschaltung
Sl Shift in Dauerumschaltung
DLE Data link escape Datenverbindungs­

umschaltung
DC1-4 Device control Gerätesteuerung
NAK Negative acknowl. Negativ-Bestätigung
SYN Synchronous idle Synchronisations- 

Leerlauf
ETB End of transmission block Ende des Übertra­

gungsblockes
CAN Cancel Annullieren
EM End of medium Datenträgerende
SUB Substitute Ersetzen
ESC Escape Umschaltung
FS File separator Dateitrennzeichen
GS Group separator Gruppentrennzeichen
RS Record separator Satztrennzeichen
US Unit separator Einheiten-Trennz.
SP Space Leerzeichen
DEL Delete Löschzeichen

nur die ersten 128 Zeichen mit den ASCII-Zeichen verglei­
chen. In Bild 14 und 15 finden Sie unsere Gegenüber­
stellung.

Einige Kombinationen dienen als Steuer-Codes. (Die 
Bedeutung der dabei verwendeten Abkürzungen sehen Sie 
in Bild 16.)

Nur ein Teil dieser Codes wird tatsächlich genutzt. Andere 
haben - je nach Gerät an das sie gesandt werden - unter­
schiedliche Bedeutungen. Denken Sie dabei nur mal an die 
verschiedenen Betriebssysteme des Commodore-Druckers 
1526, wo man bei dem einen mit CHR$(1), bei dem anderen 
mit CHR$(14) den Breitschrift-Modus anschaltet. Innerhalb 
unseres Computers werden offensichtlich bestimmte Codes 
anders genutzt. Das sind:

Anstelle geschieht
von folgendes:

ENQ Zeichen weiß
BS Blockieren der Umschaltung 

Klein-/Großschrift
HT Zulassen der obigen 

Umschaltung
DC1 Cursor abwärts
DC2 Reverse-Modus an
DC3 Cursor in HOME-Position
DC4 INST/DEL
FS Zeichen rot
GS Cursor rechts
RS Zeichen grün
US Zeichen blau

Der auffälligste Unterschied ist der, daß beim Commodore­
ASCII anstelle der Kleinbuchstaben Grafikzeichen liegen. 
Sollte anstelle des Normalmodus der Klein-/Großschriftmo- 
dus eingeschaltet sein, findet man anstelle der Großbuchsta­
ben die kleinen.

Jetzt haben wir alle nötigen Kenntnisse, um die CHRGET- 
Routine in unserem Computer zu verstehen.

25. Die CHRGET-Routine

Das Kürzel CHRGET kommt von »Get a character«, was bei 
uns heißt: »Hole ein Zeichen«. Es handelt sich um eine sehr 
häufig benutzte Routine unseres Basic-Interpreters, die - wie 
schon vorhin erwähnt - komplett in der Zeropage steht. Wenn 
Sie mit dem SMON mal nachsehen wollen, dann geben Sie 
den Befehl

D 0073 008B
ein. Sie haben dann die komplette Routine vor sich:

0073 E6 7A INC 7A
0075 D0 02 BNE 0079
0077 E6 7B INC 7B
0079 AD 2502 LDA 0225
007C C9 3A CMP #3A
007E B0 0A BCS 008A
0080 C9 20 CMP #20
0082 F0 EF BEQ 0073
0084 38 SEC
0085 E9 30 SBC #30
0087 38 SEC
0088 E9 D0 SBC #D0
008A 60 RTS
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Eventuell sieht die Zeile 0079 bei Ihnen anders aus. Das 
liegt dann an den Speicherstellen 7A und 7B, welche einen 
Zeiger darstellen (LSB=7A und MSB=7B), der bei Ihnen 
gerade auf einen anderen Platz zeigt als auf $0225.

Diese CHRGET-Routine besteht aus drei Teilen:
Zeilen 0073 bis 0079

Weiterstellen des CHRGET-Zeigers und Einladen des 
dadurch angezeigten Speicherzelleninhaltes in den Akku.

Zeilen 007C bis 0082
Prüfroutinen
Zeilen 0084 bis 008A
Flaggen-Routinen

lm ersten Teil haben wir schon gleich etwas neues vor uns: 
ein sich selbst veränderndes Programm. Die Speicherstelle 
(aus dem Basic-Eingabepuffer), aus der der Akku ein Zei­
chen holt, wird um 1 weitergezählt mit INC 7A.
Dabei handelt es sich um das LSB der Adresse und die näch­
ste Zeile prüft, ob ein Überlauf (255+1) stattgefunden hat:

BNE 0079.
Diese Technik kennen wir schon aus den letzten Folgen: Bei 
Überlauf wird die Z-Flagge auf 1 gesetzt und der BNE-Befehl 
führt keinen Sprung herbei. Den Offset von 02 können wir 
leicht nachrechnen: Der Programmzähler steht schon auf 
0077. Die Zieladresse 0079 ist also noch 2 Byte entfernt. 
Hat eine Überschreitung des Höchstwertes 255 stattgefun­
den, dann muß das dazugehörige MSB um 1 erhöht werden. 
Dies tut die nächste Zeile: INC 7B

In beiden Fällen ist nun der Zeiger 7A/7B um eine Stelle 
weitergerückt und der Inhalt der dadurch angezeigten Spei­
cherstelle wird in den Akku geladen. Zwei Dinge können wir 
uns aus diesem kurzen Programmteil merken:
1) Wie man eine 16-Bit-Zahl hoch- (oderauch herunter-) zählt 
und
2) eine Möglichkeit, Zeiger einzusetzen. Wir werden noch 
eine Reihe anderer Zeigertypen kennenlernen und sehen, 
daß es nicht immer so direkt zugeht wie hier.
Im zweiten Teil finden wir die Prüfroutinen. Die Vergleichsbe­
fehle beschränken sich auf den Akkuinhalt, also CMP.
CMP # 3A testet, in welcher Beziehung das im Akku befindli­
che Zeichen zum Wert $3A = dezimal 58 steht. Erinnern wir 
uns an das Schema in Bild 14:
1) Commodore-ASCII-Code im Akku größer als 58, also Zei­
chen hinter dem Doppelpunkt (Buchstaben, Grafikzeichen, 
einigeSonderzeichen). Dann istdieCarry-Flagge = 1, N-und 
Z-Flagge sind 0.
2) lm Akku steht genau der Code 58, also der Doppelpunkt. 
Dann sind Carry-Bit und Z-Flagge = 1, nur die N-Flagge = 0.
3) Der Code des Zeichens im Akku ist kleiner als 58 (das 
wären alle Zahlen, einige Sonderzeichen und Steuerzei­
chen). In diesem Fall istdie N-Flagge = 1. Die beiden anderen 
Flaggen zeigen Null.

Der nun folgende Befehl BCS 008A überprüft die Carry- 
Flagge. Wenn sie gesetzt ist, wenn also der Code im Akku 
größerodergleich dem eines Doppelpunktes (58) ist, springt 
der Programmzähler zum RTS. Der Code (und auch die Flag­
gen) wird unverändertzum aufrufenden Hauptprogramm wei­
tergegeben. Zur Übung können Sie ja nochmal den Offset 
nachrechnen. Der Rest des Programms wird nur noch durch­
laufen, wenn Codes kleiner als 58 im Akku stehen.

Die nächste Zeile CMP #20 dient zum Vergleich des 
Space-Codes $20 = dezimal 32 (Leertaste). Die Flaggen 
treten dann, wie schon oben beim ersten Vergleich gezeigt, 
je nach Akku-Inhalt auf. Durch die Verzweigung BEQ 0073 
erfolgt ein Rücksprung zum Beginn der CHRGET-Routine 
dann, wenn die Z-Flagge gesetzt ist, also ein Space-Code im 
Akku liegt. Somit werden die Leerzeichen einfach übersprun­
gen und das nächste Zeichen geholt. Alle anderen Zeichen, 
die bis hierher durchgehalten haben, werden nun im letzten

Teil derCHRGET-Routine einer Prozedur unterworfen, die ich 
Flaggen-Routine genannt habe.

Durch zwei aufeinanderfolgende Subtraktionen, die insge­
samt den Wert im Akku unverändert lassen (es wird 256 
abgezogen), wird die Carry-Flagge beeinflußt. Verfolgen wir, 
was da passiert:
SEC dient als Vorbereitung für die folgende Subtraktion. 
SBC # 30 zieht vom Akku-Inhalt $30 = dezimal 48 ab. Wir 
wissen inzwischen, daß das der Addition des Zweierkomple­
mentes entspricht. Dieses ist (rechnen Sie mal nach!) 
1101 0000.
Nehmen wir mal an, wir hätten den Code der Zahl 4 (also dezi­
mal 52 oder $34) im Akku stehen. Die Rechnung sieht dann 
so aus:

52 0011 0100
1101 0000

+ ------------------------
(1) 0000 0100

Das Ergebnis ist also 4, der Übertrag wird vernachlässigt.
Als anderes Beispiel sei nun der Code für das Ausrufungs- 

zeichenimAkku(dezimal33 = $21 = binärOO1OOOO1). Die 
Rechnung ist dann:

33 0010 0001
+ 1101 0000

1111 0001

Das Ergebnis ist —15.
Alle Codes, die nicht für Zahlen stehen, haben nach dieser 

Subtraktion ein negatives Ergebnis im Akku hinterlassen und 
durch das »Borgen« das Carry-Bit gelöscht.

Nun machen wir weiter ab Zeile 0087:
SEC
SBC #D0

Wir ziehen $D0 = dezimal 208 ab. Das Zweierkomplement 
ist: ...Doch da kommen wir ins Stocken! Denn dieses Zweier­
komplement ist nicht mehr mit 8-Bit-Zahlen darzustellen. 
Schon die Zahl 208 im Binärformat (1101 0000) würde als 
negative Zahl angesehen werden, weil Bit 7 gleich 1 ist. Wir 
machen es uns einfach und sagen, daß sich das Zweierkom­
plement wie bisher bilden läßt, aber dabei das Carry-Bit mit 
einbezogen wird. Unser Zweierkomplement ist dann also: 
0011 0000 und das Carry-Bit ist gelöscht. Nun nehmen wir 
unser erstes Beispiel. Dort war nach der Subtraktion im Akku 
eine 4 verblieben:

0000 0100
+ 0011 0000

0011 0100

Das ist wieder unser ursprünglicher Wert dezimal 52 = 
$34 = Code für die Zahl 4. Das Carry-Bit bleibt gelöscht.

Im zweiten Beispiel mit dem Ausrufungszeichen stand 
noch im Akku eine —15:

1111 0001
+ 0011 0000
(1) 0010 0001

Da haben wir wieder den Code für das Ausrufungszeichen 
($21 = dezimal 33) im Akku und ein gesetztes Carry-Bit. 
Was kommt also bei der CHRGET-Routine heraus?
1) Alle Zeichen außer dem Space werden unverändert an das 
aufrufende Programm über den Akku weitergegeben. Space 
wird unterdrückt.
2) Bei allen Zeichen außer bei den Zahlen ist das Carry-Bit 
gesetzt.
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3) Manche der aufrufenden Routinen überprüfen außer dem 
Zustand der Carry-Flagge auch den der Z- oder N-Flagge, die 
ja beim ersten CMP-Befehl ebenfalls gesetzt werden. So lie­
fert die CHRGET-Routine noch weitere Informationen.

In der einschlägigen Literatur stoßen Sie auch auf eine 
Routine, die CHRGOT genannt wird. Es handelt sich dabei 
ebenfalls um die hier beschriebene CHRGET-Routine, nur 
erfolgt der Einsprung nicht bei $0073, sondern bei $0079. 
DerZeiger$007A/7Bwird in diesem Fall nicht weitergestellt. 
Das vorher schon einmal in den Akku geladene Zeichen wird 
damit noch einmal angesprochen (got ist die Vergangenheits­
form von get).

Mit dem CHRGET-Programm haben wir eines der wichtig­
sten Unterprogramme unserer computerinternen Software 
kennengelernt. Will man sich Interpreter-Routinen zunutze 
machen, stolpert man ständig darüber. Außerdem aber liegt 
die CHRGET-Routine im RAM. Das bedeutet, daß wir sie 
ohne weiteres für unsere Zwecke verändern können. Ein Bei­
spiel für so eine Änderung hat Christoph Sauer in seiner Serie 
über den »gläsernen VC 20« in der Ausgabe 9 (Seite 158) 
gezeigt. Dort wird die CHRGET-Routine nach dem LDA ange­
zapft und auf das Pi-Zeichen geprüft, das neuen Befehlen 
vorangestellt wurde. Sehen Sie sich das Programm dort (auf 
Seite 160f.) mal genau an, viel kann man durch Nachvollzie­
hen fremder Programme für die eigene Programmiertechnik 
lernen.

oder
STX 19,Y

Man nennt diese Art der Adressierung dann Zeropage- 
absolut-X-indiziert beziehungsweise -Y-indiziert.

Weil die Zeropage aber nur 256 Adressen umfaßt, anderer­
seits jedoch die Indexregister auch 256 Werte annehmen 
können, kann es geschehen (wenn man nicht aufpaßt), daß 
die Summe aus der Basisadresse (zum Beispiel $2B) und 
dem Indexregisterinhalt größer als 256 wird. Wenn zum Bei­
spiel in dem Befehl

LDA FE,X

der X-Registerinhalt 2 beträgt, ergäbe sich $FE+$02 = 
$0100. Indiesem Fallwirdaber nichtderlnhaltvon $0100 in 
den Akku geladen, sondern der Befehl spricht die Speicher­
stelle $00 an. Der Grund dafür liegt in der Tatsache, daß unser 
Prozessoi den Befehl als 2-Byte-Befehl interpretiert - das 
2. Byte ist die Zeropageadresse, die sich als Summe ergibt - 
und deswegen nur das LSB der Adresse beachtet. Von 
$0100 ist das LSB aber $00. Mit anderen Worten: Die Zero­
page-absolut-indizierten Befehle lassen einen Zugriff nur auf 
die Zeropage selbst zu. Dieses Verhalten muß man beim Pro­
grammieren beachten.

Wir wollen nochmal zusammenfassen. Vier neue Adressie­
rungsarten haben wir kennengelernt:

26. Die indizierte Adressierung

Indizieren heißt, etwas mit einem Index, also einem Zeichen 
oder einer Nummer, zu versehen. Beispielsweise bezeichnet 
man in der Mathematik die beiden Lösungen einer quadrati­
schen Gleichung häufig als X1 und X2. Dabei ist dann die Zif­
fer (1 oder 2) der Index und X ist eine indizierte Größe. Man 
geht also aus von einer festgelegten Grundmenge (Lösungs­
menge X) und trifft durch den Index eine weitere Unter­
scheidung.

So ähnlich können wir uns auch die Funktion der indizierten 
Adressierung bei der Assembler-Programmierung vorstellen. 
Nehmen wir als Beispiel den Befehl

LDA 1500,X
Man spricht hier von einer absolut-X-indizierten Adressie­

rung. Das Assemblerwort LDA ist uns bekannt: Lade den 
Akku. Woher soll der für den Akku bestimmte Inhalt geholt 
werden? Aus der Speicherzelle, die sich durch 1500 plus 
Inhalt des X-Registers ergibt. Steht also im X-Register zum 
Zeitpunkt des Befehlsaufrufes eine 5, dann wird der Akku aus 
Speicherzelle 1500+5, also 1505, geladen. DasX-Register 
kann Werte von 0 bis $FF (dez. 255) enthalten. Die Ähnlich­
keit sieht also so aus:

Aus einer Gesamtmenge von 256 Adressen, die durch die 
Anfangsadresse (bei unserem Beispiel 1500) und die mögli­
chen 256 Belegungen des X-Registers festgelegt sind (die 
Grundmenge), werden je nach X-Registerinhalt einzelne 
Adressen unterschieden und adressiert. Das X-Register fun­
giert dabei als ein Index, weswegen man auch oft die Bezeich­
nung »Index-Register X« in der Literatur findet.

Ebenfalls als Index-Register kann das Y-Register dienen, 
was zum Beispiel zum Befehl

LDX 1500,Y
führen kann. Dies ist dann eine absolut-Y-indizierte 
Adressierung.

Genauso wie man die normale absolute Adresse (also zum 
Beispiel 1500) als Basis der Indizierung durch das X- oder das 
Y-Register verwenden kann, ist das auch mit eine Zeropage- 
Adresse möglich. So gibt es zum Beispiel die Befehle

LDY 2B,X

Befehl Indizierte Adressierung
absolut Null-Seite-absolut

X Y X Y

LDA + + + -
LDX - + - +
LDY + - + -
STA + + + -
STX - - - +
STY - + -
RTS / / / /
INX / / / /
INY / / / /
INC + - + -
DEX / / / /
DEY / / / /
DEC + - + -
SED / / / /
CLD / / / /
BNE / / / /
ADC + + 4- -
CLC / / / /
SBC + + + -
SEC / / / /
BEQ / / / /
BCC / / / /
BCS / / / /
BMI / / / /
BPL / / / /
BVC / / / /
BVS / / / /
CMP + + 4- -
CPX - - - -
CPY - - -
BIT - - - -
CLV / / / /
NOP / / / /
TAX / / / /
TAY / / / /
TXA / / / /
TYA / / / /
JMP - - - -
JSR - - - -

+

/

anwendbar
nicht erlaubt
wederabsolute noch Zeropage-Adressierung 
möglich

Tabelle 5. Anwendbarkeit der indizierten Adressierungs­
arten auf die bisher gelernten Assembler-Befehle.

28 ’Ä1



C 64/VC 20 Kurs

Absolut-X-indiziert zum Beispiel LDA 1500,X
Absolut-Y-indiziert zum Beispiel LDA 1500,Y
Zero-page-absolut-X-indiziert zum Beispiel LDA 2B,X 
Zero-page-absolut-Y-indiziert zum Beispiel LDX 2B,Y

Die Verwendung des Y-Registers als Indexregister ist stark 
eingeschränkt. Nur bei wenigen Befehlen ist sie erlaubt (tat­
sächlich nur LDX und STX bei Zero-page-absolut-indizierter 
Adressierung). In der Tabelle 5 sehen Sie, welche bisher 
behandelten Befehle wie mit der indizierten Adressierung 
verwendet werden dürfen.

Es gibt noch zwei weitere Arten einer indizierten Adressie­
rung, auf die wir noch zu sprechen kommen werden.

27. Einige Nachzügler: Die Befehle BIT, 
CLV, NOP und TAX, TAY, TXA, TYA

Wir wollen noch ein bißchen aufräumen: Ein paar Befehle, die 
bisher zu keinem Gebiet so richtig paßten, sollen jetzt behan­
delt werden.

BIT: Dieser Befehl heißt »Bit-Test» und paßt von daher 
eigentlich zu den in Kap. 23 behandelten Vergleichsbefehlen. 
Die Behandlung der Flaggen ist aber völlig anders. Nehmen 
wir das Beispiel

BIT 1500
Folgendes passiert: Der Inhalt der Speicherstelle $1500 

wird mit dem Inhalt des Akku UND-verknüpft, das Ergebnis in 
der Z-Flagge angezeigt und Bit 7 sowie Bit 6 von $1500 in die 
N- beziehungsweise die V-Flagge übertragen. Weder Akku 
noch Inhalt von $1500 verändern sich dabei.

Das ging ein bißchen holterdipolter. Sehen wir uns das jetzt 
mal ganz langsam Schritt für Schritt an! Zunächst die UND- 
Verknüpfung. Bit für Bit wird der Akku-Inhalt mit dem Inhalt der 
adressierten Speicherstelle UND-verknüpft. Dabei gelten fol­
gende Regeln (die Leser der Grafik-Serie kennen das ja 
schon):

0UND0 = 0
OUND 1 = 0
1 UND0 = 0
1 UND 1 =1

Nur dann also, wenn die entsprechenden Bits im Akku und 
in 1500 gleich 1 sind, ergibt sich bei der UND-Verknüpfung 
eine 1. Man stellt sowas meist in einer sogenannten Wahr­
heitstabelle zusammen (Tabelle 6).

Tabelle 6. Wahrheitstabelle der logischen 
Verknüpfung UND

Nehmen wir als Beispiel mal an, im Akku stünde $0A und in 
der Speicherstelle $1500 wäre $09 enthalten. Die UND-Ver- 
knüpfung sieht dann so aus:

Akku $0A 0000 1010
1500 $09 0000 1001
UND _______________

0000 1000

Das Ergebnis ist also $08. In der Z-Flagge wird in dem Fall, 
daß das Ergebnis der UND-Verknüpfung ungleich Null ist (wie 
hier) eine Null angezeigt, sonst eine 1.

Wir haben in unserem Zahlenbeispiel mit dem BIT-Befehl 
überprüft, ob die Bits 1 und 3 in Speicherstelle $1500 
gelöscht sind. Dazu haben wir in den Akku eine sogenannte

Maske (hier also $0A) geladen. Das Ergebnis sagt uns, daß 
nicht beide Bits gelöscht waren. Wäre der Inhalt von $1500 
beispielsweise $10 gewesen (0001 0010), hätten wir in der 
Z-Flagge eine 1 gefunden. Daher der Name »Bit-Test«: Durch 
geeignete Maskenwahl kann praktisch jedes Bit überprüft 
werden. Dabei werden weder der Akku-Inhalt noch der Inhalt 
der angesprochenen Speicherstelle verändert.

Der BIT-Befehl hat aber noch mehr Auswirkungen: Die Bits 
6 und 7 der geprüften Speicherzelle findet man nach Befehls­
ausführung in zwei Flaggen nochmal:

Bit 7 in der N-Flagge
Bit 6 in der V-Flagge

Damit kann man beispielsweise überprüfen, ob sich am 
adressierten Ort eine negative Zahl befindet. Alle drei Flag­
gen können ja nun mit den Branch-Befehlen abgefragt wer­
den. Sie erkennen sicherlich schon, wie vielseitig dieser 
merkwürdige BIT-Befehl einsetzbar ist.

Adressierbar ist BIT entweder absolut (wie im obigen Bei­
spiel) oder Zeropage-absolut. Je nachdem liegt er dann als 
3-Byte- oder als 2-Byte-Befehl vor.

CLV: Dieser Befehl heißt »ClearoVerflow-flag«, also »lösche 
die Überlauf-Flagge«. Die V-Flagge war -wie Sie sich erinnern 
werden -unsere rote Ampel bei Rechenoperationen (siehe 
Kap. 16). Esistein 1-Byte-Befehl mitimpliziterAdressierung 
und interessant daran ist, daß es keinen Befehl gibt, der das 
Gegenteil -also das Setzen der V-Flagge -bewirkt.

NOP: NOP steht für »No OPeration«, was bedeutet »keine 
Tätigkeit«. DasistderNichtstu-Befehl. Ertutaberdoch etwas: 
Er sorgt dafür, daß der Befehlszähler weitergezählt wird und 
bewirkt eine Verzögerung von 2 Taktzyklen. NOP ist ein 
1-Byte-Befehl mit impliziter Adressierung. Er wird in fertigen 
Programmen nur selten verwendet: Zur Erzeugung einer kur­
zen definierten Verzögerung. Meist gebraucht man ihn bei 
der Erstellung eines Programmes als Platzhalter oder bei der 
Fehlersuche, um zum Beispiel unerwünschte Sprünge zu 
ersetzen.

Die Transporteure: TAX, TAY, TXA und TYA
Ab und zu ist es nötig, Registerinhalte untereinander auszu­

tauschen. Viele Dinge (Addition, Subtraktion und so weiter) 
können nur im Akku geschehen. Wenn wir eine solche Opera­
tion beispielsweise mit dem Inhalt des X-Registers ausführen 
wollen, verschieben wir diesen Inhalt mit dem Befehl TXA. 
»Transfer X into Accumulator« also »übertrage X-Register in 
den Akku« bedeutet das. Analog verwendet man TYA, um 
Y-Register-Inhalte in den Akku zu schieben oder für den 
umgekehrten Weg TAY beziehungsweise TAX (Akkuinhalt ins 
Y- beziehungsweise insX-Registerschieben). Genau genom­
men wird nicht übertragen, sondern nur kopiert: Die Register, 
aus denen verschoben wird, bleiben unverändert. Weil die 
jeweiligen Zielorte der Verschiebung (Akku, X- oder Y-Re- 
gister) vom neuen Inhalt überschrieben werden, können sich 
auch Flaggen ändern. Betroffen sind von dieser Möglichkeit 
die N- und die Z-Flagge. Alle vier Befehle bestehen aus einem 
Byte und können natürlich nur implizit adressiert werden.

28. So springen die Assembler- 
Alchimisten: JMP, JSR

JMP und JSR entsprechen ungefähr den vom Basic her 
bekannten Befehlen GOTO und GOSUB.

JMP kommtvon »JuMP to address«, also »springe zurange­
gebenen Adresse«. Nehmen wir uns wieder ein Beispiel vor:

JMP 1500
bewirkt einen Sprung zur Adresse 1500. Das funktioniert so: 
In den Programmzähler werden LSB und MSB der Ziel-
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adressegeladen. DaswardannauchschonderSprung, denn 
der Programmzähler ist der Pfadfinder des Computers: Die 
Adresse, die dort steht, wird als nächste bearbeitet. Schalten 
Sie doch mal den SMON ein (oder einen anderen Monitor) 
und sehen Sie sich das mit folgenden Befehlen an:

1400 JMP 1500
Dort unterbrechen wir den Computer mit 

1500 BRK
So weit, so gut: Wir starten mit dem SMON-Kommando G 

1400 und erhalten eine Registeranzeige mit dem Programm­
zählerstand 1501. Genau das hatten wirja erwartet. 
Weniger durchschaubar ist das folgende Beispiel:

1400 LDA #00
1402 LDX #16
1404 STA 1300
1407 STX 1301
140A JMP (1300)

Dazu gehört dann noch die Programmzeile: 
1600 BRK

Wenn Sie das genauso eingegeben haben und dann mittels 
G 1400 starten, erhalten Sie eine Registeranzeige mit dem 
Programmzählerstand 1601.

Schon an der neuen Schreibweise des Argumentes in Zeile 
140A werden Sie bemerkt haben, daß hier nicht mehr die nor­
male absolute Adressierung wie zuvor angewendet wird. Dies 
isteineneue Form: DieindirekteAdressierung. Indirektdes- 
wegen, weil wir nicht mehr direkt die Zieladresse angeben, 
sondern einen sogenannten Vektor. Ein Vektor besteht aus 
zwei aufeinander folgenden Speicherzellen (hier also 1300 
und 1301), die in der Fbrm LSB/MSB die eigentliche Ziel­
adresse enthalten. Das LSB von $1600 ist $00. Das haben 
wir über den Akku nach $1300 geladen. Das MSB $16 kam 
durch das X-Register an seinen Platz $1301:

Zieladresse 16 00
MSB LSB 
t 1

Vektor 1301 1300
Das ist die Methode der toten Briefkästen, die in Kreisen 

der Assembler-Alchimisten anscheinend genauso beliebt ist 
wie bei Agenten. So wie diese im hohlen Baum die Treffpunkt­
anschrift hinterlegt finden, verläßt sich unser Computer auf 
die Speicherstellen 1300 und 1301 für die Angabe der 
Zieladresse.

Diese Art der Adressierung ist im wahrsten Sinn des Wortes 
einUnikum: EsgibtsienämlichnurfürdenJMP-Befehl! Davon 
wird allerdings dann auch recht häufig Gebrauch gemacht, 
zum Beispiel im Betriebssystem unseres Computers. Aber 
darüber und über die Vektoren, die dazu verwendet werden, 
soll ein andermal berichtet werden.

Wir dürfen nämlich nicht den anderen Sprungbefehl JSR 
vergessen. JSR steht für »Jump to SubRoutine«, was einge­
deutscht etwa bedeutet »springe zum Unterprogramm«. 
Genauso wie in Basic Unterprogramme durch GOSUB Zei­
lennummer aufgerufen werden, kann das auch hier gesche­
hen durch JSR Adresse. Hier ist nur die absolute Adressie­
rung möglich. Das erste Beispiel soll uns zeigen, wie dieser 
Befehl funktioniert:

1400 JSR 1500
Dort soll dann erstmal stehen:

1500 BRK
Noch nicht starten!! Zunächst einmal verzeihen Sie mir 

diese Programmierer-Todsünde: Aus einem Unterprogramm 
heraus den Programmablauf zu beenden! Ich werd’s auch nie 
wieder tun. Hiergeschiehtdas nurzu Lehrzwecken. Was läuft 
ab: Der Programmzählerinhalt plus 2 wird auf den Stapel 
gelegt und dann die Adressse 1500 in den Programmzähler 
geladen. Ebenso kurz wie unklar! Was ist denn ein Stapel? 
Also langsam, Schritt für Schritt.

Der Sinn von Unterprogrammen ist ja, daß der Computer 
nach Ende der Bearbeitung wieder ins aufrufende Hauptpro­
gramm zurückkehrt. Er muß sich aber dazu irgendwo merken, 
von wo aus erzum Unterprogramm gesprungen ist. Dazu ver­
wendet er den Stapel. Das ist ein Speicherbereich ($0100 bis 
$01FF), der direkt vom Prozessor aus verwaltet wird. Die 
genaue Architektur und Handhabung dieses »Prozessor- 
Stack« werden wir noch in einer späteren Folge kennenler­
nen. Uns soll hier nur interessieren, daß es einen Zeiger gibt, 
der auf den nächsten freien Platz im Stapel weist und daß die­
ser Speicher von oben nach unten gefüllt wird (wie in Basic 
bei den Strings). Wenn Sie mit Hilfe des SMON mal in den Sta­
pel hineinsehen wollen, dann geben Sie doch mal ein M 0100 
O1FF. Wasnun genau bei Ihnen drin steht, istsehrvon dervor- 
herigen Nutzung Ihres Computers abhängig. Der Mikropro­
zessor nutzt den Stapel bei sehr vielen Tätigkeiten. Es kommt 
auch nur auf den Teil des Stapels an, der durch den Stapelzei­
ger als gefüllt bezeichnet wird. Der Stapelzeiger wird beim 
SMON in der Registeranzeige als SP angezeigt. Wenn Ihr Sta­
pelzeiger (prüfen Sie das doch mal durch Eingabe von R) nun 
zum Beispiel F6 zeigt, dann bedeutet das, daß alle Stapel­
plätze von $01F6 an abwärts frei und die oberhalb bis $01FF 
besetzt sind. Beim Nachsehen mit M 01F0 O1FF finden Sie 
dann beispielsweise:

:01F0 20 00 20 AA C1 FA C0 46
:01F8 E1 E9 A7 A7 79 A6 9C E3

Die Speicherstelle, auf die der Stapelzeiger weist, ist unter­
strichen. Nun starten wir mit G 1400 unser kleines verbote­
nes Testprogramm. Es meldet sich die Registeranzeige. Im 
Stapelzeiger stehtjetzt F4 (oder eben Ihr vorhergegangener 
SP minus 2). Wenn wir nun wieder im Stapel nachsehen mit 
M 01FO O1FF, dann finden wir im Gegensatz zur obigen 
Anzeige nun:

:01F0 20 AA C1 FA C0 02 14 46
- tt tt

:01F8 E1 E9 A7 A7 79 A6 9C E3
Unterstrichen ist wieder das Ziel des Stapelzeigers, der 

jetzt zwei Plätze weitergerückt ist, um der durch Pfeile 
gekennzeichneten Adresse 1402 (als LSB/MSB) Raum zu 
schaffen. $1402 istdasletzte Byte des JSR-Befehls. Wie wir 
den Programmzähler kennen, ist er im allgemeinen immer 
einen Schritt voraus. Hier liegt er aber einen zurück, falls er 
nach Beendigung des Unterprogrammes an der notierten 
Adresse weitermacht. Dazu kommen wir gleich noch. Was wir 
am Programmzähler aber auch noch nach Ablauf unseres kur­
zen Beispielprogrammes ablesen können, ist die Tatsache, 
daß die Sprungadresse 1500 in ihn geschrieben wird, somit 
der Sprung dann also stattgefunden hat.
Nun bauen wir das kleine Programm etwas um:

1400 JSR 1500
1403 BRK

Das Unterprogramm soll nur aus dem Rücksprung bestehen: 
1500 RTS

Verlangen Sie nun noch vor dem Start eine Registeranzeige 
mit R und merken Sie sich den Wert des Stapelzeigers. Dann 
starten Sie das Programm mit G 1400 und achten Sie auf die 
neue Registeranzeige. Zwei Dinge interessieren uns:
1) Der Wert des Stapelzeigers ist unverändert geblieben. 
2) Der Programmzähler weist nun auf $1404.

Wenn Sie nun nochmal mit dem M-Befehl des SMON in den 
Stapel sehen, werden Sie unter Umständen zwar noch die 
Adresse 1402 dortfinden (dann nämlich, wenn wirden Stapel 
seit dem letzten Programm nicht verändert haben). Wie Sie 
aber inzwischen wissen, hätte durch den neuen JSR-Befehl 
nochmal 1402 dort eingetragen sein müssen. Das stand da 
auch einige Mikrosekunden lang... bis der RTS-Befehl wirk­
sam wurde. RTS macht ziemlich viel:
1) RTS holt die auf dem Stapel gespeicherte Adresse ab, und 
schreibt sie in den Programmzähler.
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2) RTS vermindert dabei den Stapelzeiger um 2.
3) RTS addiert zum Programmzähler eine 1.

Deswegen kann das Programm also bei $1403 weiterlau­
fen und der Programmzähler nun hinter dem BRK-Befehl 
stehen.

Machen Sie doch mal etwas anscheinend total Verrücktes: 
Starten Sie mit G 1500. Es gibt da zwei Möglichkeiten, was 
geschehen kann: Entweder stand da noch vom ersten unter­
brochenen Testprogramm die Adresse 1402. Dann endete 
nun alles mit einer Registeranzeige, bei der der Stapelzeiger 
um 2 höher gerutscht ist.

Oder da stand diese Adresse nicht mehr. Dann befinden Sie 
sich nun wieder im Basic. Wieso eigentlich? Als nächste 
Adresse finden Sie auf dem Stapel $E146 (dez.57670). 
Diese Adresse + 1 wird ja durch RTS in den Programmzähler 
gerufen. Ein Sprung an diese Adresse ist ein Sprung in ein 
Programm des Betriebssystems. Haben Sie ein ROM- 
Listing? Dann sehen Sie mal nach: Dort steht der Befehl...RTS. 
Dies neuerliche RTS holt nun jedenfalls die nächste Adresse 
vom Stapel: $A7E9 (dez.42985). Diese Adresse + 1 im Pro­
grammzähler führt unseren Computer in die Basic- 
lnterpreter-Schleife, also ins Basic zurück.

Wir haben so viel über den Stapel gehört, daß wir JSR fast 
schon wieder aus den Augen verloren haben. Deswegen 
nochmal eine kurze Übersicht:
a) JSR speichert den Programmzählerwert des letzten Bytes 
des Befehls auf dem Stapel zum Beispiel 1402,
b) stellt dabei den Stapelzähler um 2 zurück zum Beispiel von 
$F6 nach $F4
c) schreibt in den Programmzähler die angegebene Ziel­
adresse, zum Beispiel 1500
d) Das Unterprogramm wird abgearbeitet bis der RTS-Befehl 
auftaucht.
e) Dann wird die gemerkte Adresse +1 in den Programmzäh- 
lergeschrieben, zum Beispiel 1402 + 1 = 1403
f) und dabei der Stapelzähler wieder um 2 erhöht, zum Bei­
spiel von $F4 wieder zu $F6
g) Das Programm läuft nun wieder nach dem JSR-Befehl wei­
ter, zum Beispiel also bei 1403.

Nun sollte eigentlich auch klar sein, warum ein Aussprung 
aus einem Unterprogramm oder ein Abbruch im Unterpro­
gramm eine Programmierer-Todsünde ist: Der Stapelzeiger 
wird nicht zurückgestellt. Die gemerkte Rücksprungadresse 
versauertallmählichaufdem Stapel. Nochschlimmersindsol- 
che Sachen in einerSchleife, wo mehrfach aus dem Unterpro­
gramm ausgebrochen wird: Hier ist der Stapel bald voll Müll 
und der Computer beendet seine Zusammenarbeit mit dem 
Programmierer. Weil aber Basic-Programme nichts anderes 
sind als eine Folge von Maschinenprogrammen, die je nach 
Befehl durch den Interpreter aneinandergereiht werden, ist 
das auch in Basic eine Todsünde. Wir wollen aber nicht so hart 
mit uns umgehen: Wenn wir gelernt haben, wie man mit spe­
ziellen Assembler-Befehlen im Stapel herumschaufeln kann, 
dann haben wir bei richtiger Anwendung von vorneherein 
jedenfalls in diesem Punkt die Absolution erhalten.

29. Alles fließt: Fließkommazahlen

Jeder, der tiefer in die Geheimnisse der Assembler-Alchimie 
eindringen will, muß sich vertraut machen mit der häufigsten 
Art der Zahlenverarbeitung in unserem Computer. Das ist die 
Handhabung von Fließkommazahlen (auch Gleitkommazah­
len genannt). Wir werden dazu folgende Fragen zu klären 
haben:

4) Wie können wir als Programmierer Einfluß nehmen auf die 
Verarbeitung dieser Zahlen im Computer?

Die Behandlung dieser vier Fragen wird uns eine ganze 
Weile beschäftigen. Fangen wir mit der ersten an: In Stan­
dardwerken der Mathematik werden Sie lange suchen müs­
sen, um den Begriff »Fließkommazahl« zu finden. Im deut­
schen Sprachraum gibt es häufiger die Bezeichnung »wis­
senschaftliche Zahlendarstellung«. Das klingt sehr hochge­
stochen und ist eigentlich ganz einfach. Leser der 
Grafik-Serie werden sich vielleicht noch erinnern: Die Zahl 
1000 kann man auf verschiedene Weise darstellen:

1000 = 10 * 10 * 10 = 103 (in Basic 10t3)
Die hochgestellte Zahl (in Computerschreibweise: Die Zahl 

hinter dem Hochpfeil) ist hier gleich der Anzahl der Stellen 
minus 1 (1000 hat vier Stellen, also ist die Hochzahl eine 3). 
Diese Hochzahl nennt man Exponent (vom lateinischen expo- 
nere = anzeigen, herausheben). Nehmen wir nun einige 
andere Zahlen:

200 = 2 * 100 = 2 * 10t2 
oder

2500 = 2,5 * 1000 = 2,5 * 1013
Ich glaube, jetzt beginnt es Ihnen klarzuwerden, daß man 

auf diese Art wohl alle Zahlen irgendwie darstellen kann. Man 
dröselt die Zahlen auseinander, bildet ein Produkt, von dem 
der eine Multiplikator durch 10 teilbar ist (durch die Basis 
unseres normalen Zahlensystems). Genauer gesagt: Ein Fak­
tor (also in den Beispielen 1000 oder 100) ist darstellbar als 
Potenz von 10. Der andere Faktor (in den Beispielen 1 oder 2 
oder 2,5) wird Mantisse (vom lateinischen manitissa = 
Zugabe, Anhang, Schleppe) genannt. Sehen wir uns nochmal 
2500 an:

2500= 2,5* 1000= 2,5* 1013
= 25* 100= 25* 1012
= 250* 10= 250* 1011
= 2500 * 1 = 2500 * 1010

Das letzte war nur der Vollständigkeit halber, denn irgend­
eine Zahl hoch 0 ist immer 1. Man kann auch aus der 2500 fol­
gendes machen:

2500 = 0,25 * 10000= 0,25* 1014 
oder = 0,025 * 100000 = 0,025 * 1015 

und so weiter. Oder anders herum:
2500= 25000* 0,1 = 25000* 101-1 

= 250000 * 0,01 = 250000 * 101-2 
und so weiter.

Dabei bedeutet:
102 = 1/10-2 = 0,01

Man kann sich das merken, indem man die Anzahl der Stel­
len zählt, um die man das Komma verschiebt. Diese Anzahl 
addiert man dann zur Hochzahl. Zur Erläuterung:

0,12345 = 1,2345 * 10‘1

1) Was sind Fließkommazahlen?
2) Wie sehen sie im binären Zahlensystem aus?
3) Wie behandelt unser Computer positive und negative 
Fließkommazahlen?

Wir haben das Komma um eine Stelle nach rechts gerückt, 
weshalb wir die Hochzahl -1 schreiben müssen (vorher war 
da nämlich unsichtbar die Hochzahl 0: und 1010=1).

0,12345 = 123,45 * 103
Hier wurde das Komma um drei Stellen nach rechts ver­

schoben. Daher der Exponent <3. Sie sehen folgenden 
Zusammenhang:

Komma eine Stelle nach rechts verschoben: Exponent 
+ (-1)-
Zum Beispiel
0,1234*10-2 = i,234*103

Komma eine Stelle nach links verschoben: Exponent +1. 
Zum Beispiel
3,14*10-2 = 0,314*10-3

Verstehen Sie nun, warum man diese Art der Zahlendar­
stellung Fließkomma- oder Gleitkommazahlen nennt?

Vielleicht sehen Sie aber noch nicht den Sinn der Fließkom­
mazahlen ein. Dazu gebe ich Ihnen zwei einsichtige Bei-
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spiele. Der Atomkern eines Heliumatoms wiegt etwa (halten 
Sie sich fest):
0,000 000 000 000 000 000 000 000 006 643 kg.

Sehr unbequem, diese ganzen Nullen immer mitzuschlep­
pen. Wir verschieben deshalb das Komma um 27 Stellen 
nach rechts und schreiben dann

6,643*1027kg.
2. Beispiel: Wir haben einen Ballon mit diesem Gas gefüllt. 

Bei normalen Temperatur- und Luftdruckbedingungen befin­
den sich in einem Kubikzentimeter im Ballon ungefähr (noch- 
malfesthaltenl):
26 900 000 000 000 000 000 Heliumatome

Wieder eine recht unangenehme Nullschlepperei. Wir ver­
schieben das Komma um 19 Stellen nach links und erhalten 
2,69*10'19Heliumatome. Fein, nicht wahr!

Abgesehen von der höheren Bequemlichkeit: Der Compu­
ter müßte allerhand Speicherplatz zur Handhabung der vielen 
Nullen bereitstellen. Mit BCD-Zahlen könnten wir zwarjede 
Zahl erfassen, hätten aber immer unterschiedlich viele Bytes 
zu verarbeiten. Wenn wir Fließkommazahlen verwenden, 
können wir - wie Sie noch sehen werden - jede (na sagen wir 
mal: fast jede) Zahl in der gleichen Anzahl Bytes auf­
bewahren.

Vom Basic her kennen Sie Fließkommazahlen auch (hier 
wird das Komma allerdings durch den Punkt ersetzt, entspre­
chend der angloamerikanischen Schreibweise). Das sind 
die, wo man zum Beispiel schreibt 6.02E23 oder 
6.02E+23, was dann bedeutet6,02*10-23. E stehtdortfür 
Zehnerexponent. Durch die Art, wie Fließkommazahlen im 
normalen Computerdasein gespeichert werden, ergeben 
sich obere und untere Grenzen. Die höchste in Basic verar­
beitbare Zahl im C 64 ist

+ 1.70141183*10-38
Größere Zahlen verursachen in Basic einen OVERFLOW 

ERROR. Was in Maschinensprache mit größeren Zahlen 
geschieht, ist weitgehend unsere Sache. Die dem Betrag 
nach kleinste verarbeitbare Zahl ist

± 2.93873588*10-39
In Basic arbeitet bei Unterschreitung der Computer einfach 

mit einer Null weiter. Für die Behandlung in Maschinenspra­
che sind ebenfalls wir als Programmierer verantwortlich.

Für diesmal sei’s genug der Zahlenspiele: Später werden 
wir uns weiter mit Fließkommazahlen befassen.

30. Die USR-Funktion

komma-Akkumulator 1, von uns künftig einfach FAC genannt. 
DerFACbelegtdieSpeicherstellen 97 bis 102 ($61 bis$66). 
Wenn das eventuell in Basic benötigte Ergebnis dort auch in 
dervorgeschriebenen Form abgelegt wird, kann es im Basic- 
Programm weiterverwendet werden. Keine Angst, dazu kom­
men wir bei der weiteren Behandlung der Fließkommazahlen 
noch ganz ausführlich zu sprechen. Heute soll uns das noch 
nicht belasten. Als Argument kann man nämlich auch irgend­
eine bedeutungslose Größe, ein sogenanntes Dummy ange­
ben, das dann gar nicht weiter verwendet wird. Der USR-Be- 
fehl dient in diesem Fall lediglich dem bequemen Ansteuern 
eines Maschinenprogrammes.

Woher weiß unser Computer beim USR-Befehl, welche 
Maschinenroutine er im 64-KByte-Speicher bearbeiten soll? 
Beim SYS-Befehl ist das klar: Das Argument sagt es:

SYS 24345
!äßt den Programmzähler auf dez.24345 zeigen. Aber wenn 
wir eingeben:

USR(24345)
dann packt der Computer die Zahl 24345 als Fließkommava­
riable in den FAC und meldet dann einen SYNTAX ERROR. 
Das liegt daran, daß der Basic-Interpreter beim USR-Befehl 
einen der oben kennengelernten indirekten Sprünge 
vollführt:

JMP (311)
$311/312 (in dezimal 785/786) istalso ein Vektor, und der 

weist im Normalfall zu einer Routine, die den SYNTAX ERROR 
ausgibt (dez. 45640). Bevorwiralso den USR-Befehl geben, 
müssen wir in diesen Vektor die Startadresse unserer 
Maschinenroutine schreiben:

dez. 24345 = $5F19
LSB $19 = dez. 25 in Speicher 785 mit 

POKE 785,25
MSB $5F = dez. 95 in Speicher 786 mit 

POKE 786,95

Jetzt weiß der Computer, wohin er beim USR-Aufruf sprin­
gen soll, und solange, bis wir den Vektor wieder ändern, führt 
er bei jedem USR-Befehl unser bei 24345 stehendes 
Maschinenprogramm aus. Wir müssen nur noch dafür sor­
gen, daß dort dann auch wirklich eines anfängt. Ein Beispiel 
werden wir nachher noch behandeln.

31. Der harte Kern: 
Nochmal Speicherfragen

Die Struktur des C 64-Speichers ist vereinfacht schon in 
der Grafik-Serie und zu Beginn dieses Kurses gezeigt wor­
den. Dabei tauchten zwei ROM-Bereiche auf, die wir Basic- 
lnterpreter und Betriebssystem genannt haben. Diese Unter­
teilung ist nicht ganz korrekt. Wenn Sie über ein ROM-Listing 
verfügen und beispielsweise das Ende des ROM-Bereiches 
von $A000 bis $BFFF sowie den Anfang des oberen ROM 
($E000 bis $FFFF) untersuchen, dann stellen Sie fest, daß 
ab dez. 49087 ($BFBF) die Basic-Funktion EXP bearbeitet 
wird. Der letzte Befehl vor $C000 beendet diese Funktion 
aber nicht etwa, sondern dort steht:

JMP E000
Tatsächlich läuftab $E000 bis $E042 die Bearbeitung der 

EXP-Funktion munter weiter, und auch danach finden sich 
allerlei Basic-Befehle (SIN, COS und so weiter). Da liegtalso 
keine klare Trennung vor, sondern ein Mischmasch. Wir soll­
ten uns vielleicht angewöhnen - statt vom Interpreter und 
dem Betriebssystem -, vom unteren und oberen ROM- 
Bereich zu sprechen.

Eine andere Unterscheidung ist dagegen sinnvoll: Wie 
einige Besitzer neuerer Commodore 64 sicherlich bemerkt

32

Wieder einmal soll uns das Zusammenspiel von Basic und 
Maschinensprache beschäftigen. Einen Aufruf von Maschi­
nenroutinen - nämlich den mit SYS - haben wir schon ken­
nengelernt. Wir POKEten die zu übergebenden Werte an die 
Abrufspeicherstellen. Bei diesen Werten hat es sich um einfa­
che Integerzahlen gehandelt, zum Beispiel die Anzahl der 
Glieder einer zu summierenden arithmetischen Reihe. Was 
tun wiraber, wenn wir Fließkommavariable an ein Maschinen­
programm übermitteln wollen? Gewiß, werden Sie sagen, ler­
nen wir dasja noch und können dann entsprechende POKE- 
Kommandos geben. Damit haben Sie auch recht, nur ist das 
dann der »harte« Weg. Es gibtauch einen problemlosen »wei­
chen« Weg, nämlich das USR-Kommando.

USR ist ein Basic-Befehl und rührt her von »USeR callable 
machine language subroutine«, also »durch den Benutzer auf­
rufbares Maschinensprachunterprogramm«. Darin liegt 
eigentlich noch nichts Neues gegenüber dem SYS-Befehl. Im 
Gegensatz zu SYS - wo das Argument die Einsprungadresse 
des Maschinenprogrammes ist - übergibt USR als Argument 
eine beliebige Fließkommavariable in festgelegter Form an 
eine sehr nützliche Speicherstellenkombination, den Fließ-
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haben, sind Teile der ROM-Routinen im Laufe der Zeit verän­
dert worden. Hauptsächlich geht es bei den aktuellen Neue­
rungen dieser internen Maschinenprogramme um die Farb­
gebung der Zeichen. Man kann eigentlich nie so recht wis­
sen, was den Software-Planern von Commodore noch alles 
einfällt Jedenfalls können deren Ideen manchmal recht dra­
matische Folgen haben, nämlich dann, wenn Sie ein fabelhaf­
tes Maschinenprogramm gebaut haben, welches ROM- 
Routinen direkt verwendet. Der Programmierer spielt auf 
diese Weise eine milde Form des russischen Roulettes. 
Glücklicherweise halten sich die Änderungen in Grenzen, 
und wir dokumentieren unsere Programme ja auch immer gut 
(Sie etwa nicht??). Notwendige Umbauten können also leicht 
vonstatten gehen.

Ganz ohne ROM-Routinen-Verwendung kommt man 
eigentlich kaum aus. Es gibt aber einen ROM-Bereich, für den 
Commodore verspricht, keinerlei Änderungen durchzufüh­
ren: die Kernel-Sprungtabelle.

Das ist ein Programmbereich ($FF81 bis $FFF5), in dem 
39 JMP-Befehle enthalten sind (zum Teil in absoluter, aber 
auch in indirekter Adressierung). Jeder dieser Sprungbefehle 
weist auf die Einsprungadresse eines Maschinenprogram­
mes. Dafindensich allewichtigen Ein/Ausgabe-Operationen, 
Systemtakt- und Uhrsteuerungen und anderes mehr. Wir 
werden uns nach und nach damit vertraut machen. In der 
Tabelle 7 sind die Kernel-Adressen und ihre Funktion aufge­
führt. Manche davon können ohnejede Vorbereitung benutzt 
werden, andere brauchen bestimmte Routinen oder Anga­
ben, um sinnvoll zu arbeiten.

Die Absicht von Commodore ist es, daß jeder Aufruf von 
zum Beispiel $FFD2 die Ausgabe eines Zeichens bewirkt, 
und zwar unabhängig davon, welchen Computer in welcher 
Version wir benutzen. Das Programm, welches diese Zei-

Tabelle 7. Kernel-Routinen

Adresse
Name FunktionHEX dezimal

FF81 65409 CINT Prüfen der TV-Norm, Berechnung der Taktfrequenz
FF84 65412 lOINIT Ein/Ausgabe-Reset
FF87 65415 RAMTAS Prüfen auf freien Basic-RAM
FF8A 65418 RESTOR Initialisieren der I/O-Vektoren
FF8D 65412 VECTOR Lesen und Setzen der I/O-Vektoren
FF90 65424 SETMSG Setzen des Ausgabe-Modus
FF93 65427 SECOND Ausgeben der Sekundäradresse nach LISTEN
FF96 65430 TKSA Ausgabe der Sekundäradresse nach TALK
FF99 65433 MEMTOP Lesen/Setzen des Speicherendes
FF9C 65436 MEMBOT Lesen/Setzen des Speicheranfangs
FF9F 65439 SCNKEY Abfragen der Tastatur
FFA2 65442 SETTMO Setzen der Time-Out-Flagge
FFA5 65445 ACPTR Zeichen vom seriellen Port in Akku lesen
FFA8 65448 CIOUT Zeichen vom Akku auf seriellen Port ausgeben
FFAB 65451 UNTLK Sendet UNTALK an seriellen Bus
FFAE 65454 UNLSN Sendet UNLISTEN an seriellen Bus
FFB1 65457 LISTEN Sendet LISTEN an Geräte per seriellen Bus
FFB4 65460 TALK Sendet TALK an Geräte per seriellen Bus
FFB7 65463 READST Liest I/O-Status in den Akku
FFBA 65466 SETLFS Festlegung der Parameter für OPEN
FFBD 65469 SETNAM Festlegung des Filenamens
FFCO 65472 OPEN Öffnetspezifizierten File
FFC3 65475 CLOSE Schließt spezifizierten File
FFC6 65478 CHKIN Öffnet einen Eingabekanal
FFC9 65481 CHKOUT Öffnet einen Ausgabekanal
FFCC 65484 CLRCHN Schließt Ein- und Ausgabekanäle
FFCF 65487 CHRIN Holt vom aktiven Eingabekanal ein Zeichen in den Akku
FFD2 65490 CHROUT Sendet Akku-Inhalt auf aktiven Ausgabekanal
FFD5 65493 LOAD LOAD und VERIFY von Programmen
FFD8 65496 SAVE Speichern von Programmen
FFDB 65499 SETTIM Uhrzeit setzen
FFDE 65502 RDTIM Uhrzeit lesen
FFE1 65505 STOP STOP-Taste abfragen
FFE4 65508 GETIN Zeichen aus dem Tastaturpuffer in den Akku lesen
FFE7 65511 CLALL Schließen aller Kanäle und Files
FFEA 65514 UDTIM Uhr um 1/60 Sekunde weiterzählen
FFED 65517 SCREEN Lesen des Bildschirmformates
FFFO 65520 PLOT Lesen/Setzen der Cursor-Position
FFF3 65523 lOBASE Lesen der Startadresse der Ein- und Ausgabebausteine

chenausgabe letztendlich ausführt, kann sich ändern, kann in 
ganz andere Speicherbereiche gelegt werden. An der Stelle 
$FFD2 wird aber immer ein JMP mit der Einsprungadresse 
stehen. Leider ist diese Sprungtabelle viel zu knapp gehalten. 
Es gibt so viele interessante ROM-Routinen, die wir alle ohne 
diese schöne Sicherheit anspringen müssen.

32. Die Urzelle eines Programmprojektes

Wir sind jetzt soweit, daß wir die Urzelle eines Programm­
projektes, welches uns eine lange Zeit begleiten wird, auf­
bauen können. Wir wollen etwas unter den Teppich kehren. 
Der Teppich, das sind die uns bislang nicht zugängigen 
RAM-Bereiche unter den ROMs. Haben Sie das nicht auch 
schon mal erlebt, daß Sie während einer Programmarbeit 
plötzlich feststellen, Sie benötigen zum Beispiel für eine 
Zwischenrechnung ein weiteres Programm, oder Sie wälzen 
Listen und denken sich, ein kleiner Hilfsbildschirm wärejetzt 
von Nutzen, oder....

Mit diesem heute zu startenden Programm wäre all das und 
noch viel mehr realisierbar. Es soll auf einfache Weise belie­
bige Speicherbereiche unters ROM schieben und sie wieder 
hervorholen können.

Natürlich braucht die Entwicklung dieses Projektes einige 
Zeit, zumal wir noch vieles lernen müssen. Deswegen sind wir

Bild 17. Das Flußdiagramm zu dem im Text erklärten 
Programm.

33
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in dieser ersten Urzelle noch sehr eingeschränkt: Wir ver­
schieben zuerst einmal nur eine Bildschirm-Kopfzeile unter 
den oberen ROM-Bereich. Auch in dieser einfachsten Ver­
sion gibt es noch einige Programmteile, die Sie erst nach der 
nächsten Ausgabe verstehen werden. Aber irgendwann müs­
sen wirja mal anfangen, Nägel mit Köpfen zu machen.

Unser Maschinenprogramm soll durch die USR-Funktion 
aufgerufen werden. Wie wir es in dieser Ausgabe gelernt 
haben, muß deshalb vor dem ersten Aufruf eine Initialisierung 
durch Belegen des USR-Vektors mit unserer Startadresse 
stattfinden. Die Startadresse soll $02B6 (dez. 694) sein, 
denn dort gibt es einen freien RAM-Bereich bis inklusive 
$02FF (dez. 767), der weder andere Programme noch 
Kassettenoperationen stört. Das MSB $02 ist dezimal auch 2 
und wird nach 786 gePOKEt:

POKE 786,2
Das LSB $B6 ist dezimal 182 und soll in 785 geschrieben 

werden:
POKE 785,182

Damit ist der USR-Vektor gestellt und wir brauchen uns 
nicht mehr weiter darum zu kümmern: Jeder USR-Aufruf wird 
nun den Startdes Programmes bewirken. Nun zum Programm 
selbst. In Bild 17 finden Sie ein Flußdiagramm dazu.

Zunächst konstruieren wir den Teil, der die erste Bild­
schirmzeile nach $E000 und folgende Speicherstellen 
schiebt. Das X-Register verwenden wir als Index und laden es 
mitdez.40 = $27.

Schalten Sie also den SMON ein und starten Sie den 
Assembler mit:

A02B6
Dann geben Sie ein:

02B6 LDX #27
Nun packen wir das letzte Zeichen der obersten Bild­

schirmzeile in den Akku:
02B8 LDA 0400,X

In das Y-Register legen wir die dazugehörige Farbe aus dem 
Bildschirmfarbspeicher:

02BB LDY D800,X
Den Akkuinhalt - also die Bildschirminformation - legen wir 

nach$E000+$27:
02BE STA EOOO,X

Dasselbe tun wir mit dem Farbcode, der ab $E028+$27 
abwärts gespeichert wird. Leider kann man STY nicht X-indi- 
ziert-absolutadressieren (siehe Tabelle 5). Deshalb schieben 
wir zuerst den Y-Registerinhalt in den Akku:

02C1 TYA
02C-
2 STA E028,X

Damit ist das letzte Zeichen der Kopfzeile verschoben. Wir 
zählen das X-Register um 1 herunter:

02C-
5 DEX

Der X-Index weist nun auf das vorletzte Zeichen, mit dem 
sich alles ab $02B8 wiederholt. Wenn das X-Register bis 0 
heruntergezählt ist, weist es auf das erste Zeichen der Kopf­
zeile. Die Schleife muß dann noch einmal durchlaufen werden 
und ein weiteres Herabzählen des X-Registers erzeugt $FF, 
was zum Setzen der N-Flagge führt. Das ist dann unser 
Signal, daß die gesamte Kopfzeile übertragen wurde. Die 
N-Flagge wird durch den BPL-Befehl getestet:

02C-
6 BPL 02B8

So weit, so gut. Wir hätten natürlich auch das X-Register 
von 0 an hochzählen können. Zum Beenden der Schleife 
wäre dann aber ein CPX-Befehl erforderlich gewesen, der 
jedesmal den X-Registerinhalt mit derZahl $27 vergleicht.

MERKE: Indexregister in Schleifen abwärts zu zählen, kann 
Rechenzeiteinsparen!

Ab $02CE soll der umgekehrte Vorgang, also das Zurück­
schieben der vorher gespeicherten Kopfzeile in den Bild­
schirmspeicher geschehen. Das einfachste wäre es sicher­
lich, diesen Programmteil mit einem weiteren USR- 
Kommando zu starten. Das sähe dann so aus:
1 .USR-Befehl
2 .USR-Befehl

3 .USR-Befehl
4 .USR-Befehl

- schiebt Kopfzeile unter oberes ROM
- holt Kopfzeile zurück in Bildschirm­

speicher
- schiebt wieder Kopfzeile unter ROM 
- holt sie wieder zurück und so weiter.

Weil aber das Umstellen des USR-Vektors durch POKEs
vom Basic aus lästig ist, tun wir das einfach immer am Ende 
des betreffenden Maschinenprogrammabschnittes. Wir

1 REM ********************************* <250> 85 PRINTsPRINT"HIER GESCHIEHT DAS DURCH A=USR(1
2 REM * * <229> ) IN<4SPACE>ZEILE 65" <132>
3 REM * TEST FUER DIE 1. VERSION DES * <139> 90 PRINT"DABEI IST 1 EIN DUMMY UND MIT A FANGEN
4 REM * PROGRAMM-PROJEKTES * <048> <2SPACE>WIR AUCH NICHTS WEITER AN." <063>
5 REM * V E R S C H I E B E N V 0 N * <009> 95 IPRINT"AUF TASTENDRUCK WIRD DER BILDSCHIRM
6 REM * SPEICHERBEREICHEN * <193> {2SPACE>GE-L0ESCHT" <029>
7 REM * * <234> 100 REM <243>
8 REM * HEIMO PONNATH HAMBURG 1984 * <081> 105 REM ++UEBERSCHREIBEN DER KOPFZEILE ++ <046>
9 REM ********************************* <002> 110 REM <253>
10 REM <153> 115 POKE 198,0:WAIT 198,l:PRINT CHR$(147) <090>
15 REM +++++- USR-VEKTOR EINSTELLEN ++++ <065> 120 REM <007>
20 REM <163> 125 REM +++ NEUBEGINN DES PROGRAMMES ++++ <173>
25 POKE 785,182:P0KE 786,2 <239> 130 REM <017>
30 REM <173> 135 PRINT CHR$(19)"WAS AUCH IMMER JETZT IN DER
35 REM ++++++ KOPFZEILE ++++++++++++++++ <013> K0PFZEILE<3SPACE>STEHT, ES WIRD BEIM 2.USR"
40 REM <183> <017>
45 PRINT CHR$(147)CHRt(18)"TEST 140 PRINT"VON DEM ZUVOR DURCH DAS ERSTE USR

: BILD $0400=1024, FARBE $D800=55296"ICHR$(14 GE-<3SPACE>SPEICHERTE UEBERSCHRIEBEN" <078>
6) <071> 145 PRINT:PRINT"WENN SIE JETZT EINE TASTE DRUEC

50 PRINT:PRINT:PRINT"DURCH IRGENDEIN USR -KOMMAN KEN..-" <104>
DO WIRD NUN IM PROGRAMM-MODUS" <020> 150 POKE 198,0:WAIT 198,1 <246>

55 PRINT"DER ERSTE TEIL DES VERSCHIEBE-PROGRAMM 155 REM <042>
ES AUFGERUFEN" <110> 160 REM ++++++ 2. USR—AUFRUF +++++++++++ <090>

60 PRINT"DIE KOPFZEILE WIRD UNTER DAS OBERE 165 REM <052>
R0M{2SPACE>K0PIERT." <215> 170 A=USR(1):PRINT <169>

65 REM <208> 175 PRINT"IST DIE ALTE KOPFZEILE ZURUECK IN
70 REM ++++++ 1. USR-AUFRUF ++++++++++++ <042> DEN <3SPACE}BILDSCHIRMSPEICHER GESCHOBEN-"
75 REM <218> <164>
80 A=USR(1) <124> 180 END <052>

Bild 18. Test und Demonstration der Verschieberoutine.
Das Programm zeigt das Ein- und Ausschalten einer Kopfzeile auf dem Bildschirm
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schreiben also das LSB der Programmfortführung ($CE) 
nach $311. Das MSB bleibt unverändert $02.

02C8 LDA #CE
02CA STA 0311
02CD RTS

Mit dem RTS sind wir wieder im Basic-Programm gelandet, 
welches nun normal weiterverarbeitet wird. Erst ein neues 
USR-Kommando - im Programm oder im Direktmodus - star­
tet den zweiten Teil unseres Maschinenprogrammes (weil in 
$0311, - der Einsprungpunkt des USR-Befehls - die Start­
adresse der auszuführenden Routine steht).

In diesem 2. Teil müssen wir erst einige Befehle geben, die 
Sie jetzt vielleicht noch nicht verstehen. Das hängt damit 
zusammen, daß zum Herauslesen des RAM unter dem ROM 
das ROM ausgeschaltet werden muß (entspricht POKE 
1,53):

02CE LDA 01
02D0 PHA
02D1 LDA #35
02D3 STA 01

(Der PHA-Befehl dient hier zur Zwischenspeicherung des 
Akku-Inhaltes). Das ist hiermit geschehen und wir kommen 
wieder in bekannte Gefilde mit der Ausleseschleife:

02D5 LDX #27
02D7 LDA E000,X
02DA LDY E028,X
02DD STA 0400,X
02E0 TYA
02E1 STA D800,X
02E4 DEX
02E5 BPL 02D7

Damit ist die gesamte gespeicherte Kopfzeile wieder
zurückgeholt und wir können das ROM wieder einschalten: 

02E7 PLA 
02E8 STA 01

Befehls­
wort

Adressierung Byte­
zahl

Code Takt­
zyklen

Beeinflussung 
von FlaggenHex Dez

LDA absolut,X 3 BD 189 4 N,Z
O-page-abs,X 2 B5 181 4 N,Z
absolut,Y 3 B9 185 4 N,Z

LDX absolut,Y 3 BE 190 4 N,Z
O-page-abs,Y 2 B6 182 4 N,Z

LDY absolut,X 3 BC 188 4 N,Z
O-page-abs,X 2 B4 180 4 N,Z

STA absolut,X 3 9D 157 5 /
absolut,Y 3 99 153 5 /
O-page-abs,X 2 95 149 4 /

STX O-page-abs,Y 2 96 150 4 /
STY O-page-abs,X 2 94 148 4 /
INC absolut,X 3 FE 254 7 N,Z

O-page-abs,X 2 F6 246 6 N,Z
DEC absolut,X 3 DE 222 7 N,Z

O-page-abs,X 2 D6 214 6 N,Z
ADC absolut,X 3 7D 125 4 N,V,Z,C

absolut,Y 3 79 121 4 N,V,Z>C
O-page-abs,X 2 75 117 4 N,V,Z,C

SBC absolut,X 3 FD 253 4 N,V,Z,C
absolut,Y 3 F9 249 4 N,V,Z,C
O-page-abs,X 2 F5 245 4 N,V,Z,C

CMP absolut,X 3 DD 221 4 N,Z,C
absolut,Y 3 D9 217 4 N,Z,C
O-page-abs,X 2 D5 213 4 N,Z,C

BIT absolut 3 2C 44 4 N,V,Z
O-page-abs. 2 24 36 3 N,V,Z

CLV implizit 1 B8 184 2 V
NOP implizit 1 EA 234 2 /
TAX implizit 1 AA 170 2 N,Z
TAY implizit 1 A8 168 2 N,Z
TXA implizit 1 8A 138 2 N,Z
TYA implizit 1 98 152 2 N,Z
JMP absolut 3 4C 76 3 /

indirekt 3 6C 108 5 /
JSR absolut 3 20 32 6 /

Tabelle 8. Zusammenfassung aller wichtigen Daten der 
neuen Befehle

Falls nun wieder ein USR-Kommando auftaucht, soll die 
Kopfzeile mit dem 1. Programmteil unter das obere ROM 
gelegt werden wie am Anfang. Wir müssen deshalb den USR- 
Vektor auf $02B6 zurückschreiben:

02EA LDA #B6
02EC STA 0311
02EF RTS

Das wärs! Wenn nun im Programm oder im Direktmodus 
wieder ein USR-Befehl auftritt, kann das Ganze von vorne 
beginnen. In dieser Version wird jedesmal eine neue Kopf­
zeile hin- und wieder zurückgeschoben. Wenn Sie eine ein­
mal festgelegte Kopfzeile immer wieder benutzen möchten, 
dann stellen Sie den USR-Vektor einfach nicht mehr zurück: 
Lassen Sie also die Befehle bei 02EA und 02EC weg. Das 
Programm endet in dem Fall mit:

02EA RTS
Eine wichtige Bemerkung noch: So bequem der Ort auch 

ist, an dem unser kurzes Programm steht, er hat einen gravie­
renden Nachteil: Falls Sie mittels einer RESET-Taste oder per 
Software einen Basic-Kaltstart durchführen, geht unser Pro­
gramm flöten! Dieser Speicherbereich wird im Reset- 
Programm nämlich mit lauter Nullen überschrieben. Deswe­
gen speichern Sie es bitte bald ab.

In Bild 18 finden Sie ein kleines Testprogramm für unsere 
Verschieberoutine, und in Tabelle 8 eine Zusammenfassung 
aller wichtigen Daten der neuen Befehle.

33.Wirstapeln

ln Kapitel 28 haben wir beim JSR-Befehl schon den Stapel 
etwas kennengelernt. Aber so ganz genau wissen wir’s ja 
noch nicht, was das ist. Deswegen jetzt mal im Detail: Der Sta­
pel, auch Prozessorstack genannt, ist der Speicherbereich 
von dezimal 256 ($100) bis dezimal 511 ($1FF), der direkt 
von unserer CPU verwaltet wird. Das ist also die gesamte 
Pagel.ÄhnlichwiebeiderString-Verwaltunggeschiehtauch 
hier das Füllen von oben nach unten. Das erste Byte, welches 
in den Stack geschoben wird, kommt also nach $1FF, das 
nächste nach $1FE und so weiter. Voll ist der Stapel, wenn 
auch $100 besetzt wurde (siehe Bild 19).

Warum heißt das Ding nun eigentlich Stapel? Das erklärt 
sich aus dem Zugriffs-Prinzip. Man spricht von einer LIFO- < 
Struktur,von»Lastln-FirstOut«,zudeutsch»zuletzthinein- 
zuerst heraus«. Das zuerst hineingebrachte Byte befindet 
sich am Speicherboden ($1FF), das zuletzt eingebrachte an 
der Speicherspitze. Stellen Sie sich einen Stapel Akten vor 
(Bild 20).

Offensichtlich wurde der 4. Aktenordner zuletzt auf den 
Stapel gesteckt. Er kann zuerst heruntergeholt werden. An 
die Akte 1 kommen wir erst heran, wenn alle anderen herun­
tergenommen worden sind. Genauso verhält es sich mit dem 
Prozessorstack: Um an das unterste Byte des Stapels heran­
zukommen, müssen erst Byte für Byte die darüberliegenden 
(nachBild19eigentlichdiedarunterliegenden)weggeschafft 
werden.

Mit dem Prinzip des Stapelspeichers werden Sie sich aus­
kennen, wenn Sie schon mal andere Programmiersprachen 
als Basic ausprobiert haben: In Forth beispielsweise operie­
ren Sie ständig mit Stapeln.

Damit wir - und der Prozessor - den Überblick über den 
Stack behalten, gibt es dankenswerterweise noch einen Sta­
pelzeiger (stackpointer), derjeweils auf den nächsten freien 
Platz des Stapels weist. Da gibt’s nun aber ein kleines Pro­
blem: Der Stapel belegt die komplette Seite 1.

Ein Stapelzeiger, der auf zum Beispiel $O1FE zeigen soll, 
müßte das MSB (also 01) und das LSB (also FE) in zwei Bytes 
lagern. Der Stapelzeiger ist aber nur 8 Bit groß ... Freundli­
cherweise sorgt unser Mikroprozessor automatisch für das
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neunte Bit. Der Zeiger zählt also immer von $FF an rückwärts 
bis $00 und weist dabei von $1FF bis $100.

Der Stack hat in unserem Computer drei Aufgaben zu 
erfüllen:
1) Organisation von Unterprogramm-Adressen
2) Zwischenspeicherung bei Unterbrechungen (Interrupts)
3) vorübergehende Datenspeicherung

Die Rolle des Stapels bei Unterprogramm-Aufrufen haben 
wir in der letzten Folge schon ausgiebig behandelt. Die soge­
nannten Interrupts heben wir uns noch für später auf - dazu 
fehlen uns noch ein paar Kenntnisse. Mit der vorübergehen­
den Speicherung von Daten befassen wir uns gleich, wenn 
wir an die Befehle zur Stackbehandlung herangehen.

Zuvor - weil das hier gerade ganz gut paßt - noch ein paar 
Gedanken zur rekursiven Programmierung. Gemeint ist damit 
eine Programmstruktur, in der sich ein Unterprogramm selbst 
aufruft. Auch GOSUB-Befehle in Basic bewirken Einträge der 
Rücksprungadressen im Stapel. Auf diese Weise ergibt sich 
für unseren Computer eine begrenzte Verschachtelungstiefe 
bei Unterprogrammaufrufen. Diese wird bei Rekursion 
besonders schnell erreicht, und das bewirkt die Ausgabe 
einer OUT OF MEMORY-Fehlermeldung.

34. Aktives Stapeln mit 
PHA, PLA, PHP, PLP, TSX und TXS

Mit dem Stapel haben wir 256 Speicherplätze für eine 
schnelle Zwischenspeicherung aller möglichen Daten zur 
Verfügung. Weil der 6510 (und natürlich auch der 6502) die­
sen Speicherbereich wie die Zeropage behandelt, geht das 
Speichern sehr schnell. Man muß nur immer die spezielle 
LIFO-Struktur berücksichtigen.

Im Grunde braucht man eigentlich nur zwei Befehle: Etwas 
auf den Stapel schieben (in der Literatur oft als Push-Befehl 
bezeichnet) und etwas herunterziehen, das nennt man dann 
Pull- oder auch Pop-Befehl.

Unser Prozessor kennt insgesamt sechs auf den Stapel 
wirkende Anweisungen:
PHA Damit schreibt man den Akku-Inhalt in den Stapel 
(»PusH-Accumulator«). Der Stapelzeiger wird automatisch 
eine Position heruntergezählt (er rechnet ja von $FF an 
abwärts!). Der Inhalt des Akku wird dabei nicht verändert. 
Deswegen bleibt auch das Status-Register (also die ganzen 
Flaggen: N V B DIZ C) unbeeinflußt.
PLA »PuLI Accumulator«. Das ist der umgekehrte Weg: Das, 
was zuoberst auf dem Stapel liegt, wird in den Akku geschrie­
ben. Dadurch wird ein Stapelplatz frei, was den Stapelzeiger 
veranlaßt, um 1 zu wachsen. Weil das, was da in den Akku 
geladen wird, 0 sein kann oder auch negativ (also mit gesetz­

tem Bit 7), wird unter Umständen auch die N- oder die Z- 
Flagge verändert.

Weniger mit Datenzwischenspeicherung haben die ande­
ren Befehle zur Stapel-Manipulation zu tun:
PHP Das steht für »PusH Processor status«, also »schiebe 
das Prozessor-Status-Register auf den Stapel«. Der aktuelle 
Flaggenstand kann damit aufbewahrt werden. Das Status- 
Byte ändert seinen Inhalt dabei ebensowenig wir der Akku bei 
PHA. Auch hier wird der Stapelzeiger freundlicherweise um 1 
herabgezählt.
PLP »PuLI Processor status«, »hole den Prozessor-Status 
vom Stapel« ist der umgekehrte Befehl, der (wie bei PLA in 
den Akku) das, was zuoberst im Stapel liegt, in das Flaggen- 
Register schreibt. Da sollte man höllisch aufpassen, was man 
damit einlädt: Das ist eine feine Gelegenheit für den Compu­
ter, abzustürzen. Der Stapelzeiger wird - wie gehabt - um 1 
erhöht.

Nicht direkt mit dem Stapel, sondern mit dem Stapelzeiger 
befassen sich die beiden folgenden Befehle:
TSX »TransferStack-pointerintoX«, zu deutsch, »schiebe den 
Stapelzeiger ins X-Register« eröffnet die Möglichkeit, den 
Stapelzeiger zu lesen. Dabei bleibt er selbst unverändert 
erhalten. Weil nun im X-Register alle Werte zwischen $FF und 
0 auftreten können, werden auch die Flaggen beeinflußt (N- 
und Z-Flagge).
TXS Den umgekehrten Weg geht »Transfer X into Stackpoin­
ter« = »übertrageX-Register-lnhaltin den Stapelzeiger«. Das 
ist der einzige Befehl, der es erlaubt, den Stapelzeiger mit 
einem von uns kontrollierten Wert zu laden. Der Inhalt des X- 
Registers bleibtdabei unverändert, demzufolge interessieren 
sich auch die Flaggen nicht dafür.

Alle sechs Anweisungen bestehen nur aus einem Byte und 
sind implizit adressiert. Die Stapelzeiger-Befehle TXS und 
TSX benötigen zwei Taktzyklen, die Push-Befehleje drei und 
die Pull-Befehle vier Taktzyklen zur Bearbeitung.

Es ist etwas schwierig, Stapel-Operationen direkt zu verfol- 
,gen. Die meisten Assembler - so anscheinend auch der 
SMON - gebrauchen ebenfalls diesen Speicherbereich. Ver­
langt man beispielsweise mit dem SMON-Kommando M 0100 
01FF eine Darstellung des Stapelinhaltes, dann findet man 
eine ganze Menge Spuren der Arbeit des Assemblers. Ver­
sucht man die zu löschen oder zu überschreiben, zum Bei­
spiel mitdem nachfolgenden kleinen Programm, dann hatder 
Assembler die Mühe schon wieder zunichte gemacht, wie 
man durch erneutes M 0100 01FF schnell sehen kann. Die­
ses kleine Programm soll unterhalb des durch den Stapelzei­
ger bezeichneten Bereichs 32 Nullen in den Stapel 
schreiben:

8000 LDA #00
8002 TSX

Bild 19. So wird der Stapel gefüllt Bild 20. Der Aktenstapel
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Der Stapelzeiger wird ins X-Register gerettet.
8003 LDY #20
8005 PHA

Wir schieben eine Null auf den Stapel.
8006 DEY
8007 BNE 8005
8009 TXS

Nach 32 Eintragungen von Nullen stellen wir den alten 
Stapelzeiger wieder her.

800A BRK
Erneutes Kommando M 0100 01 FF zeigt keine Nullen. Erst 

wenn wir anstelle des TXS in Zeile 8009 ein BRK schreiben, 
den Stapelzeiger also nicht zurückschreiben, erscheinen 
unsere Nullen. Sieht man genau hin, dann stellt man fest, daß 
unterhalb des durch den Stapelzeiger bezeichneten 
Bereichs genau der gleiche Inhalt zu finden ist wie vorher, nur 
eben mit dem Stapelzeiger verschoben.

Ganz konnte ich dies Rätsel noch nicht lösen, muß ich 
gestehen, aber für den Gebrauch des Stapels ändert sich 
dadurch für uns nichts. Worauf muß man achten bei Stapel­
operationen? Ganz einfach: Zwischen dem Ablagern eines 
Wertes auf dem Stapel und dem Zurückholen muß für jeden 
Push-Befehl ein Pull-Befehl vorhanden sein, fürjedes weitere 
PHA ein PLA, für jedes JSR ein RTS. Nur wenn wir auf diese 
Symmetrie der Push- und der Pull-Befehle achten (und wie 
Sie noch aus der vorhergegangenen Ausgabe wissen, sind ja 
JSR und RTS ebenfalls dazuzurechnen), können wir sicher 
sein, daß der Stapelzeiger zum Zeitpunkt des Rückholens 
eines Wertes vom Stapel auch wirklich darauf deutet. Wenn 
man also nicht ganz genau weiß, wie der verwendete Assem­
bler den Stapel nutzt, sollte man auf Operationen mit den 
Befehlen TSX und TXS verzichten.

Nun können Sie schon einen Teil der bislang unbekannten 
Programmsequenz aus der letzten Folge verstehen. Im zwei­
ten Programmteil hatten wir mit

02CE LDA 01
02D0 PHA

den Inhalt der Speicherstelle 01 in den Akku geladen und auf 
den Stapel geschoben. Später - nach einigen weiteren Ope­
rationen - wurde dann dieser Speicherinhalt wiederherge­
stellt durch

02E7 PLA
02E8 STA 01

Was aber hat es mit dieser Speicherstelle 01 auf sich? Das 
soll nun als nächstes erklärt werden.

35. Sein oder Nichtsein:
Das Rätsel des Prozessorports

Der Commodore 64 hat 64 KByte an RAM zu bieten. Außer­
dem aber verfügen wir beim normalen Programmieren über 
weitere 24 KByte, in denen das Betriebssystem, der Basic- 
lnterpreter, Ein- und Ausgabebausteine und der Zeichen­
speicherstecken. WieSiewissen, umfaßtderAdreßbusaber 
nur 16 Bit, was uns lediglich 65536 Speicherzellen, also 64 
KByte adressieren läßt. Des Rätsels Lösung liegt darin, daß 
einige Adressenbereiche mehrfach belegt sind. Man kann 
das vergleichen mit dem Trick des Kastens mit dem doppelten 
Boden. Welcher Kasteninhalt gerade dem Prozessorzugriff 
offensteht, wird durch den Prozessorport, das sind die Spei­
cherstellen 00 und 01, gesteuert.

Dr. Helmuth Hauck hat in seiner Serie »Memory Map mit 
Wandervorschlägen« (64’er, Ausgabe 11 (1984), Seite 135 
ff.) die genaue Funktion jedes Bits dieser beiden Speicher­
stellen erklärt. Wer noch mehr wissen möchte - auch über die 
Wirkungsweise der beiden Leitungen »Game« und »Exrom« - 
sollte das nachlesen im »Commodore 64 Programmers Refe­
rence Guide« ab Seite 260. Für uns als angehende Assem-

bler-Alchimisten ist die Speicherstelle 1 aber so wichtig, daß 
wir ganz kurz hier nochmal darauf eingehen.

Die Speichersteuerfunktionen haben die Bits 0 bis 2 der 
Speicherstelle 1. Je nach Belegung dieser Bits gestaltetsich 
die 64-KByte-Landschaft unseres Computers wie in Tabelle 
9 gezeigt.

Was können wir als Maschinen-Programmierer mit dieser 
Kenntnis anfangen? Theoretisch stehen uns für unsere Pro­
gramme damit 64 KByte offen. Praktisch werden wir nur in 
den seltensten Fällen auf die Ein- und Ausgabe-Bausteine 
verzichten können. Lassen wir ein reines Maschinenpro­
gramm laufen, ohne jeglichen Rückgriff auf Interpreter oder 
Betriebssystem, dann haben wir immerhin noch zirka 60 
KByte zur freien Verfügung. Benutzen wir Routinen aus die­
sen beiden ROM-Bausteinen, dann müssen wir sie allerdings 
- zumindest für den Zeitpunkt des Routineaufrufs - wieder 
einschalten. Wenn wir - was wohl meistens der Fall sein wird 
- Kombinationen von Basic- und Assemblersprache verwen­
den, können wir den gesamten Basic-Speicher bis $A000 
frei halten, können auch den bei allen Beispielprogrammen so 
beliebten Bereich $C000 bis $D000 leer lassen und packen 
unsere Routinen weitgehend unter die ROMs, die dann 
jeweils beim Aufruf abgeschaltet werden. So haben wir eine 
Menge zusätzlichen Speicherplatz ergattert.

Nun können wirauch den letzten Restdes bislang unklaren 
Programms aus Kapitel 32 verstehen. Nachdem wir den 
Inhalt der Speicherstelle 1 auf den Stapel gerettet haben (Zei­
len $02CE und $02D0), schreiben wir $35 in den Pro­
zessorport:

02D1 LDA #35
02D3 STA 01

$35istbinär0011 0101. DieBitsObis2, aufdieesunsindie- 
sem Zusammenhang ankommt, bewirken nun das Ausschal­
ten des Interpreters und des Betriebssystems. Die Ein- und 
Ausgabe-Bausteine bleiben aktiv. Im weiteren Programmver­
lauf lesen wir die Speicherinhalte ab $E000, wobei wir nun 
den RAM-Inhalt erfassen. Das sollte vielleicht nochmal klar­
gestellt werden: Jedes Hineinschreiben in die mehrfach 
belegten Speicherbereiche (dabei sind die Ein- und 
Ausgabe-Bausteine aber ausgenommen) wird automatisch in 
den RAM-Bereich umgelenkt. Das istja auch klar: In ein ROM 
kann eben nicht geschrieben werden. Deshalb braucht man 
dabei die ROMs nicht auszuschalten. Jeder Lesevorgang 
greift aber auf die ROMs zu, weshalb man sie in unserem Fall 
ausschalten muß. Wie schon oben beim Stapel erklärt, schal­
ten wir durch das Zurückholen des vorher dorthin geretteten 
alten Inhalts der Speicherstelle 1 in den Prozessorport wie­
der den Normalzustand ein.

36. Die indirekte Adressierung

Wir werden nun die beiden letzten noch ausstehenden Arten 
derAdressierung kennenlernen. Beidessind indirekteAdres- 
sierungsarten. Mit dem indirekten JMP-Befehl (zum Beispiel

Speicherstelle 1 $AOOO-$BFFF $DOOO-$DFFF $EOOO-$FFFF
Bits 2 1 0

1 1 1 Basic l/0 Kernel
1 1 0 RAM I/O Kernel
1 0 1 RAM l/0 RAM
1 0 0 RAM RAM RAM
0 1 1 Basic Zeichen Kernel
0 1 0 RAM Zeichen Kernel
0 0 1 RAM Zeichen RAM
0 0 0 RAM RAM RAM

Tabelle 9 zeigt, welche Bausteine bei verschiedener Be­
legung der Bits 0 bis 2 des Prozessorports (Speicher­
stelle 1) eingeschaltet sind. (Frei nach Dr. Hauck, 64’er 
Ausgabe 11/84, Seite 136)
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JMP(0300)) sind wir in Kapitel 28 schon vertraut geworden. 
Wir hatten auch gelernt, daß es sich hierbei um einen absolu­
ten Einzelgänger handelt, der nur für so einen Sprung erlaubt 
ist. Ebenso haben wir die indizierte Adressierung zu beherr­
schen gelernt: Das war die Sache mit den Indexregistern X 
oder Y. Eine Kombination aus beiden (also der indirekten und 
der indizierten) Adressierungsarten sind die indiziert­
indirekte und die indirekt-indizierte Adressierung.
Die indirekt-indizierte Adressierung

Fangen wir mit der sehr häufig benutzten indirekt­
indizierten Adressierung an: Man nennt sie auch »indirekt Y« 
oder »nach-indizierte indirekte« Adressierung. Am besten 
sehen wir uns mal so einen Befehl an:

LDA (FA),Y
Die Klammer erinnert uns an den indirekten JMP-Befehl. 

Tatsächlich hat sie hier auch dieselbe Funktion: In FA und FB 
steht ein Zeiger auf eine Adresse. Nehmen wir mal an, die 
Belegung der Speicher wäre:

FA 01
FB 80

und im Y-Register stünde eine 5. Der Zeiger FA/FB weist also 
auf die Speicherstelle 8001. Da haben wir also wieder das 
Prinzip des toten Briefkastens. Der Computer guckt in den 
hohlen Baum FA/FB (LSB in FA, MSB in FB) und findet dort die 
Treffpunktadresse. Nun sind diese toten Briefkästen aber 
auch den gegnerischen Alchimisten-Agenten bekannt. Es 
kommt also noch ein Trick dazu: Zur dort aufgefundenen 
Adresse wird der Inhalt des Y-Registers addiert. In unserem 
Fall fanden wiralsoin FA/FB dieAdresse8001, imY-Register 
steht eine 5, somit ist die endgültige Adresse 8001+5 = 
8006. Unser Beispiel »LDA(FA),Y« bewirkt daher, daß in den 
Akku der Inhalt der Speicherstelle 8006 geladen wird. Nach­
indiziert nennen manche die Adressierung deswegen, weil 
zunächst dem Zeiger nachgegangen wird, der in unserem 
Beispiel auf 8001 weist, und erst danach durch Addition des 
Inhalts des Y-Registers die endgültige Speicherstelle (hier 
also 8006) berechnet wird.

Als Zeiger (also die Adresse in der Klammer) sind nur Zero- • 
pagespeicherstellen verwendbar, als Indexregister darf man 
hier nur das Y-Register gebrauchen. Von den bisher behan­
delten Befehlen können ADC, CMP, LDA, SBC und STA mit 
dieser Adressierungsart verwendet werden. Genaueres fin­
den Sie wieder in der Tabelle mit der Befehls­
übersicht (Tabelle 10).

Bevor wir uns dem anderen indirekten Adreß-Modus 
zuwenden, wollen wir uns überlegen, wozu man die indirekt-

* Wenn bei der Befehlsausführung eine Page-Grenze überschritten wird, muß noch ein Taktzyklus 
dazugerechnet werden.

Befehls­
wort

Adressierung Byte­
zahl

Code Takt­
zyklen

Beeinflussung 
von FlaggenHex Dez

LDA indirekt X 2 A1 161 6 N,Z
indirekt Y 2 B1 177 5* N,Z

STA indirekt X 2 81 129 6 —
indirekt Y 2 91 145 6 —

ADC indirekt X 2 61 97 6 N,V,Z,C
indirket Y 2 71 113 5* N,V,Z,C

SBC indirekt X 2 E1 225 6 N,V,Z,C
indirekt Y 2 F1 241 5* N,V,Z,C

CMP indirektX 2 C1 193 6 N,Z,C
indirekt Y 2 D1 209 5* N,Z,C

PHA implizit 1 48 72 3 —
PLA implizit 1 68 104 4 N,Z
PHP implizit 1 08 8 3 —
PLP implizit 1 28 40 4 alle
TSX implizit 1 BA 186 2 N,Z
TXS implizit 1 9A 154 2 —

Tabelle 10. Übersicht der in dieser Folge vorgestellten 
Befehle

indizierte Adressierung verwendet. Wie Sie sich natürlich 
erinnern können, konnte man mit der normalen indizierten 
Adressierung, zum Beispiel mit

LDA 8000,Y
durch Variation des Indexregisters (hier das Y-Register) 256 
Speicherstellen erfassen (Y von FF herunter bis 00). Will man 
mehr als diese 256 berücksichtigen, dann muß eine neue 
Basis (im Beispiel also anstelle der 8000) gewählt werden. 
Um das zu illustrieren, sehen wir uns mal den Anfang eines 
Programms an, welches den gesamten Bildschirminhalt aus­
liest und nach E000 schreibt:

1000 LDY #00
1002 LDA 0400,Y
1005 STA E000,Y
1008 LDA 0500,Y
100B STA E100,Y
100E LDA 0600,Y
1011 STA E200,Y
1014 LDA 0700,Y
1017 STA E300,Y
101A DEY
101B BNE 1002

Wie Sie sehen, erfordert das durch die Tatsache, daß vier 
Blöcke zu je 256 Bytes übertragen werden müssen, immer­
hin schon 28 Bytes Programmtext. Nun soll die indirekt­
indizierte Adressierung verwendet werden, um dieselbe Auf­
gabe zu lösen. Wir legen zunächst zwei Zeiger auf der Zero­
page fest:

FA/FB sollen die Bildschirmadresse enthalten 
FC/FD die Zieladresse ab E000.

1000 LDA #00
1002 STA FA
1004 STA FC

Das waren die LSBs der Zeiger, es folgen die MSBs:
1006 LDA #04
1008 STA FB
100A LDA #E0
100C STA FD

Damit sind die Zeiger festgelegt. Es sind vier Blöcke zu je 
256 Bytes zu übertragen. Diese Blockanzahl legen wir ins 
X-Register als Zähler:

100E LDX #04
Dann laden wir ins Y-Register ebenfalls einen Zähler (den 

Index):
1010 LDY #00

Jetzt kann die eigentliche Übertragungsschleife starten:
1012 LDA (FA),Y
1014 STA (FC),Y
1016 DEY
1017 BNE 1012

Wenn das Y-Registerwieder bei 0 angekommen ist (von der 
ersten 0 nach einem Unterlauf über FF, FE und so weiter bis 
0), ist der erste Block übertragen. Wir erhöhen nun das MSB 
beiderZeiger um 1:

1019 INC FB
101B INC FD

Außerdem zählen wir den Blockzähler um 1 herunter:
101D DEX
101E BNE 1012

Wenn das Programm auf diese Weise auch drei Byte mehr 
Speicherplatz braucht, ist doch leicht der Vorteil zu sehen: 
Müssen wir nämlich (statt nur vier) mehr Blöcke übertragen 
(bis zu 255), dann verändert sich unser zweites Programm 
um keinen Deut (außer dem Zähler im X-Register, der nun mit 
derjeweils anderen Block-Anzahl geladen wird), während die
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erste Programmtechnik für jeden weiteren Block um sechs 
Bytes erweitert werden muß.

Es gibt noch eine ganze Reihe von Anwendungsmöglich­
keiten, die die indirekt-indizierte Adressierung so attraktiv 
machen. Für Geschwindigkeitsfanatiker (ich selbst bin bei 
Grafik-Fragenauch einer!)mußabergesagtwerden,daßdem 
Speicherplatzvorteil ein Geschwindigkeitsnachteil gegen­
übersteht. Jeder indirekt-indiziert adressierte Befehl braucht 
einen Taktzyklus länger als der vergleichbare absolut­
indizierte Befehl. Zu diesen Feinheiten werden wir aber spä­
ter noch kommen.
Die indiziert-indirekte Adressierung

Wenden wir uns nun der letzten noch fehlenden Adressie- 
rungsartzu, derindiziert-indirekten. Man nenntsieauch »vor­
indizierte indirekte« oder »indirekt X« Adressierung. Sehen 
wir auch hier zunächst ein Beispiel an:

STA (FA,X)
Auch hier drückt die Klammer wieder aus, daß der 

Klammerinhalt ein Zeiger ist. Das istjetzt aber nicht das Byte­
paar FA/FB, sondern zur angegebenen Adresse FA soll noch 
der Inhalt des X-Registers addiert werden. Nehmen wir mal 
an, dort stünde eine 2, dann wird der Zeiger FC/FD mit diesem 
Befehl angesprochen, denn FA+2 = FC und entsprechend 
FB+2 = FD. Wenn in den Speicherstellen FA bis FF folgender 
Inhalt zu finden ist:

OOFA 00
00FB 04 FA/FB = 0400
00FC 00
00FD E0 FC/FD = E000
OOFE 10
OOFF 80 FE/FF = 8010

dann könnte das eine ganze Tabelle von Zeigern sein, die 
jeweils durch den X-Registerinhalt angesprochen werden. 
Der Akkuinhalt wird in unserem Beispiel nach 0400 geschrie­
ben, wenn im X-Register 0 steht, nach E000, wenn das 
X-Register eine 1 enthält und nach 8010, wenn stattdessen 
eine 2 im X-Register zu finden ist.

Sie werden sich vielleicht auch bei diesem Beispiel gefragt 
haben, was passiert, wenn im X-Register unseres Beispiels 
eine 6 steht. Nun, unser 8-Bit-Prozessor läuft über, und wir 
finden einen Zeiger 00/01.

Rein theoretisch ist diese Adressierungsweise ganz inter­
essant. Aber auf der Zeropage ist’s reichlich eng, und nur sel­
ten kommt man daher in die Lage, dort eine Zeigertabelle ein­
zurichten, die man mittels des X-Registerinhalts und der indi­
ziert-indirekten Adressierung abgreifen kann. Die Bedeutung 
dieser Adressierungsart ist also nur recht gering. Außerdem 
erfordert sie sechs Taktzyklen zur Bearbeitung und ist somit 
auch noch recht langsam. Von den bisher bekannten Befeh­
len sind die folgenden damit verwendbar: ADC, CMP, LDA und 
STA.

Bevor wir die Adressierung zu den Akten legen, sei noch 
erwähnt, daß manche Lehrbücher noch eine weitere Art, die 
Akkumulator-Adressierung, unterscheiden. Betroffen sind 
davon vier 1-Byte-Befehle, die wir noch kennenlernen wer­
den und die man ebensogut als implizit adressiert ansehen 
kann.

37. Die ersten Kernel-Routinen

Sicher werden Sie alle schon von der Kernel-Routine FFD2 
gehört haben und sie vielleicht auch schon verwenden. Wenn 
nicht, um so besser, denn dann sind Sie noch nicht vom ein­
seitigen Gebrauch dieses Instruments verdorben. Die mei­
sten Kernel-Adressen sind nämlich sehr vielseitig verwend- 
bar,jenach denVorgaben. Dasistwiemiteinem Haushaltsge­
rät, das immer nur zum Rühren von Kuchenteig eingesetzt

wird. Dabei kann man damit auch noch Saft machen, Gurken 
schnitzeln, Getränke mixen ... Genauso wie man in diesem 
etwas schiefen Vergleich die Gebrauchsanleitung kennen 
sollte, um die ganzen anderen Funktionen ausnutzen zu kön­
nen, muß man hier noch einige Dinge über die Kernel-Aufrufe 
beherzigen.

Fürjede Verwendung der Kernel-Sprungtabelle sollte man 
sich angewöhnen, dies in drei Schritten zu tun:
1) die nötigen Vorbereitungen treffen
2) Routineaufruf
3) Fehlerabfrage und -behandlung

Fangen wir mit dem Punkt »Vorbereitungen« an. Einige Rou­
tinen brauchen Informationen, die ihnen erst durch andere 
Kernel-Routinen beschafft werden. Ruft man diese anderen 
Routinen vorher nicht auf, dann funktioniert auch der 
erwünschte Aufruf nicht richtig. Wenn die Routine einen 
bestimmten Wert im Y-Register erwartet, dann muß der dort 
auch stehen. Wenn nicht, dann geht das Programm in die 
Hose. Bei jeder Kernel-Routine, die hier beschrieben wird, 
gebe ich alle nötigen Vorbereitungen an.

Der Routinenaufruf sollte immer mittels JSR erfolgen. Alle 
auf diese Weise aus der Kernel-Sprungtabelle abzurufenden 
Programme enden nämlich mit einem RTS. Damit keine wichti­
gen Werte aus dem Aufrufprogramm überschrieben werden, 
man sie also vor dem Aufruf der Kernel-Routine irgendwohin 
retten kann, gebe ich auch noch an, welche Register durch 
die Routine verändert werden und wieviel Stapelspeicher­
platz bereitgehalten werden muß.

Die Routinen sind so konstruiert, daß beim Auftreten eines 
Fehlers nach der Rückkehr das Carry-Bit gesetzt ist. Durch 
Untersuchen des Carry können so Fehler rechtzeitig erkannt 
und behandelt werden. Im Akku findet man in dem Fall dann 
eine Fehlernummer. Die Ausgabe der Fehlermeldung erfolgt 
also nicht - wie im Basic - in Klarschrift. In Tabelle 11 sind die 
Fehlernummern und ihre Bedeutung aufgelistet.

Welche Fehlernummern eine Routine ausgeben kann, wird 
ebenfalls von mir bei jeder Routinen-Besprechung ange­
geben.

Nun aber zur ersten Routine FFD2, die wie einen Ratten­
schwanz eine Reihe weiterer nach sich zieht:

Name CHROUT
Zweck Ausgabe eines Zeichens
Adresse $FFD2 dez. 65490
Vorbereitungen (CHKOUT,OPEN) Zeichen im Akku
Fehler 0
Stapelbedarf 8
Register Akku

Falls Sie diese Routine schon einmal benutzt haben, dann 
geschah es vermutlich ohne die Vorbereitungen CHKOUT 
und OPEN. Freundlicherweise hat unser Computer einige 
Voreinstellungen schon für uns getroffen. Denn normaler-

Tabelle 11. Fehlernummern und ihre Bedeutung.
Die Nummern findet man bei gesetztem Carry im Akku.

Nummer Text Bedeutung

0 BREAK Während des Programms wurde die RUN/STOP-Taste 
gedrückt

1 TOO MANY FILES Man kann maximal 10 offene Files einrichten
2 FILEOPEN Ein bereits geöffnetes File wird nochmals geöffnet
3 FILE NOTOPEN Auf ein noch nicht geöffnetes File sollte zugegriffen 

werden
4 FILE NOTFOUND Das geforderte File ist nicht verfügbar
5 DEVICE NOT PRESENT Das angesprochene Gerät zeigt keine Reaktion
6 NOT INPUT FILE Aus einem Schreibfile kann nicht gelesen werden
7 NOT OUTPUT FILE In ein Lesefile kann nicht geschrieben werden
8 MISSING FILE NAME Bei Operationen, die einen Filenamen erfordern, fehlt 

dieser
9 ILLEGAL DEVICE Das versuchte Kommando ist beim angesprochenen

NUMBER Gerät nicht möglich
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weise sendet CHROUT ein Zeichen über einen schon geöff­
neten Ausgabekanal, und der ist zum Bildschirm geschaltet. 
Ein kleines Beispielprogramm soll das illustrieren. Zunächst 
laden Sie bitte den SMON ein und starten Sie ihn. Nun soll 
eine Texttabelle angelegt werden. Das funktioniert beim 
SMON am bequemsten über das K-Kommando. Geben Sie 
ein K 6000. Der SMON antwortet mit:
’6000 .......................................................................................

Wenn Sie nun die RUN/STOP-Taste drücken, können Sie mit 
dem Cursor in diese Punktzeile fahren und einen Text 
schreiben:
’6000 HALLO ASSEMBLER-ALCHIMIST

Sinnvoll - vor allem für die weitere Verwendung dieses Tex­
tes - ist es, ein (RETURN), also dezimal 13 oder $0D anzu­
schließen. Dazu gibt es natürlich den Weg über den Assem­
blerbefehl. Zur Übung wollen wir aber das M-Kommando ver­
wenden. Geben Sie ein (zuerst die »RETURN«-Taste betäti­
gen) M6018, dann wieder RUN/STOP, und faiiren Sie mit dem 
Cursor auf Speicherstelle 601A (falls Sie in 6019 kein Leer­
zeichen $20 stehen haben, dann fügen Sie’sjetzt noch ein). 
Geben Sie nun anstelle des dort stehenden Bytes 0D ein, und 
drücken Sie die RETURN-Taste. Der Monitor sollte jetzt 
zeigen:

:6018 54 20 0D 
etc.

Unser Text soll mit einem BRK enden. Deshalb gehen wir 
jetzt in den Assembler-Modus mit dem SMON-Kommando A 
601B und schreiben:

601B BRK
Nun folgt das eigentliche Progrämmchen, das Byte für Byte 

bis zur Null (BRK) den Text aus der gerade erstellten Text­
tabelle liest und mittels FFD2 auf den Bildschirm bringt:

601C LDY #00
601E LDA 6000,Y
6021 BEQ 602C

Das Y-Register wird als Index initialisiert, dann die Textta­
belle in den Akku geladen. Wenn das Programm dabei auf die 
Null stößt, verzweigt es zum Ende. Jetzt folgt die Routine zur 
Bildschirmausgabe:

6023 JSR FFD2
6026 BCS 602D

Falls bei der Kernal-Routine etwas schiefgelaufen ist, wird 
das Carry-Bit gesetzt, was wir überprüfen und zu einem 
BRK-Kommando verzweigen (das ist natürlich nur sinnvoll, 
solange ein Monitor oder Assembler wie der SMON aktiv ist). 
Nun erhöhen wir das Index-Register und das ganze beginnt 
von vorne:

6028 INY
6029 JMP 601E
602C RTS
602D BRK

Wenn wir nun aus dem SMON mit F und anschließendem X 
aussteigen und ein kleines Basic-Aufrufprogramm machen 
(Bei OUT OF MEMORY ERROR bitte NEW eingeben):

10PRINTCHR$(147)
20 SYS 24604 :REM = $601C
30 END

dann können wir uns die Wirkung unseres Programms anse­
hen: Nach RUN wird der Bildschirm gelöscht und unser Text 
ausgedruckt.

FFD2 nimmt uns also eine Menge Arbeit ab: Automatisch 
legt diese Routine in den Bildschirmspeicher den Bildschirm­
code (sie rechnet also auch gleich ASCII, das wir ja eingege­
ben haben, in den POKE-Code um) und in die dazugehörige 
Bildschirmfarbspeicherstelle den aktuellen Farbcode. Sie 
setzt außerdem noch den Cursor weiter.

Mit FFD2 kann man aber noch viel mehr machen! Schließ­
lich ist ja der Bildschirm (Gerätenummer 3) nicht der einzige 
mögliche Empfänger. Wir wollen als nächstes mal eine Aus­

gabe mittels FFD2 auf den Drucker erzielen. Hier sind die Vor­
bereitungen allerdings nötig. Zunächst mal müssen wir uns 
noch zwei weitere Kernal-Routinen ansehen, nämlich 
CHKOUT und OPEN.

Name 
Zweck 
Adresse 
Vorbereitungen

CHKOUT
Kanal zum Ausgang definieren 
$FFC9 dez. 65481
OPEN log. Filenummer
ins X-Register

Fehler 0,3,5,7
Stapelbedarf 4
Register Akku, X-Register

Mit dieser Routine kann jedes File, der zuvor durch OPEN 
spezifiziert worden ist, zum Ausgabefile erklärt werden. 
Natürlich muß dann das derart angesprochene Gerät auch ein 
Ausgabegerät sein. Andernfalls ergibt sich ein Fehler. Bevor 
man Daten über einen Kanal senden will, muß CHKOUT 
durchgeführt werden. Wenn die mittels OPEN übergebene 
Geräteadresse größer als 3 ist, sendet diese Routine automa­
tisch auch ein LISTEN-Kommando an das Ausgabegerät. 
LISTEN setzt dann zum Beispiel den Drucker in Empfangsbe­
reitschaft. Die Durchführung von CHKOUT ist einfach (vor­
ausgesetzt, man hat vorher OPEN aufgerufen): In das X- 
Register wird die logische Filenummer geschrieben und dann 
per JSR FFC9 (CHKOUT) angesteuert.

Nun zur anderen Vorbereitung von FFD2, zu OPEN:

Name OPEN
Zweck Öffnen eines logischen Files
Adresse $FFCO dez. 65472
Vorbereitungen SETLFS,SETNAM
Fehler 1,2,4,5,6
Register Akku, X- und Y-Register

Die Routine OPEN an sich anzusprechen ist relativ einfach. 
Es genügt ein JSR FFCO. Zuvor allerdings - der Ratten­
schwanz wird länger - muß mit SETNAM der Filename und mit 
SETLFS die logische Filenummer, die Geräteadresse und 
eventuell eine Sekundäradresse festgelegt sein. Erst danach 
kann das File geöffnet werden durch OPEN. Also sehen wir 
uns noch SETLFS und SETNAM an:

Name SETLFS
Zweck Spezifikationen eines logischen Files
Adresse $FFBA dez. 65466
Vorbereitungen logische Filenummer in Akku 

Gerätenummer ins X-Register 
Sekundäradresse ins Y-Register

Fehler keine
Stapelbedarf 2
Register keine

SETLFS legt für die anderen Kernal-Routinen logische File­
nummer, Gerätenummer und Sekundäradresse fest. Die logi­
sche Filenummer ist dabei eine Schlüsselzahl, die in eine 
durch OPEN angelegte File-Tabelle weist. Die Gerätenummer 
kann zwischen 0 und 31 liegen, dabei sind folgende Zuord­
nungen vorgesehen:

0 Tastatur 2 RS232C-Kanal
1 Datasette 3 Bildschirm

Gerätenummern ab 4 beziehen sich automatisch auf 
Geräte am seriellen Bus. Dabei gilt im allgemeinen:

4 Drucker
8 Diskettenstation

40 S3Ö?
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Die Sekundäradresse ist eine Kommandonummer, die für 
dasjeweilsangesprocheneGerätspezifisch ist, zum Beispiel 
10 bewirkt beim Drucker Commodore 1526, daß das Gerät 
in die Grundstellung geht (siehe jeweiliges Handbuch). Will 
man keine Sekundäradresse verwenden, dann muß FF ins Y- 
Register geschrieben werden. Der Aufruf von SETLFS 
geschieht also in folgender Weise: In den Akku lädt man die 
gewünschte logische Filenummer, ins X-Register die Geräte­
adresse und ins Y-Register FF oder aber die Sekundär­
adresse. Danach erfolgt der Sprung mit JSR FFBA.

Schließlich noch zu SETNAM:

Name SETNAM
Zweck Filenamen festlegen
Adresse FFBD dez. 65469
Vorbereitungen Namenslänge in den Akku LSB des 

Namenstextes in X-Register MSB 
des Namenstextes in Y-Register

Fehler keine
Stapelbedarf 2
Register Akku, X- und Y-Register

Vor der Eröffnung eines Files mittels OPEN muß diese Rou­
tine den Filenamen festlegen. Dazu schreibt man in den Akku 
die Länge des Namens und in die Register X, Y die Start­
adresse (LSB ins X-Register, MSB ins Y-Register) der 
Namenstext-Tabelle. Der Ort dieser Tabelle ist frei wählbar. 
Wird kein Filename gewünscht, dann gibt man dem Akku die 
Länge 0 an. X- und Y-Register sind in dem Fall ohne 
Bedeutung.

Damit - sollte man meinen - hätten wir nun alle Bedingun­
gen erfüllt, FFD2 zur Ausgabe auf den Drucker zu bewegen. 
Leider ist das noch nicht der Fall: FFD2 schließt nämlich das 
File und den Ausgabekanal nicht. Das kann - wenn man’s nicht 
beachtet - zu Fehlern oder zur weiteren Ansprache des 
Druckers führen, auch wenn die gar nicht mehr erwünscht ist. 
Deswegen sollten noch zwei Kernel-Routinen angehängt 
werden, von denen die eine (CLRCHN) alle Ein- und Ausga­
bekanäle wieder in den Ausgangszustand zurückführt, und 
die andere (CLOSE) das File ordnungsgemäß schließt:

Name CLRCHN
Zweck Ein- und Ausgabekanäle in Aus­

gangsstellung bringen
Adresse $FFCC dez. 65484
Vorbereitung keine
Fehler keine
Stapelbedarf 9
Register Akku, X-Register

Der Aufruf von CLRCHN erfolgt einfach durch JSR FFCC. 
Die Wirkung ist enorm: Mit einem Schlag werden alle Kanäle 
freigeräumt. Eingangskanälen wird ein UNTALK (dem Gerät 
wird gesagt: Halt den Mund), Ausgangskanälen ein UNLI­
STEN (das bedeutet soviel wie: Hör nicht mehr zu) übermit­
telt. Der Ausgangszustand stellt sich wieder her: Tastatur als 
Eingabe-Bildschirm als Ausgabegerät.

Die endgültig letzte Routine für diesmal ist CLOSE:

Name CLOSE
Zweck Schließen logischer Files
Adresse $FFC3 dez. 65475
Vorbereitungen logische Filenummer in Akku
Fehler 0
Stapelbedarf 2
Register Akku, X- und Y-Register

Bild 21. Die Abfolge der 
Routineaufrufe ►

Wenn für ein File alle Ein- 
und Ausgabeoperationen 
beendet sind, kann es - nach 
Einschreiben der Filenum­
mer in den Akku - mittels 
CLOSE ordnungsgemäß ge­
schlossen werden. Der Ein­
trag in der Filetabelle wird auf 
diese Weise gelöscht.

So, jetzt sind wir soweit, 
daß wir die Textausgabe auf 
dem Drucker programmieren 
können. Bild 21 faßt die ein­
zelnen Schritte nochmal zu­
sammen.

Und hier das Programm 
dazu. Wir verwenden die im 
anderen Beispiel schon auf­
gebaute Texttabelle weiter. 
Zunächst also SETNAM:

601C LDA #00
601E JSR FFBD
6021 BCS 6053

Wenn ein Fehler aufgetreten ist, findet man ein gesetztes 
Carry-Bit. In dem Fall wird verzweigt zu einem BRK- 
Kommando (was die Anwesenheit eines Monitors erforder­
lich macht, solange man sich noch nicht sicher ist, ob Fehler­
meldungen auftauchen). Die Null im Akku besagt, daß kein 
Filename gewünscht ist. Dann kommt SETLFS:

6023 LDA #04
6025 LDX #04
6027 LDY #FF
6029 JSR FFBA
602C BCS 6053

Es wurde ein File festgelegt mit der logischen Filenummer 
4, der Geräteadresse 4 und ohne Sekundäradresse. Jetzt 
geben wir das OPEN-Kommando:

602E JSR FFC0
6031 BCS 6053

Der Ausgabekanal wird definiert mit CHKOUT:

Damit wurde das File Nummer 4 geschlossen. Anschlie­
ßend erfolgte der Rücksprung aus dem Programm. Für die

6033 LDX #04
6035 JSR FFC9
6038 BCS 6053

Damit sind alle Vorbereitungen erledigt und die Zeichen­
ausgabe kann wie im ersten Programm durchgeführt werden
mitCHROUT:

603A LDY #00
603C LDA 6000,Y
603F BEQ 604A
6041 JSR FFD2
6044 BCS 6053
6046 INY
6047 JMP 603C

Alle Zeichen sind nun ausgedruckt. Wir rufen CLRCHN auf:
604A JSR FFCC

Als letzte Routine folgt nun noch CLOSE:
604D LDA #04
604F JSR FFC3
6052 RTS
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Fehlerbehandlung habe ich nur einen BRK vorgesehen, der 
sofortigen Registerüberblick erlaubt, wenn zum Beispiel der 
SMON im Speicher enthalten ist.

6053 BRK
Ohne Monitor im Speicher kann der Computer allerdings 

abstürzen oder im besten Fall einen Basic-Warmstart durch­
führen. Wenn Sie sowas also für Ihre Zwecke programmieren 
möchten, sollten Sie einen anderen Weg suchen, die Fehler 
aufzufangen. Man hat ja nicht immer einen Monitor 
eingeladen.

Mit diesen sieben Kernel-Routinen beenden wir dieses 
Kapitel. In der 64’er, Ausgabe 12/84 haben B. Schneider und 
K. Schramm in ihrer Serie »In die Geheimnisse der Floppy ein­
getaucht« gezeigt, wie man mittels der besprochenen Routi­
nen, und einiger anderer, auch die Diskettenstation anspre­
chen oder sogar Floppy und Drucker zum »Spooling« veran­
lassen kann. Das habe ich zwar schon öfter gesagt, muß es 
aber trotzdem immer wieder tun: Durch das Nachvollziehen 
fremder Programme kann man sehr viel lernen.

38 . Der C 64 und Fließkommazahlen

Inzwischen wissen Sie ja, daß alle Daten im Computer im 
Binärformat enthalten sind. Wie man eine normale, ganze Zahl 
zur binären umrechnet, wurde schon im Grafik-Kurs (64’er, 
Ausgaben 4 und 5 von 1984) gezeigt. Daaber viele Leser die­
ses Assemblerkurses die genannten Ausgaben nicht besit­
zen, soll doch nochmal vorgestellt werden, welcher Rechen­
weg der einfachste ist. Als Beispiel nehmen wir die Zahl 
1985. ManteiltdieseZahlsolangedurch2, bisdasErgebnis 
0 wird. Jedesmal notiert man sich den Rest, der entweder 0 
oder 1 sein kann:

1985 2 = 992 Rest 1
992 2 = 496 Rest 0
496 2 = 248 RestO
248 2 = 124 Rest 0
124 2 = 62 Rest 0
62 2 = 31 Rest 0
31 2 = 15 Rest 1
15 2 = 7 Rest 1
7 2 = 3 Rest 1
3 2 = 1 Rest1
1 2 = 0 Rest 1

Auch wenn Sie es noch nicht erkennen: Da steht schon das 
binäre Ergebnis. Von unten nach oben gelesen, ist das näm­
lich der Rest:

111 1100 0001
Nun reden wirja von Fließkommazahlen. Also verändern wir 
unser Beispiel noch etwas. Jetzt soll uns die Zahl 1985,125 
interessieren. In der Ausgabe 6/84 haben Sie gelernt, daß 
man das Komma verschieben kann, um daraus beispiels­
weise 1,985125x103 zu machen. Wir wollen uns das Ver­
schieben des Kommas aber für etwas später aufheben und 
zunächst einmal außer dem schon umgewandelten Vorkam- 
mateil nun auch den Nachkommateil, also die 0,125, ins Binär­
format übertragen.

Genauso, wie wir vorhin eine Kettendivision durch 2 ver­
wendet haben, gebrauchen wir nun eine Kettenmultiplikation 
mit 2. Der gesamte Nachkommateil wird dabei verdoppelt. 
Entweder ergibt sich dabei eine Vorkommastelle (das ist dann 
immer eine 1) oder das Ergebnis bleibt kleiner als 1. Wenn 
sich bei einem solchen Rechenschritt keine Vorkommastelle 
ergibt, schreibt man an die entsprechende Nachkommastelle 
der Binärzahl eine 0, andernfalls eine 1. Es wird solange ver­
doppelt, bis keine Nachkommastellen mehr zur Verfügung 
stehen. Das klingt ziemlich umständlich. Am besten sehen 
Sie sich das jetzt mal an unserem Beispiel an:

0,125 x 2 = 0,250 1. Nachkommastelle:0

Beim ersten Verdoppeln hat sich keine neue Vorkommastelle 
ergeben, deshalb ist die erste Nachkommastelle der Binär­
zahl eine Null.

0,25 x 2 = 0,5 2. Nachkommastelle:0
Auch beim zweiten Verdoppeln ermitteln wir keine neue Vor­
kommastelle, wodurch sich wieder eine Null als Nachkomma­
stelle ergibt.

0,5 x 2 = 1,0 3. Nachkommastelle:1
Hier hat sich nun eine Vorkommastelle beim Verdoppeln 
gebildet: Dahertauchtals3. NachkommastelleunsererBinär- 
zahl eine 1 auf. Gleichzeitig war das die letzte Nachkomma­
stelle, denn unsere Ausgangszahl weist nach dem Komma 
nun nur noch eine Null auf.

Zur Übung wollen wir noch eine andere Zahl mit Nachkom­
mastellen ins Binärformat überführen, nämlich 0,1.

0,1x2 = 0,2
0,2x2 = 0,4
0,4x2 = 0,8
0,8x2 = 1,6

1. Nachkommastelle:0
2. Nachkommastelle:0
3. Nachkommastelle:0
4. Nachkommastelle:1

Jetzt läßt man - das habe ich beim ersten Beispiel noch 
nicht erwähnt - diese neue Vorkommastelle einfach weg und 
rechnet wieder mit den Nachkommastellen weiter:

0,6x2 = 1,2
0,2x2 = 0,4
0,4x2 = 0,8
0,8x2 = 1,6
0,6x2 = 1,2

5. Nachkommastelle:1
6. Nachkommastelle:0
7. Nachkommastelle:0
8. Nachkommastelle:1
9. Nachkommastelle:1

Das kommt Ihnen sicherlich von der 5. Verdoppelung her 
bekannt vor. Es zeigt sich, daß diese Rechnung nie aufgeht, 
weil sich eine periodische Zahl ergibt:

0,000 1100 1100 1100...
Das kann Ihnen öfters bei der Zahlenumwandlung passie­

ren, daß ein endlicher Dezimalbruch in einen unendlichen 
periodischen Binärbruch übergeht. Kehren wir zurück zu 
unserem ersten Beispiel, 1985,125. Die ganze Umwandlung 
(Vorkomma- und Nachkommaanteil) führte zu:

111 1100 0001,001
Der dritte Schritt der Verwandlung von der Dezimalzahl zum 

Binärformat (nach 1.=Vorkommaanteil umwandeln, 2.= 
Nachkommaanteil umwandeln) ist das sogenannte Normali­
sieren. Das ist einfach das Verschieben des Kommas nach 
links (wie in unserem Beispiel) oder rechts, solange, bis vor 
dem Komma nur noch Nullen stehen und direkt hinter ihm eine 
1. In Kapitel 29 haben wir gelernt, daß fürjede Stelle, die das 
Komma nach links wandert, der Exponent um 1 höher wird. 
Unser Exponent ist im Moment noch Null (2° istja 1). Um also 
nach der Regel zu normalisieren, wird das Komma um 11 Stel­
len nach links verschoben. Der Exponent ist dann 11 (dez) und 
unsere Zahl erscheint im neuen Gewand:

0.1111 1000 0010 01 E +1011
E +1011 heißt dabei Exponent, und wird im Binärformat dar- 
gestellt(1O11 (bin.) ^ 11 (dez.)).Soweit,sogut.Allesbisher 
unternommene hat Allgemeingültigkeit. Von nun an aber müs­
sen wir uns spezialisieren auf den Commodore 64 (im VC 20 
und einigen anderen Computern ist es aber auch so). Der 
Exponent kann ja - je nach dem, ob das Komma nach links 
oder nach rechts zum Normalisieren verschoben wurde - 
positiv sein (wie bei unserem Beispiel) aber auch negativ. Im 
Commodore 64 wird zum Exponenten die Zahl 128 addiert. 
Das ist dann Schritt 4, der im Beispiel zu 139 führt, womit wir 
schon das Exponentenbyte fertig haben:

Exponent:dez.139 bin.1000 1011 hex.8B
Hätten wir einen negativen Exponenten erhalten, zum Bei­

spiel 20, dann stünde im Exponentenbyte nun dez.108, 
beziehungsweise dasselbe im Binärformat.

Der Rest unserer Zahl, also die Mantisse, wird nun Schritt 5 
unterzogen. Zunächst läßt man das Komma weg. Die Binär-
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zahl wird dann auf 4 Byte linksbündig aufgeteilt. In unserem 
Beispiel erhalten wir so:

1111 1000 0010 0100 0000 0000 0000 0000
Byte 1 Byte 2 Byte 3 Byte 4

Wie Sie sehen, werden die unbenutzten Bits mit Nullen auf­
gefüllt. Was nun noch nicht berücksichtigt wurde, ist das Vor­
zeichen der Mantisse. Es ist im Beispiel noch nicht zu erken- 
nen,obwir+1985,125oder-1985,125vorliegenhaben. Das 
gehen wir nun im letzten Schritt (Nummer 6) an. Im Commo­
dore 64 gibt es zwei Möglichkeiten der Speicherung von 
Fließkommazahlen. Für Schritt 6 muß man sich entscheiden, 
wo man die Zahl haben will.

In Kapitel 30 ist schon mal der FAC erwähnt worden, der 
Fließkomma-Akkumulator 1, welcher die Speicherstellen dez. 
97 bis 102 ($61 bis $66) belegt. Ein zweiter Fließkomma- 
Akkumulator, AFAC oder ARG genannt, belegt die Plätze dez. 
105 bis 110 ($69 bis $6E). Diese Akkumulatoren haben für 
die Fließkommarechnungen eine ähnliche Bedeutung wie 
der Akku für die 1-Byte-Rechnungen. Dort werden fast alle 
Ergebnisse abgelegt oder Zahlen abgerufen. Wir sehen, daß 
wir darin 6 Byte zur Verfügung haben. In Byte 97 liegt der 
Exponent in der von uns ermittelten Fbrm. Byte 98 bis 101 
sind die vier Mantissenbytes. Was ist in Byte 102? Das Vorzei­
chen! Bit 7 dieses Bytes ist 0, wenn eine positive, und 1 wenn 
eine negative Zahl vorliegt. Das galt für den FAC, wie Sie aus 
den Speicherstellen schon gesehen haben. Für den ARG ist 
das aber ganz genauso. Sehen wir uns nun in Bild 22 unsere 
Beispielzahl im FAC und im ARG nochmal an.

Im Bild ist auch angedeutet, daß die restlichen 7 Bit (Bits 0 
bis 6) des Vorzeichenbytes keine Rolle spielen. Sie werden 
später direkt in diese Akkumulatoren hineinsehen und allerlei 
Bit-Müll darin finden. Lediglich Bit 7 istfür uns von Bedeutung.

Eigentlich ist dasja eine ganz schöne Verschwendung, von 
einem Byte wie diesem Vorzeichenbyte lediglich ein einziges 
Bitzu nutzen. Wenn eine beliebige Fließkommazahl irgendwo 
im Computer abgespeichert wird, dann gilt ein anderes For­
mat, das MFLPT-Format (von Memory-FLoating PoiriT). Man 
speicherthiernurin 5 Byte. DasVorzeichenbytefälltweg. Wie 
aber merkt sich der Computer das Vorzeichen? Das ist ganz 
schlau eingefädelt: Es gibt nämlich in den 5 Byte (1 Exponen­
tenbyte + 4 Mantissenbyte) ein überflüssiges Bit. Siewerden 
sich sicher erstaunt fragen, wo?

Erinnern Sie sich doch bitte zurück an den Schritt 3, das 
Normalisieren. Dort wurde so verfahren, daß rechts vom 
Komma eine 1 steht. Wenn da aber immer und ganz grund­
sätzlich diese 1 steht, dann muß man sie sich eigentlich gar 
nicht mehr besonders merken. Man kann - vorausgesetzt, 
man berücksichtigt diese 1 im Bit 7 des ersten Mantissen- 
Bytes immer bei den Rechnungen - das Bit für andere 
Zwecke verwenden: Also als Vorzeichenbit. Taucht hier also 
eine 0 auf, dann liegt eine positive Zahl vor, ist es aber eine 1, 
dann signalisiert diese eine negative Zahl. Für das MFLPT- 
Format muß in unserem Beispiel also Bit 7 des ersten Mantis-

$
FAC dez.

61
97

62
98

63
99

64
100

65
101

66
102

69 6A 6B 6C 6D 6E
ARG dez. 105 106 107 108 109 110

Inhalt
Binär 10001011 1111 1000 0010 0100 0000 0000 0000
Hex. 8B F8 24 00 0000 0.......
Dez. 139 248 36 0 0
Byte Nr. 1 2 3 4 5 6
Erläute­
rung

Exponent Mantisse Vorzei­
chen

Bild 22.
So sieht die Zahl 1985,125 komplett im FAC und ARG aus

senbytes gelöscht werden (1985,125 istja nun mal positiv) 
und die komplette Zahl sieht im MFLPT-Format so aus:

10001011 
Byte1

Exponent

01111000 
I Byte2

M A

0010 0100 0000 0000 0000 0000
Byte 3 Byte 4 Byte 5

N T I S S E

Der Pfeil weist auf das Vorzeichenbit. Man spricht hier auch 
vom »gepackten« Format. Damit das alles nun nicht nur graue 
Theorie bleibt und Sie auch aus eigenem Erleben diese Zah­
lenformate sehen können, wollen wir hier ein kleines Testpro­
gramm ausprobieren. Es wird Ihnen auch später noch gute 
Dienste leisten können, wenn Siemal irgendwelche Zahlen in 
das FLPT- (also FAC oder ARG) oder ins MFLPT-Format 
umrechnen müssen. Zu Fuß ist dasja - wie Sie nun wissen - 
ganz schön haarig! Wie so oft, besteht auch dieses Pro­
gramm aus einem Basic-Teil, der die Benutzerführung über­
nimmt und zwei kleinen Maschinenroutinen, die per USR- 
Vektor angesprungen werden. In diesen Assembler-Pro­
grammteilen sind zwei Interpreter-Routinen verborgen, die 
sehr nützlich und daher erklärenswert sind. Als Bild 23 ist das 
Basic-Aufrufprogramm abgedruckt.

Es fragt zunächst mal, ob der SMON eingeladen ist. Der 
wird nämlich aus dem Programm heraus angesprungen. Wird 
die Frage mit »J« beantwortet, dann zeigt sich ein kleines 
Menü, andernfalls ist das Programm beendet: Der SMON muß 
erst eingeladen werden.
Das Menü bietet 3 Optionen: Eine Zahl kann im FAC (Option 
1), im ARG (Option 2) oder im MFLPT-Fbrmat ab Speicher­
stelle $6800 (Option 3) betrachtet werden.

Für Option 1 wird der USR-Vektor auf die Einsprung­
adresse des SMON gestellt und dann mittels USR-

5 REM*** TEST FUER FLPT UND MFLPT *** <162>
10 POKE 52,%:POKE 56,96sCLR:PRINT CHRt(14

7)CHR$(17)CHR*<17) <215>
15 PRINT"IST DER SMON EINGELADEN7'':INPUT"J

/N";A^:IF A4="N"THEN END <254>
20 PRINT CHR$<17)CHR$<17)"<3SPACEIFLPT IN

FAC"TAB(25)"1":PRINT <003>
30 PRINT"<3SPACE>FLPT IN ARG''TAB<25)"2":PR

INT <030>
40 PRINT"<3SPACE>MFLPT AB *6800"TAB(25>"3"

:PRINT:PRINT <077>
50 GET A$:IF A$<"l"OR A$>"3"THEN 50 <211>
60 PRINT”AUSWAHL",A$:PRINT:PRINT:INPUT"GEB

EN SIE EINE ZAHL EIN'';Z <107>
65 PRINT CHR$(147) <142>
70 ON VAL(A$>GOTO 100,200,300 <233>
100 REM***** FAC ***** <097>
110 POKE 785,0:POKE 786,192:REM USR-VEKTOR

© G4"er

AUF SMON = $C000 <091>
120 A=USRCZ) <205>
200 REM***** ARG ***** <213>
210 POKE 785,0:POKE 786,96sREM USR-VEKTOR 

AUF $6000 <011>
220 A=USR(Z) <049>
300 REM***** MFLPT ***** <227>
310 POKE 785,0:POK.E 786,97:REM USR-VEKTOR 

AUF $6100 <114>
320 A=USR(Z) <150>
400 REM********************************* <138>
410 REM NACH MELDUNG DES SMON MIT DEN <042>
420 REM KOMMANDOS <221>
430 REM (1) M 0061 <212>
440 REM (2) M 0069 <231>
450 REM (3) M 6800 <241>
460 REM DEN MONITOR EINSCHALTEN. DIE <137>
470 REM EINGEGEBENE ZAHL IST DANN ALS <148>
480 REM HEX-BYTES SICHTBAR. <135>
490 REM********************************* <228>

Bild 23. Testprogramm für die beiden kleinen Assembler- 
Routinen. Die Bedienung ist im Artikel erklärt.
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die Zahl Z in den FAC übergeben. Es schaltet sich dann der 
SMON ein, der nun mittels des Kommandos M 0061 den 
Inhalt des FAC als Hex-Zahlen zeigt.

Option 2 richtet zunächst den USR-Vektor auf ein kleines 
Assembler-Programm ab $6000, welches den FAC-Inhalt in 
den ARG schiebt, dann den USR-Vektor auf den SMON rich- 
tetund schließlich auch diesen einschaltet. Auch hier wird mit 
dem M-Kommando dann per M 0069 der ARG-Inhalt sicht­
bar. Option 3 richtet den USR-Vektor auf eine Maschinen­
routine, die bei $6100 beginnt. Dort wird der FAC-Inhalt nach 
$6800 und folgende Spei6herstellen verschoben und zwar 
ins MFLPT-Fbrmat. Anschließend erfolgt dann wieder das 
Ausrichten des USR-Vektors auf den SMON, Anschalten des 
SMON, wo man durch M 68000C den Inhalt ansehen kann. 
Folgende Vorgehensweise empfehle ich Ihnen:
1. Einladen des SMON
2. Eintippen der beiden kleinen Assembler-Routinen mit Hilfe 
des SMON und Speichern (man kann einfach mit dem 
SMON-Kommando S^Programmname-,6000610A spei­
chern).
2a. Wenn Sie die beiden Routinen schon gespeichert vorlie­
gen haben, dann laden Sie sie jetzt ein. Jedenfalls sollten Sie 
nach dem Laden beider Assembler-Programme (SMON und 
die beiden Routinen) ein NEW eingeben, so daß alle Zeiger 
zurückgestellt werden.
3. Erst jetzt Laden oder Eintippen des Basic-Aufrufprogram- 
mes.

Wenn Sie nun das Testprogramm starten und zum Beispiel 
unsere Zahl 1985,125 eingeben, werden Sie folgendes 
finden:

Option 1:
M0061
:0061 8B F8 24 00 00 78 00 00

Option 2:
M0069 
:0069 8B F8 24 00 00 78 D4 CE

Option 3:
M6800
:6800 8B 78 24 00 00 FF FF FF

Die Bytes, welche zu unserer Zahl gehören, sind unterstri­
chen. Sie können jeweils nach RUN/STOP noch mit dem 
SMON-Kommando $8B (oder eine andere Sie interessie­
rende Hexzahl) eine Ausgabe im Binär- und im Dezimalformat 
erreichen.

So, nun aber endlich zu den beiden Assembler-Routinen. 
Zur Option 2 gehört das folgende, bei $6000 beginnende 
Programm:

6000 JSR BCOC
$BCOC ist die erste Interpreter-Routine, die wir uns 

zunutze machen. Sie schiebt den lnhaltvom FAC in den ARG.
Mehr dazu später.

6003 LDA #00
6005 STA 0311
6008 LDA #C0
600A STA 0312

Damit haben wir den USR-Vektor auf $C000 gestellt. 
600D JMP C000

Das war das Einschalten des SMON. Im Grunde genommen 
könnten wir uns das Stellen des USR-Vektors ersparen.

Es ist aber sinnvoll - vor allem bei langen Programmen - 
wenn verstellte Vektoren nach Beendigung des Programmes 
auf einem definierten Wert stehen.

Nun noch die Routine für Option 3:
6100 LDX #00
6102 LDY #68
6104 JSR BBD4

Auch das ist wieder eine Interpreter-Routine: Sie schiebt 
den FAC-Inhalt in einen Speicherbereich, dessen Startbyte 
durch die beiden Index-Register angegeben wird (X-Register 
für LSB, Y-Register für MSB, hier also 6800). Dabei wird die 
Zahl vom FLPT-Format in das MFLPT-Format umgewandelt. 
Das Progrämmchen schließen wir ab mit einem Sprung zum 
Rest der ersten Routine:

6107 JMP 6003
Sehen Sie sich mal einige Zahlen im Fließkomma-Format 

an. Fast alle Operationen mit Zahlen vollführt unser Computer 
mit diesen Fließkommazahlen. Das ist dann beispielsweise 
der Grund dafür, daß aus einer Basic-Zeile wie der folgenden:

IF INT(X*10) = INT(ABS(X* 10))THEN ...
auch bei positiven X-Werten (wo man mathematisch Gleich­
heit feststellt) manchmal die Bedingung als nicht erfüllt 
erkannt wird. X wird sofort als Fließkommazahl in den FAC 
gelegt, mit einer Fließkomma-Zehn multipliziert, der ABS- 
Wert wird ebenfalls per Fließkomma-Arithmetik ermittelt und 
so weiter. Dabei treten häufig Rundungsprobleme auf, wenn 
ein Zwischenergebnis mehr als 32 signifikante binäre Nach­
kommastellen aufweist (wie wir es ja zum Beispiel beim perio­
dischen Binärbruch gesehen haben, der sich aus der simplen 
Dezimalzahl 0,1 ergibt). Das Rechnen mit Fließkommazahlen 
im Computer öffnet zwar einen ungeheuren Zahlenraum für 
unsere Anwendungen, es geht aber viel langsamer als die 
2-Byte-Arithmetik. Immerhin müssen hier jedesmal 6 Byte 
(beziehungsweise 5 bei MFLPT) berücksichtigt werden. Ich 
glaube aber kaum, daß wirjemals in die Verlegenheit kommen 
werden, beispielsweise eine Fließkomma-Addition program­
mieren zu müssen. Eben weil unser C 64 fast alle Zahlen­
operationen mit Fließkomma-Formaten durchführt, sind 
nahezu alle Eventualitäten schon als fertige abrufbare Pro­
gramme im Interpreter enthalten. Wir müssen nur wissen, wie 
unsere Zahlen aussehen (das haben Sie nun ja gelernt) und 
wo und wie man sie für Operationen bereithält und wo und wie 
man die entsprechenden Routinen finden kann. Einen der 
wichtigsten Wege, unsere Zahlen ans Maschinenprogramm 
zu übergeben, haben Sie schon kennengelernt: Das Argu­
ment der USR-Funktion landet automatisch im FLPT-Format 
im FAC.

39. Die beiden ersten 
I nterpreter-Routi ne n

Von nun an sollen nach und nach Interpreter-Routinen vorge­
stellt werden. Das ist allerdings nicht so einfach wie bei der 
Kernel-Sprungtabelle. Es gibt für die letzteren viele recht gut 
dokumentierte Listen. Für die Interpreter-Routinen ist kaum 
Literatur vorhanden. Will man die ähnlich erfassen wie die 
Kernel-Routinen, dann muß man ROM-Listings wälzen und 
vor allem probieren, probieren ... Falls Sie also mal einen Feh­
ler in der Beschreibung feststellen oder Dinge, die ich leer las­
sen muß, weil mir dazu die Erleuchtung noch nicht gekommen 
ist, selbst schon kennen, dann schreiben Sie mir. Gemeinsam 
haben wir vielleicht die Chance, auch die letzte im Interpreter 
versteckte Nuß noch zu knacken!

Nun also zur ersten schon verwendeten Routine:

Name MOVAF
Zweck Übertragen des FAC in den ARG
Adresse $BCOC, dez. 48140
Vorbereitung Wert in FAC
Speicherstellen $61-66FAC,$69-6EARG,

$6F, $70
Register Akku, X-Register
Stapelbedarf 4
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Diese Routine ist deswegen so wichtig, weil viele Rechen­
operationen, die zwei Zahlen verknüpfen, zwischen dem FAC 
und dem ARG abgewickelt werden. Wenn Sie unser kleines 
Testprogramm mal mit der Option 2 laufen lassen und hinter­
her nicht nur mit M0069 in den ARG, sondern auch mit 
M0061 in den FAC hineinsehen, dann stellen Sie fest, daß der 
FAC-Inhalt noch immer vorhanden ist.

Allerdings ist das nicht immer der Fall. MOVAF rundet näm­
lich - wenn nötig - vorher noch den FAC-Inhalt, der dann 
natürlich anders aussieht.

Fast noch häufiger benutzt man die zweite 
Interpreter-Routine:

Name 
Zweck

MOVMF
Übertragung von FAC in Speicher

Adresse

unter Umrechnung ins MFLPT- 
Format
$BBD4 dez. 48084

Vorbereitung Wert in FAC,

Speicherstellen

Zieladresse in X- und Y-Register 
(X = LSB, Y = MSB) 
$61-66 FAC, $70, $22, $23

Register Akku, X- und Y-Register
Stapelbedarf 4

Außer den unter »Speicherstellen« genannten sind natür­
lich auch noch die Zieladresse und deren vier nachfolgende 
Bytes in die Routine einbezogen (das MFLPT-Format besteht 
ja aus 5 Byte). $22/23 ist ein für die Operation verwendeter 
Zeiger.

MOVMF wird häufig dann verwendet, wenn Werte aus wel­
chen Gründen auch immer, außerhalb der Fließkomma-Akku­
mulatoren gelagert werden müssen.

Es wird Ihnen vielleicht aufgefallen sein, daß im Gegensatz 
zur Beschreibung der Kernel-Routinen - die Rubrik »Fehler« 
fehlt. Der Grund ist, daß es keine solchen Sicherungen bei 
den Interpreter-Routinen gibt. Was passieren kann, ist unter 
bestimmten Bedingungen das Ansteuern von normalen 
Basic-Fehlermeldungen, die aber nicht immer den tatsächli­
chen Zustand wiedergeben. Wenn Ihnen mal bei der Pro­
grammierung mit Interpreter-Routinen Zweifel aufkommen, 
dann verfolgen Sie lieber den Programmweg mittels eines 
ROM-Listings und schalten Sie eigene Fehler-Routinen ein. 
Das war aber nur für die Fortgeschrittenen gesagt. Wir wer­
den uns erst nach und nach dahin vortasten. Zunächst fehlen 
uns ja noch ein paar Assembler-Kenntnisse. Mit dem näch­
sten Abschnitt soll das besser werden.

40. Assembler-Befehle zum 
Beherrschen von Bits

Fangen wir also mit AND an. AND verknüpft den Akku-Inhalt 
Bit für Bit mit dem angegebenen Wert nach den Regeln der 
logischen UND-Verknüpfung. Die Adressiermöglichkeiten 
dieses Befehls sind allerlei:

AND 6000 absolut
ANDFE Zeropage absolut
AND #07 unmittelbar
AND 6000,X absolut-X-indiziert
AND 6000,Y absolut-Y-indiziert
AND (FA,X) indiziert-indirekt
AND (FB),Y indirekt-indiziert
AND FE,X Zeropage-absolut-X-indiziert

Damit haben wir eine ganze Menge an Möglichkeiten. Erin­
nern Sie sich noch an die Regeln einer UND-Verknüpfung? 
Wenn nicht, dann sehen Sie sich nochmal die Tabelle 12 an.

Sie erkennen, daß zwei miteinander AND-verknüpfte Bits 
nur dann als Ergebnis 1 haben, wenn in beiden Bits der Wert 
1 steht. Man kann mittels AND ganz gezielt Bits löschen. Neh­
men wir mal als Beispiel an, wir wollten geshiftete Zeichen 
(das sind die mit den Codes größer als 128) in normale Zei­
chen umwandeln. Dazu bringen wir die Zeichencodes in den 
Akku und löschen Bit 7. Übrig bleibt dann der Code für das 
ungeshiftete Zeichen. Für das Löschen von Bit 7 brauchen 
wir eine sogenannte UND-Maske, die dafür sorgt, daß alle 
anderen Bits unverändert bleiben. An den Stellen muß in die­
ser Maske also eine 1 stehen (denn 0 AND 1 ergibt 0,1 AND 
1 ergibt 1). Lediglich Bit 7 der Maske muß 0 sein. Die Maske 
muß also heißen:

0111 1111 $7F dez. 127
Nehmen wir an, im Akku befände sich der Code für ein ge- 

shiftetes A, also dez. 193 (binär 1100 0001, $C1), dann 
ergibt die AND-Verknüpfung mit der Maske:

Akku 1100 0001 ShiftA
Maske 0111 1111
AND ____________________________
JetztimAkku 0100 0001

Normales A (Code dez. 65, $41)

Man kann also, je nach Wahl der Maske, beliebige Bits 
löschen.

AND ist, je nach der gewählten Adressierungsart, ein 2- 
oder 3-Byte-Befehl. Weil das Ergebnis im Akku steht, können 
Flaggen beeinflußt werden. Die N- und die Z-Flagge reagieren 
auf das Ergebnis.

Im Gegensatz zu Basic, wo es nur eine ODER-Verknüpfung 
gibt, nämlich OR, existieren im Assembler zwei davon. Man 
unterscheidet ein »inklusives« und ein »exklusives« ODER. 
Die inklusive ODER-Verknüpfung des Akku mit den angege­
benen Daten geschieht mit dem Assembler-Befehl ORA. 
ORA entspricht dem Basic-Befehl OR. Alle Adressierungs­
arten, die dem AND-Befehl offenstehen, können auch auf 
ORA angewendet werden. Wenn man Bits ORA-verknüpft, 
findet man folgende Ergebnisse:

0 ORA 0 = 0
OORA 1 = 1
1 ORA 0 = 1
1 ORA 1 = 1

Auch hier ist eine sogenannte Wahrheitstabelle recht ein­
prägsam (sieheTabelle 13).

Während man mit AND gezielt Bits löschen kann, ist es mit 
ORA möglich, Bits zu setzen. Auch dazu verwendet man eine 
Maske, die an allen Stellen, an denen Bits unverändert bleiben 
sollen, eine0, sonstabereine 1 enthält. Nehmenwirnochmal 
das Beispiel von vorhin und wandeln nun das ungeshiftete 
Zeichen in ein geshiftetes um. Wir müssen also Bit 7 wieder 
setzen: Da muß in der Maske dann eine 1 stehen. Alle ande­
ren Bits bleiben unverändert, wenn die Maske dort eine Null 
aufweist. Die Maske muß daher heißen:

1000 0000 $80 dez. 128
lm Akku soll das ungeshiftete B stehen (Code dez. 66, 

$42, bin. 0100 0010). Die Rechnung sieht dann so aus:

Akku
Maske

ORA
Jetzt im Akku

0100
1000

0010 CodefürB 
0000

1100 0010

AND 0 1 ORA 0 1
Ö Ö ~ö Ö Ö

1 ö 1 1

Tabelle 12. Wahrheitstabel­ Tabelle 13. Wahrheitstabel­
le zur AND-Verknüpfung le zur ORA-Verknüpfung
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Code für geshiftetes B.
Je nach Art der Maske kann man also ein oder mehrere Bits 

setzen. Im Beispiel ist auch der Einfluß dieses Befehls auf die 
Flaggen zu erkennen. Der Akku-Inhalt vor der ORA-Operation 
hatte kein Bit 7, also keine gesetzte N-Flagge. Danach ist Bit 
7 gesetzt und die N-Flagge zeigt eine 1. Außer der N-Flagge 
kann - ebenso wie beim AND-Befehl - auch noch die 
Z-Flagge reagieren. ORA istje nach Adressierungsart ein 2- 
oder 3-Byte-Befehl.

Während zwei Bit in der ORA-Verknüpfung eine 1 ergeben, 
wenn sie beide gesetzt sind oder eines von beiden, schließt 
die EOR-Verknüpfung den ersten Fall aus. EOR ist die exklu­
sive ODER-Verknüpfung. Sie läßt sich sprachlich erfassen im 
»entweder... oder...«, also beispielsweise: Beim Roulette fällt 
die Kugel entweder auf Rouge oder auf Noir, beides zusam­
men ist nicht möglich. Die Regeln bei EOR sind also:

0 EOR 0 = 0
0 EOR1=1
1 EOR 0 = 1
1 EOR1 = 0

Eine Wahrheitstabelle dazu sehen Sie in Tabelle 14.
Wozu verwendet man EOR? Es fällt Ihnen vielleicht auf, daß 

wir die aus Basic bekannte NOT-Funktion nicht in Assembler 
vorliegen haben. Obwohl EOR einige viel weitergehendere 
Verwendungsmöglichkeiten aufweist als NOT (aber auf Boo­
lesche Algebra wollen wir hier nicht eingehen), kann man es 
mit gleicher Wirkung einsetzen. Wir haben beispielsweise in 
den ersten Kapiteln negative Zahlen durch Komplementieren 
erzeugt. Dabei sollte jedes Bit in sein Gegenteil verkehrt wer­
den. Das wäre die Aufgabe einer NOT-Funktion. Durch ein 
EOR FF können wir dasselbe erreichen. Sehen wir uns wie­
der ein Beispiel an. Im Akku steht dez. 15 ($0F, bin. 0000 
1111):

Akku 0000 1111
Maske 1111 1111 =$FF

EOR ____________________________
JetztimAkku 1111 0000

Einerkomplementvon dez. 15.
Auch EOR kann alle Adressierungsarten verkraften, die die 

beiden anderen logischen Assembler-Befehle erlauben. Je 
nach der gewählten Art liegt dann ein 2- oder 3-Byte-Befehl 
vor. Auch hier werden die Z- und die N-Flagge beeinflußt.

Das waren also die logischen Befehle. Leider ist hier nicht 
der geeignete Ort, die Vielseitigkeit, die damit möglich ist, 
deutlich zu machen. Wenn Sie sich dafür interessieren, soll­
ten Sie mal etwas über Boolesche Algebra lesen oder eine 
Einführung in die mathematische Logik.

Um dieses Thema abzuschließen, soll noch erwähnt wer­
den, daß der Basic-Interpreter so eingerichtet ist, daß er 
immer dann, wenn die Richtigkeit einer Aussage zu überprü­
fen ist, mit -1 antwortet bei wahrer Aussage, dagegen mit 0 bei 
falscher. Auf diese Weise kommen diese merkwürdigen 
Basic-Programmzeilen ins rechte Licht, in denen Sequenzen 
auftauchen wie:
C=A-161-33*(A< 255)-64*(A < 192)-32*(A <160) + 
32*(A < 96)-64*(A < 64).

Jedesmal, wenn zum Beispiel A < 64 ist, tritt anstelle der 
Klammer ein -1 auf. Übrigens ist diese Formel eine schöne 
kurze Möglichkeit, ASCII-Code (hier A als Variable) in den 
Bildschirmcode umzurechnen (der Bildschirmcode steht 
dann in der Variablen C).

Tabelle 14.
Wahrheitstabelle zur
EOR-Verknüpfung

EOR 0 1

0 Ö 1
1 i Ö

Bit Bit Bit Bit Bit Bit Bit Bit
Carry-Bit 7 6 5 4 3 2 . 1 0

Bild 24. Wirkung des ASL-Befehls: Arithmetisches Links­
schieben

Kommen wir nun zur zweiten Gruppe von Assembler- 
Befehlen, die Bit-Manipulationen erlauben: den 
Verschiebe-Befehlen. Fangen wir dabei mit ASLan, was vom 
englischen »Arithmetic Shift Left« kommt. Zu deutsch heißt 
das dann »arithmetisches nach links schieben«. Davon sind 
wir aber auch noch nicht schlauer. Sehen wir uns an, was die­
ser Befehl tut (Bild 24).

Der gesamte Inhalt des Akku beziehungsweise der Spei­
cherstelle (je nach Adressierung) wird um eine Bit-Position 
nach links verschoben. Das vorherige Bit 7 wandert in die 
Carry-Flagge, alle anderen Bits erhalten eine um 1 höhere 
Position, das freigewordene Bit 0 wird mit einer 0 aufgefüllt. 
Toll! Aber was soll das? Zur Erklärung machen wir nochmal 
einen kurzen Ausflug zu unserem normalen dezimalen Zah­
lensystem. Nehmen wir mal die Zahl 123. Bei der Einführung 
in die Fließkommazahlen haben wir gelernt das Komma zu 
verschieben. 123 istja dasselbe wie 123,00. Wenn wir das 
Komma um eine Stelle nach rechts verschieben, erhalten wir 
1230,0 (dabei lassen wir jetzt mal den Exponenten außer 
acht, derwäreja-1, weil 123,00 = 1230,0x10-1). Man kann 
das Ganze auch andersherum sehen: Wir haben die Zahl 123 
eine Stelle nach links verschoben und die freigewordene 
Stelle ganz rechts mit einer Null aufgefüllt. 1230,0 ist das 
Zehnfache von 123,00. Die Verschiebung um eine Stelle 
nach links hat also zur Multiplikation unserer Zahl mit der Basis 
unseres Zahlensystems (also 10) geführt. Eine zweimalige 
Linksverschiebung führt zu 12300, den 1OOfachen Wert 
unserer Ausgangszahl. Wir haben also die Zahl 123,00 mal 
10 mal 10 genommen, das sind 10-2. Jede Linksverschie­
bung erhöht unseren Ausgangswert um eine Zehnerpotenz, 
oder - anders ausgedrückt - erhöht den Multiplikator um eine 
Zehnerpotenz und deshalb natürlich auch das Ergebnis (ein­
mal linksschieben: Multiplikator = 10 =10-4, zweimal links­
schieben: Multiplikator: 100 = 10'2 undsoweiter).

Im Binärsystem, zu dem wir nun wieder zurückkehren, ist 
die Zahlenbasis die Zahl 2. Einmal Linksschieben entspricht 
dann einer Multiplikation mit 2-1 = 2. Das zweimalige Links­
schieben führt zur Multiplikation mit 2-2=4 und so weiter. 
Nehmen wir als Beispiel die Zahl 3, welche im Binärsystem 
0000 0011 heißt:

1.ASL führtzu 0000 0110 = dez.6 (2^3=2x3 = 6)
2. ASL 0000 1100 = dez. 12 (2x6= 12, 22x3=4x3=12)
3.ASL 0001 1000 = dez.24 (2x12 = 24, 23x3=8x3=24)
4.ASL 0011 0000 = dez. 48 (2x24=48, 24x3=16x3 = 48)
5.ASL 0110 0000 = dez. 96 (2x48=96, 25x3=32x3=96)
6.ASL 1100 0000 = dez. 192 (2x96 = 192, 26x3 = 63x3 + 192)

Bisjetzt landete im Carry-Bit immer eine Null. Wenn wir nun 
nochmallinksschieben, finden wirdarineine 1, dieoffensicht- 
lich als Bit 8 unseres Ergebnisses dienen muß:

7 . ASL (1) 1000 0000 = (mit Carry als Bit 8) dez. 384 
(2x192 = 384, 2 7x3= 128x3=384

Daraus folgt, daß immer dann, wenn man sich nicht hundert­
prozentig sicher ist, eine Abfrage des Carry-Bits erfolgen 
sollte, sofern man ASL zum Rechnen einsetzt (BCC bezie­
hungsweise BCS bieten sich da an). Dazu kommen wir noch. 
Sehen wir uns zunächst mal an, wie ASL adressierbar ist:

ASL
ohne Adresse, der Akkuinhalt wird nach links verschoben.
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Manchmal als eigene Adressierungsart bezeichnet.
ASL 6000 absolut
ASL FE Zeropage-absolut
ASL 6000,X absolut-X-indiziert
ASL FA,X Zeropage-absolut-X-indiziert

Je nach Adressierung tritt ASL dann als 1-, 2- oder 3-Byte- 
Befehl auf. Die N-, die Z- und die Carry-Flagge werden beein­
flußt. Das Ergebnis steht bei der ersten Adressierungsart 
(also ASL ohne Adresse) im Akku. In den anderen Fällen fin­
det man es in der jeweiligen Speicherstelle.

Nun gut, werden Sie sagen, man kann also mittels ASL Zah­
len mit 2, 4, 8,16 32 etc- multiplizieren. Was aber, wenn man 
mal 40 nehmen will? Da gibt es einige Möglichkeiten, die ein 
bißchen den Erfindungsgeist ansprechen. Man kannja, wenn 
irgendeine Zahl Z mal 40 gerechnet werden soll, dafür 
schreiben:

40*Z=(32+8)*Z=32*Z+8*Z
Schon haben wir wieder Multiplikatoren, die den Einsatz 

von ASL ermöglichen. Die beiden Zwischenergebnisse (als 
32xZ und 8xZ) speichern wir irgendwo ab und zählen sie 
dann zusammen. Wenn Z zum Beispiel 3 wäre, könnte man 
das so programmieren:

6000 STA 6100
Dabei sollte im Akku Z also die 3 stehen, die wir nun 

zwischengespeichert haben.
6003 ASL
6004 ASL
6005 ASL
6006 ASL
6007 ASL

Jetzt liegt im Akku der 32fache Wert von 3, also 96 vor und 
wir speichern dieses Zwischenergebnis ab.

6008 STA 6101
600B LDA 6100

Wir haben nun den Wert 3 aus dem Zwischenspeicher 
$6100 wieder in den Akku geholt und schieben ihn 3mal nach 
links um den 8fachen Wert zu erhalten.

600E ASL
600F ASL
6010 ASL

Nun erfolgt das Zusammenzählen beider Zwischenergeb­
nisse. Dabei istja 8xZ noch im Akku.

6011 CLC
6012 ADC 6101

Damit ist die Aufgabe gelöst. Das Ergebnis steht im Akku 
und kann nun weiter verwendet werden.

Auf diese Weise kann man immer einen Mulitplikator in eine 
Zweierpotenz (2, 4, 8,16,...) und weitere Summanden zerle­
gen. Dies ist allerdings eine zwar schnelle, aber doch recht 
eingeschränkte Art der Multiplikation. Außerdem haben Sie 
noch nicht erfahren, wohin man denn nun am besten mit BCC 
verzweigt, wenn die 8 Bit des Ergebnisses überlaufen.

Abschließend finden Sie in Tabelle 15 noch alles Wissens­
werte zu den neuen Befehlen.

41. Die restlichen Bit-Verschiebe- 
Operationen

Da wäre zunächst einmal das Gegenstückzu ASL. Dort ging 
es ja um das nach links schieben. Jetzt schieben wir nach 
rechts. LSR heißt der dazu nötige Befehl. Das kommt von

»logical shift right« und heißt zu deutsch »logisches Rechts­
schieben«. Fragen Sie mich bitte nicht, weshalb »logisches«. 
Jedenfalls ist LSR ebenso für logische Bitprüfungen geeignet 
wie ASL.

Mittels LSR wird jedes Bit der adressierten Speicherstelle 
um einen Platz nach rechts geschoben. An die Stelle des 
Bit 7 tritt eine Null und Bit 0 wandert in das Carry-Bit (siehe 
Bild 25).

Erinnern Sie sich noch an das dezimale Linksschieben mit 
ASL? Wir hatten festgestellt, daß jedes Linksschieben einer 
Dezimalzahl einer Multiplikation mit 10 entspricht. Hier im 
umgekehrten Fall, also beim Rechtsschieben, mußjedes LSR 
einer Division durch 10 entsprechen:

25000 wird durch LSR 2500
2500 zu ” 250

250 ” 25

und so weiter

Geht man von der Ausgangszahl (25000) aus, dann ergibt 
sich der erste rechts verschobene Wert durch Division mit

der 2. durch
der 3. durch

10'=10 
102=100 
103=1000, etc.

Es wird also durch Potenzen der Zahlenbasis 10 geteilt. 
Haben wir es - wie im Computer - mit Binärzahlen zu tun, 
deren Basis die 2 ist, dann teilen wir mitjedem LSR durch 2. 
Je nachdem, wie oft hintereinander das LSR auf eine Zahl 
ausgeübt wird, teiltman dann durch 21=2, 22=4, 23=8, etc.

Be­ Adressierung Byte­ Code Takt- Beein­
fehls­
wort

zahl Hex Dez zy- 
klen

flus­
sung 
von 
Flag­
gen

AND absolut 3 2D 45 4 N,Z
O-page-abs 2 25 37 3 N,Z
unmittelbar 2 29 41 2 N,Z
abs.-X-indiz. 3 3D 61 4 * N,Z
abs.-Y-indiz. 3 39 57 4 * N,Z
indiz.-indir. 2 21 33 6 N,Z
indir.-indiz. 2 31 49 5 * N,Z
O-page-X-indiz 2 35 53 4 N,Z

ORA absolut 3 0D 13 4 N,Z
O-page-abs. 2 05 05 3 N,Z
unmittelbar 2 09 09 2 N,Z
abs.-X-indiz. 3 1D 29 4 * N,Z
abs.-Y-indiz. 3 19 25 4 * N,Z
indiz.-indir. 2 01 01 6 N,Z
indir.-indiz. 2 11 17 5 * N,Z
O-page-X-indiz 2 15 21 4 N,Z

EOR absolut 3 4D 77 4 N,Z
O-page abs. 2 45 69 3 N,Z
unmittelbar 2 49 73 2 N,Z
abs.-X-indiz. 3 5D 93 4 * N,Z
abs.-Y-indiz. 3 59 89 4 * N,Z
indiz.-indir. 2 41 65 6 N,Z
indir.-indiz. 2 51 81 5 * N,Z
O-page-X-indiz 2 55 85 4 N,Z

ASL »Akkumulator« 1 0A 10 2 N,Z,C
absolut 3 0E 14 6 N,Z, C
O-page-abs. 2 06 06 5 N, Z,C
abs.-X-indiz. 3 1E 30 7 N, Z,C
O-page-X-indiz 2 16 22 6 N, Z,C

* bedeutet: Bei seitenüberschreitenden Indizierungen muß noch ein Taktzyklus 
dazugerechnet werden.

Tabelle 15. Alles Wissenswerte der neuen Assembler- 
Befehle
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Das konnte man sich alles ja schon vorstellen, nachdem ASL 
zur Multiplikation verwendet wurde. Auch hier muß man immer 
das Carry-Bit abfragen, denn die Division kann ja unter 
Umständen nicht aufgehen, wie das folgende Beispiel der 
Division von 3 durch 2 zeigt:

(3) 0000 0011 ergibt durch LSR: 0000 0001 und 1 im 
Carry-Bit. Das Ergebnis istschon richtig, nämlich 1. Im Carry 
steht der Rest dieser Division, die 1. Weil der Rest für manche 
Berechnungen von Bedeutung ist, muß das Carry-Bit irgend­
wie erfaßt werden. Wie man das erreicht, lernen wir später 
noch. Leider ist diese Art der Division mittels LSR nicht so ein­
fach verwendbar wie die Multiplikation mittels ASL. Während 
man dort durch geschicktes Aufteilen des Faktors ASL auch 
bei anderen Multiplikatoren als reine Zweierpotenzen anwen­
den konnte, ist das hier nicht so ohne weiteres möglich. Bei 
Divisionen geht man deshalb lieber andere Wege. Die zeige 
ich Ihnen ebenfalls etwas später.

LSR kann auf die gleiche Weise adressiert werden wie ASL:

LSR
LSR 6000
LSR FE
LSR 6000,X
LSR FA,X

auf den Akku bezogen 
absolut
Zeropage-absolut 
absolut-X-indiziert 
Zeropage-absolut-X-indiziert

lm ersten Fall steht das Ergebnis im Akku, in den anderen 
Fällen in derjeweils adressierten Speicherstelle. Außer der N- 
Flagge, die in jedem Fall 0 wird, beeinflußt LSR auch die Carry- 
Flagge und unter Umständen dieZ-Flagge. Je nach Adressie­
rungsart liegt LSR als 1-Byte-, 2-Byte- oder 3-Byte-Befehl 
vor.

Sowohl bei ASL als auch bei LSR hatten wir festgestellt, daß 
man herausgeschobene Bits, falls sie noch von Bedeutung 
sind, irgendwie aus dem Carry-Bit (dort sind sie ja gelandet) 
an einen sinnvollen Ort schaffen muß. Das ist natürlich mög­
lich über eine Befehlskette, in der zunächst das Carry-Bit 
abgefragt wird: 
zum Beispiel:

6000 BCC 6007
6002 LDA#01
6004 STA 8000
6007 etc.

Wenn das Carry-Bit frei ist, wird alles weitere übersprun­
gen. Wenn da drin etwas aufgetaucht ist, lädt man eine 1 (die 
ist ja im Carry-Bit) an die benötigte Speicherstelle (hier zum 
Beispiel 8000). Das kostet aber einige Bytes Speicherplatz 
und einige Taktzeiten Rechendauer. Außerdem erschwert 
sich die Programmierung, wenn man eine Zahl öfter ver­
schiebt und dann nach 8000 alle Carry-Inhalte packen will. 
So kompliziert brauchen wir auch gar nicht zu arbeiten, denn 
unsere CPU kennt zwei Befehle, die das Bit-Verschieben und 
das Carry-Verschieben für uns machen. Das sind:

ROL rotate left Linksrotieren
ROR rotate right Rechtsrotieren

desCarry-Bit(wohlgemerktderlnhalt, derdortwar, bevordort 
Bit7hineingeschoben wurde). Bevorwiraufden praktischen 
Nährwert dieses Befehls eingehen, sollen erstmal die Adres­
sierungsmöglichkeiten aufgeführt werden:

absolut-X-indiziert

ROL auf den Akku bezogen
ROL 6000 absolut
ROL FE Zeropageabsolut
ROL 6000,X absolut-X-indiziert
ROL FE,X Zeropage-

Je nach Adressierung kann es sich dann wieder um einen 
1-Byte- bis 3-Byte-Befehl handeln. Die N-, Z- und natürlich die 
Carry-Flagge sind beeinflußt und das Ergebnis des Befehls 
ist im Akku zu finden (erste Adressierungsart) oder in der 
angesprochenen Speicherstelle.

Wozu das Ganze? Abgesehen von der Möglichkeit, ein­
zelne Bits auf diese Weise ohne Verlust aus einem Byte durch 
das Carry-Bit herausschieben zu können, um sie Prüfungen 
zu unterziehen, gibt es noch die Möglichkeit, einen Überlauf 
bei Rechenoperationen aufzufangen. Erinnern Sie sich an 
Kap. 40, wo wir mittels ASL Multiplikationen durchgeführt hat­
ten? Dort kann es unter gewissen Umständen ja leicht 
geschehen, daß ein Byte für das Ergebnis nicht mehr aus­
reicht. Wir haben in den Beispielen schon die Überlegung 
durchgeführt, daß man mittels BCC oder BCS prüfen sollte, 
ob man eine signifikante Stelle (also eine führende 1)aus dem 
Byte herausgeschoben hat. Ist das der Fall, dann gibt es zwei 
Wege:
1) Man veranlaßt den Ausdruck eines OVERFLOW ERROR, 
wenn nur 1-Byte-Zahlen zulässig sind, oder
2) man schaltet um auf 2-Byte-Zahlen.

Sehen wir uns das mal an dem Schritt 7 des Beispiels aus 
Kapitel 40 an. Dort hatten wir die Zahl 192 (binär 1100 0000) 
vorliegen (zum Beispiel in Speicherstelle 7000). Im Compu­
terwerden 2-Byte-lntegers in der Form LSB/MSBverarbeitet. 
Wir schaffen also die Speicherstelle für das MSB von 192 in 
7001. Jetzt muß dort noch 0 drin stehen. Um bei nochmaliger 
Multiplikation mit 2 eine 16-Bit-Zahl als Ergebnis zu erhalten, 
verfährt man wie folgt:

6000 ASL 7000 Damit ist die führende 1 ins Carry- 
Bit gewandert

6003 BCC 6008 Das setzt man natürlich nur dann 
ein, wenn man nicht genau weiß, 
welches Ergebnis zu erwarten ist. 
Wenn keine 1 ins Carry-Bit 
gelangte, kann man die nächste 
Zeile überspringen.

6005 ROL 7001 Damit wurde der Inhalt des Carry- 
Bit als Bit 0 ins MSB unseres 
Ergebnisses geschoben.

6008 etc.
Die Funktion dieser Befehlssequenz können Sie aus Bild 

27 entnehmen.
Sehen wir uns zunächst mal ROL (Bild 26) an:
Wie bei ASLwandertjedes Bit um eine Position nach links. 

Das Bit 7 wird dabei in das Carry-Bit verschoben. In Bit 0 
gelangt aber hier nicht eine 0 (wie bei ASL), sondern der Inhalt

7 6 5 4 3 2 1 0 Carry

0----- ♦ -♦ -------------- ►

Bild 25. Wirkung von LSR auf ein Byte
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Diesem Befehl werden wir später bei der 16-Bit-Multiplika- 
tion und Division noch häufig begegnen.

Sehen wir uns nun noch den letzten der Bit-Verschiebebe­
fehle an: ROR. In Bild 28 ist schematisch gezeigt, wie rotiert 
wird.

Jedes Bit wandert, wie bei LSR, um eine Stelle nach rechts. 
Als Bit 7 kommt (im Gegensatz zu LSR) der Inhalt des Carry- 
Bit herein. Bit 0 wird ins Carry-Bit geschoben. Adressiert wer­
den kann ROR ebenso wie ROL:

ROR auf den Akku bezogen
ROR 6000 absolut
ROR FE Zeropage-absolut
ROR 6000,X absolut-X-indiziert
ROR FE,X Zeropage-absolut-X-indiziert

Auch für die Byteanzahl, den Ort des Ergebnisses und die 
Flaggenbeanspruchung gilt dasselbe wie für ROL.

Die Einsatzmöglichkeiten für ROR sind allerdings geringer. 
Bei 16-Bit-Divisionen kann man zwar ROR einsetzen, um 
einen Unterlauf des MSB ins LSB aufzufangen. Weil man aber 
meist ohnehin andere Divisionsverfahren verwendet als das 
oben gezeigte mit LSR, erübrigt sich diese Anwendung in den 
meisten Fällen. Gut kann man ROR zu Bitprüfungen einset­
zen. Das soll im nächsten Abschnitt an einem kleinen Beispiel 
gezeigt werden.

Zuvor aber noch eine Bemerkung: Wir sind nun durch den 
Befehlssatz des 6502-Assemblers fast hindurchgedrungen. 
Es fehlen uns nur noch - wenn ich mich nicht versehen habe 
- vier Befehle. Die allerdings hängen eng mit dem sogenann­
ten lnterrupthandling zusammen, das uns wohl einige Zeit 
beschäftigen wird.

42. Schneller Joystick

Vor einiger Zeit (64’er, Ausgabe 2/85) veröffentlichte R 
Siepen eine Routine zur Abfrage des Joystickports, die eine 
interessanteLeserbrief-Reaktion hervorrief. M. Hartig sandte 
nämlich einen Verbesserungsvorschlag, in dem der uns inter­
essierende Befehl ROR die Hauptrolle spielt. Bevor ich die 
allerdings vorstelle, muß erst noch geklärt werden, was und 
wie abgefragt wird.

Wenn keine dieser Möglichkeiten angesprochen ist, ent­
halten diese Bits den Wert 1. Drückt man beispielsweise den 
Feuerknopf, dann wechselt der Inhalt von Bit 4 zum Wert 0. 
Man muß also ständig diese Bits überprüfen und reagieren, 
sobald eines davon 0 wird. Die Lösung von R Siepen, diese 
Abfrage in das Interruptprogramm einzubauen, ist sehr 
brauchbar. Dadurch hat der Computer die Möglichkeit, trotz­
dem an anderen Aufgaben weiterzuarbeiten. Wir werden in 
den nächsten Folgen auf diese Programmiertechnik einge­
hen. Die Verbesserung von M. Hartig besteht darin, daß er 
nicht durch CMP-Befehle den Inhalt von DC00 prüft (was Zeit 
und auch Speicherplatz kostet), sondern mittels ROR Bit für 
Bit nach rechts in das Carry-Bit schiebt und dieses dann mit 
BCC abfragt. Sobald die Carry-Flagge nämlich frei ist, ist die 
zu dem Bit gehörige Joystickfunktion gefragt.

Nun die Abfrageroutine:

LDA DC00 
ROR

BCC Oben

ROR

BCC Unten

ROR
BCC Links
ROR
BCC Rechts
ROR

BCC Fire

Inhalt des DATA-Port A in den Akku 
Durch Rechtsrotieren wird Bit 0 in die 
Carry-Flagge geschoben.
Wenn die Carry-Flagge nicht gesetzt 
ist, war Bit 0 eine Null, also die Joy­
stickfunktion »Oben« gefordert, zu 
deren Bearbeitung hier verzweigt wer­
den kann.
Das nächste Rechtsrotieren schiebt 
Bit 1 in die Carry-Flagge.
Auch hier wieder Abzweigen zur Bear­
beitung von »Unten«, wenn Bit 1 nicht 
gesetzt war.
Bit 2 ins Carry-Bit 
und bearbeiten, wenn nicht gesetzt 
Bit 3 in Carry-Flagge 
und verzweigen wenn Bit 3 Null war 
zu guter Letzt kommt noch Bit 4 ins 
Carry-Bit 
und kann bearbeitet werden, wenn es 
Null war.

... weitere Bearbeitung, wenn keine Joystickfunktion

Der Vorteil dieser nur 18 Byte langen Unterroutine liegt in 
ihrer Schnelligkeit: Sie braucht nur 24 Taktzyklen, wenn nicht

Signale vom Joystick landen in den DATA-Ports A oder B des 
CIA 1. CIA heißt »Complex Interface Adapter« und ist die Insti­
tution unseres Computers, die den Verkehr mit der Außenwelt 
erlaubt. Wir haben zwei Stück davon (CIA 1 und CIA 2). Je 
nachdem, in welchen Port der Joystick gesteckt wurde, lau­
fen die Signale in den Registern DC00 oder DC01 (dezimal 
56320 oder 56321) ein. Wir nehmen im weiteren mal DC00 
an. Die Bits 0 bis 4 beziehen sich auf den Joystick:

Bit 0 oben
Bit 1 unten
Bit 2 links
Bit 3 rechts
Bit 4 Feuerknopf
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verzweigt wird, beziehungsweise 25, wenn verzweigt wird. 
Natürlich wäre anstelle von ROR auch die Verwendung von 
LSR möglich gewesen, denn die herausgeschobenen Bits 
werden nicht mehr benötigt lm Falle, daß man nach einer 
solchen Abfrage wieder den Ausgangszustand des Akku 
oder der Speicherstelle herstellen will, muß man eine ent­
sprechende Anzahl ROR-Anweisungen anschließen, bis Bit 0 
wieder in seine Ausgangslage rotiert ist.

43. Die 16-Bit-Multiplikation Bild 29. Die Interpreterroutine UMULT

Name 
Zweck 
Adresse 
Vorbereitungen

UMULT
Multiplikation zweier 16-Bit-Zahlen
$B357 dez.45911
Faktor 1 in $28/29
Faktor 2 in $71/72

Speicherstellen $28/29,$71/72, $5D
Register Akku, X- und Y-Register
Stapelbedarf keiner

Wir haben bisher gelernt, wie man 8-Bit-Zahlen miteinander 
malnehmen kann um 8- oder 16-Bit-Zahlen zu erhalten. Dabei 
ist unbefriedigend, daß man sich über jede Zahl Gedanken 
machen muß, wie man sie am besten multipliziert. Was fehlt, 
ist ein allgemein gültiges Programm, das in der Lage ist, jede 
Zahlenkombination (solange essich um 2-Byte-lntegers han­
delt und das Ergebnis als 16-Bit-Zahl darstellbar ist) zu verar­
beiten. Und da haben wir mal wieder Glück: Gut versteckt 
befindetsich so etwas bereits fertig in unserem Computer. Ab 
dez. 45900 ($B34C) liegt im Interpreter solch eine Routine 
und ihr Einsprungspunkt ist für uns bei dez. 45911 ($B357). 
Bevor wir aber detailliert darauf eingehen, soll noch das Prin­
zip erklärt werden, das dabei genutzt wird.

Jeden Tag rechnen Sie wahrscheinlich völlig automatisch 
Multiplikationsaufgaben, ohne noch Gedanken daran zu ver­
schwenden, wieviel Schweiß das Erlernen dieserTechnikfrü- 
her mal gekostet hat. Könnten Sie heute noch jemandem 
genau erklären, warum man da was wie macht? Genau das 
müssen wir aber tun, damit der Binärautomat (unser C 64) 
multiplizieren lernt. Nehmen wir mal eine Multiplikation von 
16x15:

16x15
16
80

240

Daß wir nicht so genau wissen, was wir da tun, liegt am 
ziemlich komplizierten Zehnersystem. Damit das alles einfa­
cher und überschaubarer wird, wechseln wir mal ins Binärsy­
stem: 16 = 10000, 15 = 1111.
Die Aufgabe sieht dann so aus:

10000 * 1111
10000
10000
10000
10000

11110000

Jetzt wird schon deutlicher, was wir getan haben. Der Fak­
tor auf der rechten Seite wurde vom MSB an Bit für Bit durch­
gesehen. Jedesmal, wenn wir auf eine 1 gestoßen sind (hier 
waren nur Einsen), haben wir den links stehenden Faktor 
notiert. Dabei sind wir von mal zu mal um eine Stelle nach 
rechts gerückt, was mit dem Stellenwert des im rechten Fak­
tor gerade betrachteten Bits zu tun hat. Das geschah so 
lange, bis alle Bits des rechten Faktors durchgearbeitet 
waren. Die sich auf diese Weise ergebende Kolonne wird 
dann addiert und führt zum Ergebnis. Vergleichen Sie, 240 ist 
wirklichbinär1111 0000.

Genauso wie hier beschrieben, arbeitet das Multiplika­
tionsprogramm. Ein Unterschied tritt auf, nämlich daß nicht 
bis zum Schluß mit der Addition gewartet, sondern jede neue 
Zwischenzahl sofort addiert wird. Bild 29 zeigt die Beschrei­
bung der Interpreterroutine:

Addition von 
40/41 zu x/y

(93) = (93) - 1

OUT OF 
MEMORY 

ERROR

Bild 30. Flußdiagramm zur Betriebssystemroutine 
UMULT Faktor 2:113/114

Faktor 1:40/41 Ergebnis: X/Y
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Bild 31. UMULT am Beispiel der Multiplikation 321x65=20865

114 113 Y X A 93 c
I 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 — Ausgangslage

a 0 0 0 0 0 0 0 0 —
b 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0
d ----------- ► 0 0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 ◄----------- 0
g 1 0 0 0 0 0 1 0 0
h 0 0 0 0 0 0 0 0 0 Ende 1.
i 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 Schleife

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 l,o Ende 2. Schleife
in 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Ende 3. Schleife
IV 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 Ende 4. Schleife
v 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 Ende 5. Schleife
VI 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 Ende 6. Schleife
VII 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 Ende 7. Schleife
VIII 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1,0 Ende 8. Schleife
IX 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 Ende 9. Schleife
X 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 l,o Ende 10. Schleife
XI 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 Ende 11. Schleife
XII 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 l,o Ende 12. Schleife
XIII 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 Ende 13. Schleife
XIV 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 Ende 14. Schleife
XV 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 Ende 15. Schleife
XVIa, 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

b, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 l,o Ende 16. Schleife

Diese Routine hier abzudrucken, wäre reine Platzver­
schwendung. Schalten Sie einfach den SMON ein und verlan­
gen Sie von ihm ein Disassemblerlisting ab B357. Dort haben 
Sie dann für die weitere Besprechung alles parat. In Bild 30 
finden Sie noch ein Flußdiagramm der UMULT-Routine.

Das Ergebnis der Multiplikation befindet sich in LSB/MSB- 
Form in den X/Y-Registern. Programm und Flußdiagramm wol­
len wir an einem Beispiel nachspielen. Dazu sollen die beiden 
Zahlen321 und65(binär0000 0001 0100 0001 und0100 
0001) miteinander multipliziert werden, was bekanntlich 
20865 (binär 0101 0001 1000 0001) ergibt. Was Ihnen im 
Bild 31 als undurchdringlicher Bit-Dschungel entgegen­
strahlt, ist das schrittweise Verfolgen des Programms im 
Computerformat, also binär.

In Bild 31 sind die Speicheradressen alle dezimal angege­
ben. Dort finden Sie zunächst die Ausgangslage. In Speicher­
stelle 40/41 steht die ganze Operation über unverändert die 
Zahl 321. In 113/114 finden Sie (wegen des LSB/MSB- 
Fbrmates umgedreht als 114/113) unseren Faktor 65. Akku 
und Speicherstelle 93 stehen auf 16, dem Bitzähler. In das X- 
und Y-Register wurde eine Null eingelesen. Im Flußdiagramm 
ist diese Situation mit einer 1 gekennzeichnet. Ganz unten im 
Diagramm sehen Sie, daß der Bitzähler 93 erniedrigt und 
danach geprüft wird, ob er schon gleich Null sei. Daraus folgt, 
daß die große Schleife 16mal durchlaufen wird. Den ersten 
Durchlauf (gekennzeichnet durch kleine Buchstaben) verfol­
gen wir im einzelnen.
a) X-Register wird zur Bearbeitung in den Akku geschoben, 
b) Mittels ASL wird das Bit 7 in die Carry-Flagge geschoben, 
was einen Carry-Inhalt von 0 bewirkt.
c) Der solchermaßen bearbeitete Akku-Inhalt (der sich hier 
nicht weiter verändert hat) geht wieder zurück ins X-Register. 
d) Nun ist das Y-Register zur Bearbeitung dran. Es gelangt in 
den Akku.
e) Mittels ROL wandert nun das MSB des X-Registers aus 
dem Carry-Bit in die O-Bit-Position des Akku
f) und alles zusammen wieder ins Y-Register. Insgesamt wird 
dadurch die 16-Bit-Zahl im X/Y-Register um eine Stellenzahl 
erhöht, was der Vorbereitung zur Addition dient. (Erinnern Sie 
sich bitte: Die Kolonne der Einzelergebnisse wird ja addiert). 
Im Diagramm (ohne Buchstabenkennzeichnung) schließt 
sich hier noch eine Prüfung auf einen eventuellen Überlauf 
an, der dann mit einer Fehlermeldung beantwortet wird.
g) Nun wird das MSB der Speicherstelle 113 nach links ins 
Carry geschoben. Das ist auch hier noch eine Null.
h) Anschließend wandert dieser Carry-Inhalt als Bit 0 in Spei-

cherstelle 114. Bit7 von 114 
landet dafür im Carry. Auch 
hier wird auf diese Weise die 
ganze 16-Bit-Zahl 113/114 
um ein Bit nach links gescho­
ben und im nächsten Schritt 
- im Flußdiagramm wieder 
ohne Buchstabe - geprüft, 
ob da eine 1 oder eine 0 ins 
Carry-Bit geshiftet wurde. 
Wenn lediglich eine Null auf­
trat - wie hier -, dann springt 
das Programm sofort zum 
Herabzählen des Bitzählers 
93. Trittabereine 1 auf, dann 
addiert sich der Inhalt von 
40/41 zu X/Y.
i) Hier wird der Zustand der 
betroffenen Speicherstellen 
und Register nach dem 
ersten Schleifendurchlauf 
gezeigt.

Römisch II bis XVI zeigen 
nun jeweils den Zustand 
nach dem 2. bis 16. Durchar­
beiten der großen Schleife.

Bild 32. Flußdiagramm 
des Programms zur 
16-Bit-Division

A B = C + Rest 
57/58 59/5a 57/58 5c/5d

,5000 A2 00 LDX #00
,5002 86 5C STX 5C
,5004 86 5D STX 5D
,5006 A0 10 LDY #10
,5008 06 57 ASL 57
,500A 26 58 ROL 58
,500C 26 5C ROL 5C
,500E 26 5D ROL 5D
,5010 38 SEC
,5011 A5 5C LDA 5C
,5013 E5 59 SBC 59
,5015 AA TAX
,5016 A5 5D LDA 5D
,5018 E5 5A SBC 5A
,501A 90 06 BCC 5022
,501C 86 5C STX 5C
,501E 85 5D STA 5D
,5020 E6 57 INC 57
,5022 88 DEV
,5023 D0 E3 BNE 5008
,5025 60 RTS

Programm 1.
Die 16-Bit-Division
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58 57 5A 59 5D 5C A X Y c

I a 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 — Ausgangslage n. Init.
b 0 0 0 0 0 1 1 0 1 1. Linksschieben
c 1 0 1 0 0 0 1 1 0 2. Linksschieben
d, e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3./4. Linksschieben
f 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1, 0 Ende der 1. Schleife

II 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1, 0, 1, 0 Ende der 2. Schleife
III 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1,0 Endeder 3.Schleife
IV 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1, 0, 1, 0 Ende der 4. Schleife
V 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1,0 Endeder 5.Schleife
VI 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1,0 Endeder 6.Schleife
VII 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1, 0, 1, 0 Ende der 7. Schleife
VIII 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 l,l,0,l,0 Endeder 8.Schleife
IX 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 l,0,l,0 Endeder 9.Schleife
X a 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1, 0, 1, 1

b 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 Ende der 10. Schleife
XI 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1, 0 Ende der 11. Schleife
XII 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1,0 Endederl2.Schleife
XIII 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1,0 Endederl3.Schleife
XIV 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1,0 Endederl4.Schleife
XV 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0- 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1, 0, 1, 0 Ende der 15. Schleife
XVIa, 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 l,l,0,l,l

b, 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Ende der 16. Schleife
= Endlage

Bild 33.16-Bit-Division Schritt für Schritt am Beispiel 20867:3

Wenn Sie verstehen möchten, was da passiert, sollten Sie 
versuchen, Bild 31 nur als Kontrolle zu verwenden und 
ansonsten mal selbst alle Schritte nachzuvollziehen.

44.16-Bit-Division

Beim umgekehrten Weg, nämlich der Teilung von zwei 
16-Bit-Zahlen, haben wirnichtsoviel Glück: Ich konnte keine 
derartige Routine im Interpreter entdecken. Nun gibt es aber 
fast in jedem Lehrbuch der Maschinensprache die Vorstel­
lung eines solchen Programms, so daß man sich das schön­
ste aussuchen kann. Das Prinzip ist auch da dasselbe, wie wir 
es von der normalen Division gewohnt sind: Der Divisor wird 
Schritt für Schritt vom Dividenden abgezogen. In der Literatur 
[1] fand ich eine sehr kurze Routine, die ich Ihnen leicht modifi­
ziert als Programm 1 vorstellen will.

In Bild 32 ist ein Flußdiagramm dieser Routine gezeigt und 
in Bild 33 lacht Ihnen wieder das Bit-Gewirr entgegen, das Sie 
schon von der Multiplikation her kennen, hier aber für die 
Division.

Damit Sie wissen, wo was hinein- oder herauskommt:

A : B = C + Rest
t t t t

$57/58 $59/5A $57/58 $5C/5D

An dem folgenden Beispiel soll der Programmverlauf gete- 
stetwerden: Wirteilen 20867 durch321. Dabei kommtnach 
Adam Riese heraus: 65, Rest 2.

In folgender Weise wird in die Speicherzellen die Aufgabe 
eingespeist:

20867 $57
$58

1000
0101

0011
0001

LSB 
MSB

321 $59 0100 0001 LSB
$5A 0000 0001 MSB

Ergebnis findet man dann:
65 $57 0100 0001 LSB

$58 0000 0000 MSB
Rest2 $5C 0000 0010 LSB

$5D 0000 0000 MSB

Als Bit-Zähler dient hier das Y-Register.
b) Erstes Linksschieben des LSB mittels ASL Dabei gelangt 
die 1 in das Carry-Bit.
c) Hineinrotieren der 1 aus dem Carry in das MSB mittels 
ROL.
d), e) Linksrotieren der 16-Bit-Zahl in $5C/5D, diejetztnoch 0 
ist.
f) Situation am Ende der ersten Schleife. Der Bitzähler ist um
1 reduziert.

Im folgenden wird dann jeweils die Situation am Ende der 
Schleife gezeigt. Beim Berechnen der Differenz muß jeweils 
darauf geachtet werden, daß die Subtraktion einer Zahl als 
Addition des Zweierkomplements ausgeführt wird. Das 
habenwirinKap. 11 und14kennengelernt.Allerdingsmußan 
dieser Stelle nochmal gesagt werden, daß die 1, die zum Ei­
nerkomplement hinzuaddiert wird, um das Zweierkomple­
ment zu erhalten, das gesetzte Carry-Bit ist. Nun dürfte es für 
Sie eigentlich keine Probleme mehr geben, was das Nach­
vollziehen der Divisionsroutine betrifft.

Damitdürfen wirgetrostdie 16-Bit-Arithmetikabschließen. 
Alle vier Grundrechnungsarten können Sie jetzt programmie­
ren. Weitere Rechenarten, wie Potenzieren, das Ziehen von 
Wurzeln, Logarithmen etc. bedingen ohnehin, daß die Argu­
mente oder Ergebnisse keine Integerzahlen sind. Hier wer­
den wir dann mit Fließkommaarithmetikarbeiten und den dazu 
vorgesehenen Interpreterroutinen.

1 REM ********************************* <250>
2 REM * * <229>
3 REM * PROGRAMM 2 * <125>
4 REM * * <231>
5 REM * ERSTELLEN UND AUFRUF EINES * <186>
6 REM * HILFSBILDSCHIRMES * <216>
7 REM * * <234>
8 REM * HEIMO PONNATH HAMBURG 1985 * <082>
9 REM *********************************
10 PRINT CHR$C147):P0KE 785,0:POKE 786,96:

<002>

GOTO 30 <095>
15 REM------------------UP CURSOR SETZEN---------------- <112>
20 POKE 211,SP:P0KE 214,Z:SYS 58640:RETURN <163>
25 REM- ERSTELLEN DES HILFSBILDSCHIRMES-
30 Z=l:SP=l:GOSUB 20:PRINT"***************

<123>

***********************"
40 Z=21:SP=l:G0SUB 20:PRINT"**************

<151>

************************" 
50 Z=10:SP=7:GOSUB 20:PRINT"TEST FUER DIE

<211>

VERSCHIEBUNG" <110>
55 REM --------  AUFRUF ZUM VERSCHIEBEN --------- <033>
60 A=USR(DUMMY) <195>
65 REM ------ BILDSCHIRM NEU BESCHREIBEN------ <193>
70 GET A$:IF A$=""THEN 70 
80 PRINT CHR$(147):Z=2:SP=2:G0SUB 20:PRINT

<122>

"JETZT SOLLTE DER ALTE BILDSCHIRM" 
90 Z=4:SP=2:G0SUB 20:PRINT"UNTER DAS KERNA

<092>

L-ROM GESCHOBEN SEIN" <150>
100 PRINT:PRINT:PRINT" — JEDER<2SPACE>USR 

-AUFRUF HOLT DEN —" <003>
110 PRINT" — HILFSBILDSCHIRM WIEDER .<3SP 

ACE)—" <068>
120 PRINT" — AUCH IM DIREKT-M0DUS<7SPACE> 

<056> 
130 PRINT:PRINT:PRINT"<2SPACE>PR0BIEREN SI 

E MAL: A=USR(1) [RETURN1" <050>
140 Z=19:SP=0:GOSUB 20:END <164>

© 64'er

Programm 2. Das Demo-Programm zur neuen 
Verschieberoutine. Vorher müssen Programm 3 und 
Programm 4 geladen werden.
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45. Das Programmprojekt wird fortgeführt

lm Kap. 32 haben wir ein Projekt gestartet, das dort eine 
Kopfzeile rückholbar unter den oberen ROM-Bereich ver­
schob. Unser Wissen ist seither gestiegen und damit auch 
unsere Ansprüche. Eine Kopfzeile reicht nicht mehr, jetzt soll 
es ein ganzer Hilfsbildschirm sein, den wir erst in aller Ruhe 
erstellen wollen, um ihn dann jederzeit abrufbar unter das 
Betriebssystem zu packen. Den Aufruf wollen wir wieder mit 
der USR-Funktion steuern. Diesmal soll aber so programmiert 
werden, daß der Hilfsbildschirm erhalten bleibt und man ihn 
also mehrfach einblenden kann. Über die Nützlichkeit einer 
solchen Routine braucht man sicherlich nicht viele Worte zu 
verlieren: Denken Sie da nur mal an Programme, die irgend­
welche Tasten mit besonderen Funktionen belegen, für die 
Sie eine Gedächtnisstütze brauchen, oder...

Als Programm 2 ist ein kleines Demo-Programm abge­
druckt, welches zuerst einen Bildschirm erstellt, dann die 
Routine »Verschieben« aufruft, den Bildschirm löscht und neu 
beschreibt und schließlich mit einem weiteren USR den alten 
Bildschirm einblendet (vorher Programm 3 und 4 laden).

Von nun an können Sie immer - auch im Direktmodus - 
durch ein USR-Kommando diesen Bildschirm abbilden. Zum 
Programm in Kap. 32 sind noch zwei Dinge zu bemerken, die 
hier geändert werden sollen. Erstens eine Frage: Ist Ihnen der 
Computer mal abgestürzt beim Aufruf des Programms? Die

, 6000 A9 00 LDA #00 ,6021 A9 E8 LDA #E8
,6002 85 5F STA 5F , 6023 85 5A STA 5A
, 6004 A9 04 LDA #04 ,6025 A9 DB LDA #DB
,6006 85 60 STA 60 , 6027 85 5B STA 5B
,6008 A9 E8 LDA #E8 ,6029 A9 Dl LDA #D1
,600A 85 5A STA 5A ,602B 85 58 STA 58
,600C 85 58 STA 58 ,602D A9 E7 LDA #E7
,600E A9 07 LDA #07 ,602F 85 59 STA 59
,6010 85 5B STA 5B ,6031 20 BF A3 JSR A3BF
,6012 A9 E3 LDA #E3 , 6034 A9 40 LDA #40
,6014 85 59 STA 59 , 6036 8D 11 03 STA 0311
,6016 20 BF A3 JSR A3BF , 6039 A9 60 LDA #60
,6019 A9 00 LDA #00 ,603B 8D 12 03 STA 0312
,601B 85 5F STA 5F , 603E 60 RTS
,601D A9 D8 LDA #D8 ——
,601F 85 60 STA 60

Programm 3. Erster Teil der Verschieberoutine

,603F EA NOP
,6040 A9 00 LDA #00
,6042 85 5F STA 5F
,6044 A9 E0 LDA #E0
,6046 85 60 STA 60
,6048 A9 E8 LDA #E8
,604A 85 5A STA 5A
,604C 85 58 STA 58
,604E A9 E3 LDA #E3
,6050 85 5B STA 5B
,6052 A9 07 LDA #07
,6054 85 59 STA 59
,6056 20 77 60 JSR 6077
,6059 A9 E9 LDA #E9
,605B 85 5F STA 5F
,605D A9 E3 LDA #E3
,605F 85 60 STA 60
,6061 A9 Dl LDA #D1
,6063 85 5A STA 5A
,6065 A9 E7 LDA #E7
,6067 85 5B STA 5B
,6069 A9 E8 LDA #E8
,606B 85 58 STA 58
,606D A9 DB LDA #DB
,606F 85 59 STA 59
,6071 20 77 60 JSR 6077
,6074 60 RTS

,6075 EA NOP
,6076 EA NOP
,6077 78 SEI
,6078 A5 01 LDA 01
,607A 48 PHA
,607B A9 35 LDA #35
,607D 85 01 STA 01
,607F 38 SEC
,6080 A5 5A LDA 5A
,6082 E5 5F SBC 5F

Programm 4. Zweiter Teil d(

,6084 85 22 STA 22
,6086 A8 TAY
,6087 A5 5B LDA 5B
,6089 E5 60 SBC 60
,608B AA TAX
,608C E8 INX
,608D 98 TYA
,608E F0 23 BEQ 60B3
,6090 A5 5A LDA 5A
,6092 38 SEC
,6093 E5 22 SBC 22
,6095 85 5A STA 5A
,6097 B0 03 BCS 609C
,6099 C6 5B DEC 5B
,609B 38 SEC
,609C A5 58 LDA 58
,609E E5 22 SBC 22
,60A0 85 58 STA 58
,60A2 B0 08 BCS 60AC
,60A4 C6 59 DEC 59
,60A6 90 04 BCC 60AC
,60A8 Bl 5A LDA (5A),Y
,60AA 91 58 STA (58),Y
,60AC 88 DEY
,60AD D0 F9 BNE 60A8
,60AF Bl 5A LDA (5A),Y
,60B1 91 58 STA (58),Y
,60B3 C6 5B DEC 5B
,60B5 C6 59 DEC 59
,60B7 CA DEX
,60B8 D0 F2 BNE 60AC
,60BA 68 PLA
,60BB 85 01 STA 01
,60BD 58 CLI
,60BE 60 RTS

w Verschieberoutine

Wahrscheinlichkeit dafür ist ungefähr 1 : 60, wenn nämlich 
ein Interrupt stattfindet, während die Speicherstelle 1 geän­
dert wird. Obwohl wir erst in den nächsten Kapiteln auf Inter­
rupts eingehen werden, wollen wir die Wahrscheinlichkeit für 
so einen Absturz auf Null reduzieren. Eine andere Sache ist 
der Ort, an dem sich das Programm befand. Es hat sich näm­
lich herausgestellt, daß anscheinend die Nutzung dieses dort 
gewählten Speicherbereichs nicht ganz so problemlos ist. 
Bei einigen Anrufen wurde mir erzählt, daß zumindest der 
Anfang ab $02A7 bei bestimmten Konstellationen über­
schrieben wird. Deswegen packen wir unser Programm ganz 
unkonventionell nach $6000, von wo Sie es - das beherr­
schen Sie ja mit dem SMON inzwischen sicher - dorthin 
schieben können, wo es Ihnen gefällt. Allerdings müssen 
dann auch die USR-Adressen geändert werden. Aber auch 
das dürfte für Sie inzwischen kein Problem mehr sein.

Um diese immerhin schon 2 000 Byte (1 000 für den Bild­
schirm und nochmal 1 000 für das Farb-RAM) zu verschie­
ben, bedienen wir uns einer Interpreter-Routine, die seit Aus­
gabe 3/85 des 64’er auch beim Checksummer verwendet 
wird - der Blockverschiebe-Routine (Bild 34).

Bild 34. BLTUC

Name BLTUC
Zweck Verschieben von Speicherinhalten im 

Speicher
Adresse $A3BFdez. 41919
Vorbereitungen Quelle Startadresse nach $5F/60

Endadresse+1 nach$5A/5B
Ziel Endadresse+1nach$58/59

Speicherstellen $58-5B, $5F, $60, $22
Register Akku, X- und Y-Register
Stapelbedarf keiner

Wieder besteht unser Programm aus zwei Teilen. Im ersten 
wird der aktuelle Bildschirm nach oben geschoben. Dieser 
Teil speist lediglich zuerst die Adressen des Bildschirms und 
des Betriebssystem-ROM in die Abholspeicherstellen der 
danach aufgerufenen Routine BLTUC und wiederholt diesen 
Vorgang für die Bildschirmfarbspeicheradressen. Danach 
verstellen wir noch den USR-Vektor und kehren mit RTS ins 
Basic-Programm zurück (siehe Programm 3).

KomplexeristderzweiteTeil. Um nämlich die Informationen 
unter dem ROM lesen zu können, muß dieses ausgeschaltet 
werden. Leider läßt sich das Betriebssystem-ROM nur 
zusammen mitdem Basic-Interpreterausschalten. $A3BFist 
aber eine Interpreter-Routine! Da bleibt uns nichts anderes 
übrig, als diese Routine in unser Programm einzubauen, was 
uns die Gelegenheit gibt, sie uns mal etwas anzusehen. Als 
Bild 35 ist sie im Flußdiagramm abgebildet.

Programm 4 zeigt den zweiten Teil unseres Hilfsbildschirm- 
Programms.

Von $6040 an, wohin wir am Ende des ersten Teils den 
USR-Vektorgerichtethaben, wirdzunächstwiederQuell- und 
Zielbereich in den Abholspeicherstellen spezifiziert und 
jeweils danach zuerst für den Bildschirm, dann für das Farb­
RAM, das übernommene Unterprogramm angesprungen. Ab 
$6077 liegt dann das modifizierte Unterprogramm. Die 
Befehle SEI und CLI gehören zu den wenigen, die Sie erst 
noch kennenlernen. Sie sind es, die die Absturzwahrschein- 
lichkeitauf Null bringen. Jedenfalls wird zuerst das ROM aus- 
und dafür das RAM eingeschaltet. Ab $607F bis $60B9 
befindet sich die Interpreter-Routine BLTUC. Darin wird 
zunächst die Länge des zu verschiebenden Bereichs berech­
net, dann festgestellt, ob nur ganze Pages (Seiten) oderauch 
ein Restbereich verschoben werden soll. Falls ein solcher 
Restbereich vorhanden ist, wird auch seine Länge berechnet 
und zuerst dieser verschoben. Daran schließt sich das Ver-
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(das ist ein unbedingter Sprung, weil 
Carry hier immer 0 ist)

Bild 35.
Flußdiagramm zur 
Betriebsroutine BLTUC

schieben der ganzen Pages an. Das X- und das Y-Register 
dienen dabei als Zähler.

Ab $60BB schließt sich wieder unsere eigene Routine an, 
in der wir die ROMs wieder einschalten. Auf diese Weise las­
sen sich noch mehrere Hilfsbildschirme unter ROM-Bereiche 
packen. Vielleicht überlegen Sie sich mal dazu einen Weg?

46. Die ROM-Bereiche als Datenquelle

Startadresse Format Zahl

$AEA8 MFLPT Pi
$B1A5 MFLPT -32768
$B9BC MFLPT 1
$B9C1 1-Byte-lnteger 3
$B9C2 MFLPT 0.434255942
$B9C7 MFLPT 0.576584541
$B9CC MFLPT 0.961800759
$B9D1 MFLPT 2.88539007
$B9D6 MFLPT 0.707106781 = SQR(1/2)
$B9DB MFLPT 1.41421356 = SQR(2)
$B9E0 MFLPT -0.5
$B9E5 MFLPT 0.693147181 = 1n2
$BAF9 MFLPT 10
$BDB3 MFLPT 99 999 999.9
$BDB8 MFLPT 999999999
$BDBD MFLPT 1000000000
$BF11 MFLPT 0.5
$BF16 4-Byte-lnteger -100000000
$BF1A — — 10000000
$BF1E — — -1 000 000
$BF22 — — 100000
$BF26 — — —10000
$BF2A — — 1000
$BF2E — — -100
$BF32 — ’ — 10
$BF36 — — -1
$BF3A — — -2160000
$BF3E — ” — 216000
$BF42 —36000
$BF46 — ” — 3600
$BF4A — — -600
$BF4E — ” — 60
$BFBF MFLPT 1.44269504 = 1/1n2
$BFC4 1-Byte-lnteger 7
$BFC5 MFLPT 2.14987637E-05
$BFCA MFLPT 1.43523140E-04
$BFCF MFLPT 1.34226348E-03
$BFD4 MFLPT 9.61401701E-03
$BFD9 MFLPT 0.0555051269
$BFDE MFLPT 0.240226385
$BFE3 MFLPT 0.693147186 = 1n2
$BFE8 MFLPT 1
$E08D MFLPT 11 879 546
$E092 MFLPT 3.92767774E-08
$E2EO MFLPT 1.57079633 = Pi/2
$E2E5 MFLPT 6.28318531 = 2*Pi
$E2EA MFLPT 0.25
$E2EF 1-Byte-lnteger 5
$E2F0 MFLPT -14.3813907
$E2F5 MFLPT 42.0077971
$E2FA MFLPT —76.7041703
$E2FF MFLPT 81.6052237
$E304 MFLPT -41.3417021
$E309 MFLPT 6.28318531 = 2*Pi
$E33E 1-Byte-lnteger 11
$E33F MFLPT —6.8473912E—04
$E344 MFLPT 4.85094216E—03
$E349 MFLPT —0.0161117018
$E34E MFLPT 0.034209638
$E353 MFLPT —0.0542791328
$E358 MFLPT 0.0724571965
$E35D MFLPT —0.0898023954
$E362 MFLPT 0.110932413
$E367 MFLPT —0.142839808
$E36C MFLPT 0.19999912
$E371 MFLPT -0.333333316
$E376 MFLPT 1
$E3BA MFLPT 0.811635157
$E8DA-$E8E9 1-Byte-lntegers Tabelle der Farbcodes
$EB81-$EBC1 — — Tastaturdecodierung:

Einzelne Tasten

$EBC2-$EC02 1-Byte-lntegers Tasten mit Shift
$EC03-$EC43 1-Byte-lntegers Tasten mit Commodore-Taste
$EC78-$ECB8 1-Byte-lntegers Tasten mit Control-Taste
$ECB9-$ECE5 1-Byte-lntegers VIC-ll-Chip-Registerwerte
$ECF0-$ED08 1-Byte-lntegers Tabelle der LSBs der Bildschirm-

Anfangsadressen

Tabelle 16. Im ROM stehen nicht nur Programme, 
sondern auch Tabellen, hier einige wichtige Zahlen.

Die ROM-Bereiche enthalten nicht nur ausgeklügelte 
Maschinenprogramme, sondern auch eine Menge Daten. 
Sollten Sie mal in die Verlegenheit kommen, beispielsweise 
die Zahl Pi im MFLPT-Fbrmat verwenden zu müssen, dann 
erfordert das einen ganz schönen Aufwand an Rechen- und 
Programmarbeit, oder Sie möchten bestimmte Texte wie bei-

spielsweise eine Fehlermeldung verfügbar halten ... und so 
weiter. Viele von diesen Daten sind schon in der Firmware 
enthalten und wirwerden im folgenden festhalten, wo sie sich 
befinden und welches Format man vorfindet. Sehen wir uns 
zunächst Zahlen an (Tabelle 16): Es existieren noch weitere 
Zahlentabellen in den ROM-Bereichen, die aber selten von 
Interesse sind. Ebenso wie Zahlen, findet man auch Texte im 
ROM als ASCII—Werte abgelegt (Tabelle 17)
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Sollten Sie mal in die Verlegenheit kommen, solche Texte aus­
geben zu wollen, dann legen Sie sie nicht nochmal in einer 
eigenen Texttabelle ab, sondern schöpfen Sie aus dem Fun­
dus, den wir im ROM-Bereich fix und fertig haben.

Nun noch die Tabelle 18 mit den neuen Assembler- 
Befehlen.

[1] »Computerspiele und Wissenswertes Commodore 64«, Haar bei München: Markt& 
Technik Verlag, 1984. Das ist die von R Lücke besorgte Übersetzung des amerikani­
schen Buches »More on the sixtyfour« und ist jedem Assembler-Programmierer zu 
empfehlen.

$A004 CBMBASIC
$A09E-$A19D Texte der Basic-Befehlsworte

(im letzten Byte istjeweils Bit 7 gesetzt)
$A19E-$A327 Texte der Basic-Fehler- und System-Meldungen. (Im 

letzten Byte istjeweils Bit 7 gesetzt)
$A364-$A38A Weitere System-Meldungen: OK, ERROR, IN, 

READY, BREAK. (Das letzte Byte istjeweils 0)
$ACFC-$AD1D Fehlermeldungstexte für INPUT: ?EXTRA IGNORED, 

?REDO FROM START. (Das letzte Byte istjeweils 0)
$E460 BASIC BYTES FREE
$E473 * * * * COMMODORE 64 BASIC V2 * * * * 

64K-RAM-System
$ECE6 LOAD (Return) RUN (Return)
$F0BD-$F12B Texte für Ein- und Ausgabe-Operationen
$FD10 CBM80

Tabelle 17. Diese Texte sind im ROM als ASCII-Werte 
abgelegt

Tabelle 18. Die neu besprochenen Assembler-Befehle

Befehls­
wort

Adressierung Byte­
zahl

Code Takt­
zyklen

Beein­
flussung 
von 
Flaggen

Hex Dez

LSR »Akkumulator« 1 1A 26 2 N,Z,C
absolut 3 4E 78 6 N,Z,C
O-page-absolut 2 46 70 5 N,Z,C
absolut-X-indiz. 3 5E 94 7 N,Z,C
O-page-X-indiz. 2 56 86 6 N,Z,C

ROL »Akkumulator« 1 2A 42 2 N,Z,C
absolut 3 2E 46 6 N,Z,C
O-page-absolut 2 26 38 5 N,Z,C
absolut-X-indiz. 3 3E 62 7 N,Z,C
O-page-X-indiz. 2 36 54 6 N,Z,C

ROR »Akkumulator« 1 6A 106 2 N,Z,C
absolut 3 6E 110 6 N,Z,C
O-page-absolut 2 66 102 5 N,Z,C
absolut-X-indiz. 3 7E 126 7 N,Z,C
O-page-X-indiz. 2 76 118 6 N,Z,C

47. Was sind Interrupts?

Die Assembler-Befehle haben wir bis auf vier noch offen­
stehende alle behandelt. Diese vier, die alle mit dem Interrupt- 
Handling zusammenhängen, sollen nun unser Thema sein. 
Wenn wir sie beherrschen, haben wir den ersten Schritt zum 
Meister der Assembler-Alchimie getan. Diese vier kleinen 
1-Byte-Befehle öffnen uns eine geheime Pforte zu einem Uni­
versum an Programmier-Möglichkeiten, von dem wir bisher 
kaum zu träumen vermochten. Genug der Schwärmerei, erst 
kommt noch eine Menge Arbeit, die uns wohl mehrere Kapitel 
in Atem halten wird.

Zuvor noch eine Bemerkung: es gibt kaum ein Thema im 
Rahmen der Programmierung in Assembler, welches so 
penetrant häufig Abstürze provoziert, wie das nunmehr ange­
steuerte! Falls Sie noch keine RESETTaste an ihrem Compu­
ter haben, wird es nun höchste Zeit. Diese nützlichen Dinger 
werden inzwischen schon so preiswert angeboten (sehen 
Sie mal in den Kleinanzeigenteil!), daß Sie zur Grundausstat­
tung eines Assembler Alchimisten zählen.

Unser Computer ist - solange er eingeschaltet ist - ständig 
mit irgendwelchen Tätigkeiten beschäftigt. Im Direktmodus 
hängt er beispielsweise meistens in einer Warteschleife und 
harrt der Eingaben, im Programm-Modus arbeitet er sich mit 
Hilfe der Interpreterschleife durch einen Basic-Befehlstext 
hindurch und so weiter. Nun werden Sieja sicher schon fest­
gestellt haben, daß er im Direktmodus auch den Cursor blin­
ken läßt, in beiden Modi die Tl$-Uhr weiterzählt und weitere 
Dinge macht, die anscheinend so nebenher passieren. 
Schon in Kapitel 8 aber haben wir einen Unterschied zwi­
schen Mensch und Computer festgehalten: Der Mensch 
kann mehrere Dinge gleichzeitig tun, der Mikroprozessor ist 
nur fähig zu einer Arbeit pro Zeiteinheit. Weil aber diese Zeit­
einheiten so unfaßbar kurz sind (etwa eine Millionstel 
Sekunde), haben wir Benutzer den Eindruck der Gleich­
zeitigkeit.

Wenn dem aber so ist, wie macht es der Computer, daß er 
beispielsweise ein Programm abarbeitet und trotzdem die 
Tl$-Uhr weiterzählt? Durch Unterbrechungen (interrupt = 
unterbrechen) der gerade ausgeübten Tätigkeit. Ein Beispiel 
aus dem täglichen Leben soll uns das illustrieren: Sie lesen 
gerade diesen Artikel, da klingelt das Telefon und ein Freund 
möchte von Ihnen wissen, was eigentlich Unterbrechungen 
sind. Während Sie es ihm erklären, fängt in der Küche derTee- 
kessel schrill zu pfeifen an. Sie sagen Ihrem Freund, er möge 
sich einen Moment gedulden, gehen in die Küche und neh­
men den Kessel vom Feuer. Dann kehren Sie ans Telefon 
zurück und beenden nach einer Weile das Gespräch. Nach 
dem Auflegen des Telefonhörers setzen Sie die Lektüre des

Telefon Kessel Türklingel

Lesen>------------- 
(Hauptprogramm)

Telefonat 
(IRQ-Programm)

Kessel vom Feuer 
QMMI-Programm)

Bild 36. Unterbrechungsbeispiele im täglichen Leben
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Artikels fort, fest entschlossen, sich nun nicht mehr unterbre­
chen zu lassen. Kurze Zeit später klingeltjemand an der Tür. 
Sie lassen sich dadurch nicht stören.

Dieses Gleichnis gibt ziemlich genau wieder, was sich im 
Computer - nur bei millionenfacher Geschwindigkeit - bei 
Unterbrechungen abspielt. In Bild 36 ist das Schema des 
Ablaufes grafisch dargestellt. In gewisser Weise ähnelt das 
ganze dem Abarbeiten von Unterprogrammsequenzen. Wes­
halb programmiertman dann nicht einfach mittels einigerJSR- 
Aufrufe? Dafür hat L.A.Leventhal einen einleuchtenden Ver­
gleich: »Ein Unterbrechungs-System entspricht etwa einer 
Telefonklingel. Sie läutet, wenn ein Anruf empfangen wird, so 
daß man den Hörer nicht laufend abnehmen muß, um festzu­
stellen, ob sich jemand in der Leitung befindet.« (L.A.Leven­
thal, »6502 Programmieren in Assembler«, München te-wi 
Verlag, Seite 12-1). Unterbrechungen können dann angefor­
dert und abgearbeitet werden, wenn sie nötig sind, im Gegen­
satz zu Unterprogrammen, die erst dann berücksichtigt wer­
den, wenn der Programmzähler einen JSR-Befehl erfaßt. Um 
also schnell reagieren zu können, müßte man sehr oft in 
einem Programm eine Unterroutine anspringen, die auf 
gewisse Registerinhalte prüft und dann zur Bearbeitung ver­
zweigt oder - bei Nichtvorliegen einer Bedingung - im norma­
len Programm weiterfährt. Das kostet unnötig Zeit und Spei­
cherraum. Mancher Verkehr des Computers mit Peripherie 
erfordert so schnelle Reaktionen, daß diese nur geleistet wer­
den können durch Unterbrechen des laufenden Programmes.

Ich denke, daß Sie nun die Notwendigkeit von Unterbre­
chungen erkennen. Fast jede CPU kennt solche Unterbre­
chungssysteme. Man kann sie charakterisieren durch die 
Beantwortung folgender Fragen:
1) Welche Unterbrechungs-Eingänge weist die CPU auf? 
2) Wie reagiert die CPU auf eine Unterbrechung?
3) Wie bestimmt die CPU die Unterbrechungsquelle, wenn 
die Anzahl der Quellen größer ist als die Anzahl der Eingänge? 
4) Kann die CPU zwischen wichtigen und weniger wichtigen 
Unterbrechungen unterscheiden?
5) Wie und wann wird das Unterbrechungssystem freigege­
ben oder gesperrt?

All diese Fragen werden wir für unseren Computer 
ergründen.

48. Das Unterbrechungssystem 
der CPU 6510/6502

Einige dieser Charakteristika sind schnell zu zeigen:
Zu 1: Unsere CPU hat genau 2 Eingänge für Unterbrechun­
gen (wenn man RESET außer acht läßt, was wir im folgenden 
meist tun werden).
Zu 3: Natürlich gibt es weitaus mehr denkbare Unterbre­
chungsquellen als diese 2 Eingänge, weshalb softwaremäßig 
eine Registerabfrage (das sogenannte Polling) durchgeführt 
wird, um die Quelle festzustellen.
Zu 4: Zwischen wichtiger und nicht so wichtiger Unterbre­
chung kann unsere CPU unterscheiden durch die Prioritätder 
beiden Eingänge. Wir haben eine sogenannte maskierbare 
Unterbrechung, genannt IRQ, welche per Befehl ignoriert 
(maskiert) werden kann und eine andere, nicht maskierbare, 
die daher auch NMI (not maskable interrupt = nicht maskier­
bare Unterbrechung) genannt wird. NMI hateine höhere Prio­
rität als IRQ und kann deshalb für die wichtigeren Aufgaben­
stellungen eingesetzt werden.
Zu 5: Freigegeben odergesperrtwerden kann die IRQ-Unter- 
brechung durch ein Sperrbit (auch Maskenbit genannt), wel­
ches sich als Bit 2 im Flaggen-Register des Prozessors befin­
det. Das ist die l-Flagge. Für den Empfang der NMI- 
Unterbrechung kann die CPU nicht gesperrt werden.

Um mal die Parallele zu unserem Beispiel zu zeigen: Das 
Lesen des Artikels ist die gerade stattfindende Tätigkeit des 
Computers. Die Telefonklingel signalisiert einen IRQ, der im 
folgenden bearbeitet wird. Das Pfeifen des Teekessels soll 
einem NMI entsprechen. Wenn dieser dann bearbeitet ist, 
geht es mit der Abarbeitung des IRQ weiter. Nach Beendi­
gung des Telefonates wird das Unterbrechungs-Sperrbit 
gesetzt (sie nehmen sich vor, sich nicht mehr stören zu las­
sen) und mitder normalen Tätigkeit fortgefahren. Weil der nun 
folgende IRQ damit maskiert ist, wird das Türklingeln 
ignoriert.

Die Frage 2, nämlich wie unsere CPU auf eine Unterbre­
chung reagiert, blieb noch unbeantwortet. Nun soll sie behan­
delt werden:
a) Am Ende jedes Befehls überprüft die CPU automatisch den 
Zustand des Unterbrechungs-Systems. Wenn an einer der 
beiden Unterbrechungsleitungen eine Anforderung vorliegt 
und diese auch freigegeben ist, beginnt die Unterbrechung 
zu wirken.
b) Zunächst wird der Programmzählerinhalt in der Reihen­
folge MSB, LSB auf den Stapel geschrieben. Danach wandert 
noch der Prozessorstatus auf den Stapel (siehe Bild 37).
c) Durch Setzen des Unterbrechungs-Sperrbits I werden wei­
tere maskierbare Unterbrechungen (IRQ) unterbunden.
d) Nun holtsich die CPU aus einem Vektor ganz am Ende des 
Speichers eine Adresse, lädt diese in den Programmzähler 
und startet auf diese Weise ein Serviceprogramm, das dem 
auslösenden Anlaß Rechnung trägt. In derTabelle 19 sind die 
zu den Unterbrechungsformen und zum RESET gehörigen 
Vektoren aufgeführt.

Bevor wir uns weiter mit den so angesteuerten Routinen 
befassen, wollen wir die 4 Befehle kennenlernen, die uns 
noch fehlen.

49. Schlüssel zur Unterbrechungs­
programmierung: CLI, SEI, RTI, BRK

Das Sperren der maskierbaren Unterbrechung IRQ und das 
Löschen der Maske erfolgt durch Setzen oder Löschen des 
Sperrbits im Prozessorstatus-Register. Dieses Bit, die I- 
Flagge, kann durch den Befehl CLI gelöscht werden. CLI

01FF

Stapelzeiger

Bild 37. Die CPU rettet den Programmzähler und das 
Statusregister 
beim Eintreten einer Unterbrechung auf den Stapel

Tabelle 19. Unterbrechungsvektoren und ihre Inhalte

Unterbrechungsart Vektor Zieladresse

Maskierbare Unterbrechung (IRQ, BRK) $FFFE/FFFF 65352 $FF48
Reset $FFFC/FFFD 64738 $FCE2
Nichtmaskierbare Unterbrechung (NMI) $FFFA/FFFB 65091 $FE43
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kommt von »CLear Interrupt mask«, was bedeutet »lösche die 
Unterbrechungs-Maske«. Immer dann, wenn IRQs zugelas­
sen sein sollen zur Bearbeitung durch den Mikroprozessor, 
muß damit die l-Flagge gelöscht werden. Wie Sie sehen, ist 
CLI ein 1-Byte-Befehl mit impliziter Adressierung. Er braucht 
genau 2 Taktzyklen zur Erledigung seiner Aufgabe.

Wenn wir später eigene Unterbrechungsroutinen schrei­
ben, stehen wir oft vor der Frage, ob wir innerhalb unseres 
Unterbrechungsprogramms weitere Unterbrechungen 
zulassen wollen. Manchmal ist das wichtig, beispielsweise 
bei der Tastaturabfrage. Wie wir vorhin erwähnt haben, sperrt 
die CPU automatisch bei der Annahme von Unterbrechungen 
weitere IRQs durch Setzen der l-Flagge. Einer der ersten 
Befehle der eigenen Unterbrechungsroutine wird dann die 
Freigabe von Unterbrechungen sein durch Löschen der 
l-Flagge.

SEI bewirkt das Gegenteil von CLI. Der Befehl setzt die I- 
Flagge auf 1 (»SEt Interrupt mask«) und verhindert, daß der 
Mikroprozessor weiteren IRQs seine Aufmerksamkeit 
schenkt. Das ist in den Fällen wichtig, in denen beispiels­
weise störungsfrei der lnhalt des Charakter-ROM gelesen 
werden soll oder während der Änderung von Speicherstellen, 
die die IRQ-Routine benutzt. Wie wichtig das Sperren von 
IRQs sein kann, haben Sie eventuell bemerkt, wenn Ihnen das 
Hilfsbildschirmprogramm aus Kap. 32 mal abgestürzt ist. Seit 
der letzten Folge - wo wir die IRQs gesperrt haben - ist Ihnen 
das sicherlich nicht mehr passiert. Ebenso wie CLI ist SEI ein 
1-Byte-Befehl mit impliziter Adressierung, und auch er 
braucht 2 Taktzyklen zur Bearbeitung.

Noch eine Bemerkung zum Verhindern der IRQs. Wir wer­
den später sehen, was alles während der 60mal pro Sekunde 
aufgerufenen Unterbrechung erledigt wird. Jede Routine, die 
SEI verwendet, verbraucht Rechenzeit. Wenn sie so lange 
dauert, daß eine oder mehrere dieser regelmäßigen IRQs 
unterbunden werden, kann das unter Umständen zu Störun­
gen von Programmabläufen führen. In solchen Fällen ist es 
sinnvoll, in die eigene Routine den Teil der regulären IRQ- 
Routine einzubauen, der im Programmablauf durch sein Feh­
len Störungen verursacht. Meistens kann man aber durch 
gute Planung eines Programmes dieses Problem umgehen.

RTI heißt »ReTurn from Interrupt«, zu deutsch also: »kehre 
aus dem Unterbrechungsprogramm zurück.« Es entspricht in 
seinem Einsatz etwa dem RTS bei Unterprogrammrücksprün­
gen. Während RTS aber lediglich den alten Programmzähler­
inhalt vom Stapel holt (und noch eine 1 dazuaddiert), schafft 
RTI auch noch den alten Inhalt des Status-Registers vom Sta­
pel zurück. Der genaue Ablauf ist wie folgt:
1) Alten Prozessorstatus vom Stapel wieder ins Status- 
Register schieben.
2) Stapelzeiger um 1 erhöhen
3) LSB des alten Programmzählers vom Stapel nehmen und 
zurückschreiben.
4) Stapelzeiger um 1 erhöhen
5) MSB des alten Programmzählers vom Stapel nehmen und 
zurückschreiben.
6) Stapelzeiger um 1 erhöhen.

Damit ist der Zustand vor der Unterbrechung wiederherge­
stellt. Auch die l-Flagge ist so automatisch wieder gelöscht, 
denn vor der Unterbrechung war sie sicher nicht gesetzt 
gewesen und der alte Status-Zustand ist ja jetzt wieder 
vorhanden.

RTI ist ebenfalls ein 1-Byte-Befehl mit impliziter Adressie­
rung. Seine vollständige Bearbeitung dauert 6 Taktzyklen.

Bei eigenen Unterbrechungs-Routinen verwendet man 
häufig nicht RTI, sondern springt durch JMPan eine sinnvolle 
Stelle des normalen Unterbrechungsprogrammes. Auf diese 
Weise kann man dann die normalen Arbeitsgänge dervorpro- 
grammierten Unterbrechung oder Teile davon noch ausfüh­
ren lassen.

Den Befehl BRK (break=Software-Unterbrechung) haben 
wir schon verwendet. Er entspricht in seinem Einsatz etwa 
dem STOP-Befehl in Basic und dient wie jener Befehl dort 
hauptsächlich dem Testen von Programmen. Tatsächlich 
unterscheidet sich die Reaktion unserer CPU bei Auftreten 
eines BRK kaum von der bei einem IRQ. Folgendes passiert: 
a) Der Programmzähler wird um 2 erhöht.
b) Bit 4 des Prozessorstatusregisters, die Break-Flagge B, 
wird auf 1 gesetzt.
c) Das MSB des Programmzählers wird auf den Stapel 
gebracht und der Stapelzähler um 1 heruntergezählt.
d) Dasselbe geschieht nun mit dem LSB des Pro­
grammzählers
e) und mit dem Statusregister.
f) Das Unterbrechungsmaskenbit, die l-Flagge, wird auf 1 
gesetzt um IRQs zu sperren.
g) In den Programmzähler wird nun aus dem Vektor 
FFFE/FFFF dieselbe Adresse geladen, die auch bei IRQs 
benutzt wird. Damit startet nun das Programm, das diese 
Unterbrechung bearbeitet.

Sie sehen, daß der BRK-Befehl ein ziemlich komplizierter 
Geselle ist. Zwar handelt es sich wieder um einen 1-Byte- 
Befehl mit impliziter Adressierung, aber er benötigt immerhin 
7 Taktzyklen, um all diese Arbeit zu bewältigen.

Wir haben BRK bisher immer zur Programmunterbrechung 
mit nachfolgender Registeranzeige durch den SMON einge­
setzt. Der SMON ist - wie fast jeder Monitor - so program­
miert, daßein BRKzurRegisteranzeigeführt. Dasistnatürlich 
sinnvoll beim Einsatz von BRK zur Fehlersuche. In dem 
Moment, wo ein BRK vom Prozessor bearbeitet wurde, kann 
nur durch die gesetzte B-Flagge von einem IRQ unterschie­
den werden. Es ist manchmal nötig, schon zu diesem Zeit­
punkt diesen Unterschied festzustellen. Deshalb verwendet 
man den nachfolgend beschriebenen Test zu diesem Zweck:

PLA
in den Akku wird das zuletzt auf den Stapel geschobene Pro­
zessorstatus-Register geholt.

PHA
und sogleich wieder zurückgeschoben

AND #$10
durch die AND-Verknüpfung mit der Binärzahl 0001 0000 
kann eine eventuell vorhandene B-Flagge isoliert werden.

BNE BREAK
Falls eine B-Flagge gesetzt war, ist der Akku ungleich 0 und 
die Bearbeitung verzweigt zum von uns konstruierten 
BREAK-Programm. War der Akku nach dieser AND- 
Verknüpfung gleich 0, dann erfolgt keine Verzweigung und es 
handelt sich um einen IRQ, zu dessen Bearbeitung nun zu 
springen ist.

Es gibt noch eine andere - gebräuchlichere - Möglichkeit, 
zwischen einem BRK und einem IRQ zu unterscheiden, die 
allerdings erst zu einem späteren Zeitpunkt des computerin­
ternen Unterprogrammes erfolgt. Von dieser zweiten Mög­
lichkeit wird im SMON Gebrauch gemacht und wir werden sie 
nachher auch kennenlernen.

Natürlich kann der BRK-Befehl auch zu anderen Zwecken 
als zur Registeranzeige durch einen Monitor verwendet wer­
den. Es kommt immer darauf an, welches Service-Programm 
wir dem Computer anbieten. Springt man aus so einem 
Service-Programm mittels RTI zurück ins Hauptprogramm, 
dann muß man berücksichtigen, daß der Programmzähler vor 
derSicherungaufdem Stapel um 2 erhöht worden ist. Manch­
mal sind deshalb noch Korrekturen des Programms nötig.

Ich hoffe, daß Sie bisher diesen Artikel nicht zu frustrierend 
fanden, denn ständig ist die Rede vom eigenen Unterbre­
chungs-Programm und dabei wissen Sie - außer durch BRK - 
noch gar keine Möglichkeit, einen IRQ oder NMI auszulösen, 
und Sie sind sicher noch sehr vorsichtig mit dem Gedanken 
an eigene Unterbrechungs-Routinen, weil Ihnen ja noch
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unbekannt ist, wie die normale Firmware Unterbrechungen 
behandelt. Keine Angst: All das werden wir noch klären. 
Betrachten Sie diesen Teil zum Thema Unterbrechungen viel­
leicht mehr wie ein Handbuch, in dem Sie dann, wenn Ihr Ver­
ständnis gestiegen ist, nochmal zurückblättern können.

Wir haben bisher nur betrachtet, wie unsere CPU reagiert, 
wenn an einem der beiden Unterbrechungs-Eingänge (IRQ 
und NMI) eine Unterbrechungs-Anforderung vorliegt. Um nun 
aber selbst ins Geschehen eingreifen zu können, ist es nötig 
zu wissen, wie diese Anforderung dorthin gelangt. Das erfor­
dert von uns die Beschäftigung mit anderen Computerbau­
steinen als der CPU, die bisher im Mittelpunkt unseres Inter­
esses stand.

50. Woher kommen die 
Unterbrechungs-Anforderungen?

Quellen für Unterbrechungen können viele genannt werden: 
Diskettenstation, Datasette, Drucker, Modem, Schalt­
elemente und so weiter. Um aber eine gewisse Übersicht zu 
bekommen, sollte man unterscheiden zwischen primären 
und sekundären Unterbrechungsquellen. Das soll kurz erläu­
tert werden: Die Diskettenstation beispielsweise ist über den 
seriellen Port mit dem Computer verbunden. Dieser wie­
derum steht in direktem Kontakt zu 2 Bausteinen, den CIAs. 
Erst diese CIAs stehen in direktem Kontakt zur CPU. Alle 
Unterbrechungs-Quellen, die direkt Signale an die beiden 
Unterbrechungseingänge unserer CPU senden, sollen künf­
tig »primäre« Quellen genannt werden, die anderen, die nur 
über solch eine primäre Quelle Unterbrechungs-Anforde­
rungen stellen, werden von uns als »sekundäre« Quellen 
bezeichnet. Weil wir irgendwo einen Schnitt machen müssen 
- einmal, um nicht völlig auszuufern in der Erklärung von peri­
pheren Geräten (das soll anderen, kompetenteren überlas­
sen bleiben) und zum anderen, weil ich mich daauch nichtso 
gut auskenne - werden wir uns im folgenden auf die primären 
Unterbrechungsquellen beschränken. Da bleibt aber noch 
mehr als genug zu tun übrig und deshalb soll auch nur eine 
Auswahl dieser Primärquellen detailliert behandelt werden.

Welches sind nun die primären Unterbrechungsquellen? 
Hier sind sie aufgeführt:
1) Der VIC-ll-Chip (MOS 6566/6567 Video Interface 
Controller)

2) Die beiden CIAs (MOS 6526 Complex Interface Adapter)
3) Die RESTORE-Taste
4) Der Expansion-Port
5) RESET (paßt hier nicht ganz her, woanders aber auch nicht 
besser)

Den Expansion-Port werden wir nicht behandeln und einen 
RESET nur ziemlich kurz betrachten, weil es sich dabei 
eigentlich nicht um eine Unterbrechung im bisher definierten 
Sinn handelt.

51.Der VIC-ll-Chipals 
U nterbrech u ngsquelle

Soweit ich feststellen konnte, kommt der VIC-ll-Chip in 
Bezug auf unsere CPU nur als Anforderer von maskierten 
Unterbrechungen (IRQ) in Frage. Die Handhabung seiner Un­
terbrechungs-Verlangen geschieht im VIC-ll-Chip durch zwei 
Register. Vier Ereignisse sind eingeplant, deren Eintreten zur 
Unterbrechung führen kann:
1) Rasterzeilen-Unterbrechung
2) Kollision eines Sprites mit Hintergrund
3) Kollision von Sprites untereinander
4) Lichtgriffel-Unterbrechung.

Die ersten 3 Auslöser werden wir uns in kommenden Fol­
gen genau ansehen und dabei vielerlei interessante Möglich­
keiten feststellen. Die Option, die der Lichtgriffel bietet, wird 
nicht behandelt werden: Meine Kenntnisse auf diesem Sek­
tor sind nur gering (nobody is perfect).

Das sogenannte Interrupt Enable Register (Unterbre- 
chungs-Zulassungs-Register) des VIC-ll-Chips ist Register 
26. Es befindet sich in der Speicherstelle 53274 ($D01A) 
(siehe Bild 38).

In diesem Register wird festgelegt, ob eines - oder mehrere 
- der 4 möglichen auslösenden Ereignisse eine Unterbre­
chungsanforderung an den Mikroprozessor senden soll. 
Jedem Ereignis ist ein Bit zugeordnet. Ist dieses Bit gleich 1, 
dann ist die Unterbrechung freigegeben, ist es gleich 0, dann 
liegt eine Sperrung vor. Die Zuordnung der Bits ist wie folgt:

Bit 0 Rasterzeilen-IRQ
Bit 1 Sprite/Hintergrund-Kollision
Bit 2 Sprite/Sprite-Kollision
Bit 3 Lichtgriffel-IRQ
Bits 4 bis 7 sind ungenutzt und haben immer den 

Wert 1.

Bild 38. Daslnterrupt-Enable-Register (53274 = $d01h)desVIC-ll-Chip

7 6 5 4 3 2 1 0

-------- unbe nutzt --------—
Lichtgriffel- 
Unter­
brechung

Kollision 
Sprite/ 
Sprite

Kollision 
Sprite/ 
Hinter­
grund

Raster- 
Unter- 
brechung

Bild 39. Das Interrupt-Latch-Register (53273 = $dO19) des VIC-ll-Chip

7 6 5 4 32__________ 1__________ 0
Markierung, 
ob zugelas­
sene Unter­
brechung 
aufgetreten 
ist

unbenutzt —
Lichtgriffel- 
Unter­
brechung

Kollision
Sprite/ 
Sprite

Kollision 
Sprite/ 
Hinter­
grund

Raster- 
Unter- 
brechung
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Das Register25wird Interrupt Latch Register genannt, was 
etwa zu übersetzen wäre mit »Unterbrechungs-Einrast- 
Register« (siehe Bild 39). Der englische Ausdruck »latch«, 
der nur umschreibend oder sehr technisch übersetzt werden 
kann, beschreibt eigentlich recht genau, was in diesem Regi­
ster geschieht. Ein »latch« ist nämlich so etwas wie ein 
Schnappriegel, also ein Riegel, der bei der Betätigung ein­
rastet. Wenn eines der 4 möglichen Ereignisse eintritt, 
schnappt im dazugehörigen Bit dieses Registers der Inhalt 
auf 1. Die Bit-Zuordnung ist die gleiche wie in Register 26. 
Aber das Bit 7 hat hier noch eine Bedeutung: Ist eines der Bits 
0 bis 3 auf 1 gesetzt und das dazugehörige Ereignis in Regi­
ster 26 auch zur Unterbrechung zugelassen (also auch dort 
gleich 1), dann taucht in Register 25, Bit 7 eine 1 auf. So kann 
durch einfaches Lesen dieses Bits festgestellt werden, ob ein 
IRQ durch den VIC-ll-Chip ausgelöst wurde.

Will man in diesem Register ein gesetztes Bit löschen, muß 
man - außergewöhnlich! - eine 1 in die Bitposition schreiben.

Mit Recht erwarten Sie nun eigentlich eine Anwendung des 
bisherGelernten.BeiUnterbrechungsprogrammenistesaber 
dringend nötig, immer den gesamten Komplex im Auge zu ha­
ben. Ich habe mich daher entschlossen, zuerst alles zu erklä­
ren und dann Anwendungsmöglichkeiten vorzustellen. Ihre 
Geduld wird auf eine harte Probe gestellt, aber ich hoffe, daß 
Sie später feststellen, daß es sich gelohnt hat, etwas zu 
warten.

52. Die beiden CIA-Bausteine 
als Unterbrechungsquellen

An sich sind die beiden CIAs in unserem Computer völlig iden­
tisch. Sie werden aber unterschiedlich eingesetzt. Sehen wir 
uns zunächst einmal an, was beiden in Bezug auf Unterbre­
chungen gemeinsam ist, um danach die Unterschiedefestzu- 
halten. Die Unterbrechungs-Steuerung geschiehtin Register 
13 dieser Bausteine. Dieses Register hat 2 Funktionen: Es 
bestimmt, ob eine Unterbrechungsanforderung an die CPU 
gesandt werden soll, und es stelltfest, ob ein Ereignisstattge­
funden hat, das zur Unterbrechung führen kann. Die Bedie­
nung dieses Registers ist demzufolge auch etwas unüber­
sichtlich, aber wir haben schon ganz andere Probleme 
gemeistert.

Sehen wir uns zuerst einmal an, welche Ereignisse vom 
Standpunkt eines CIA-Bausteines als Unterbrechungskrite­
rium dienen können:
1) Unterlauf derUhrA
2) Unterlauf der Uhr B
3) Die interne Uhr hat eine Alarmzeit erreicht
4) Am SP-Eingang (hängt mit dem seriellen Port zusammen) 
ist ein bestimmter Zustand erreicht
5) An einem Eingang namens FLAG ist ein bestimmter 
Zustand erreicht.
Die Ereignisse 4 und 5 werden wir ebenfalls im weiteren weit­
gehend ausklammern.

Nun zum Register 13, dem Unterbrechungs-Kontroll-Regi­
ster (siehe Bild 40).

Auch hier gehört zu jedem Ereignis ein Bit. Dabei - um Wie­
derholungen zu vermeiden - ist die Zuordnung schon durch 
die eben angegebene Ereignisaufzählung gegeben. Ziehen 
Sie von der vorangestellten Nummer immer eine 1 ab und Sie 
haben die Bitnummer. Die Bits 5 und 6 sind unbenutzt. Bit 7 
hat eine dreifache Funktion, die eng mit den anderen Bitinhal­
ten verknüpft ist. Sehen wir uns das mal der Reihe nach an: 
Lesen des Registers

Sind Unterbrechungsereignisse aufgetreten, dann sind die 
dazugehörigen Bits auf 1 gesetzt. Bit 7 ist gleich 1, wenn min­
destens ein solches Ereignis stattgefunden hat und außer­
dem dieses Ereignis als Unterbrechungsauslöser freigege­
ben ist. Auf diese Weise kann - ähnlich wie beim VIC-ll-Chip- 
Register 25 - festgestellt werden, ob die Unterbrechung 
durch einen der beiden CIAs angefordert wurde. Im Unter­
schied aber zum VIC-ll-Register wird Register 13 durch das 
Lesen gelöscht. Brauchtman den lnhaltalso noch, sollte man 
ihn irgendwo zwischenspeichern.
Schreiben in das Register
Bit7 = OerzeugtSperren.
Das erkennt man am besten an einem Beispiel. Nehmen wir 
an, wir möchten die Unterbrechung sperren, die durch einen 
Unterlauf von Uhr A erzeugt werden kann. Das betrifft das Bit 
0. Wir schreiben in das Register 13 folgende Zahl: 0000 
0001

Wie Sie sehen, ist das Bit 7 gleich 0. Die 1 in Bit 1 bewirkt 
die Sperrung. Durch die Nullen in den anderen Bits wird 
bewirkt, daß die anderen Unterbrechungs-Ereignisse nicht 
beeinflußt werden. Wollten wir alle sperren, dann müßten wir 
einschreiben:0001 1111

Auf diese Weise können selektiv einzelne Unterbrechun­
gen durch Einschreiben der 1 bei gelöschtem Bit 7 gesperrt 
werden.
Bit 7 = 1 erzeugt Freigabe.

Auch hier wieder ein Beispiel. Wenn wir ganz gezielt Unter­
brechungen durch Unterlauf der Uhr A freigeben wollen, 
müssenwirdiefolgendeZahlin Register 13schreiben: 1000 
0001
Bit7 (gleich 1)zeigtan, daßdiejenigenUnterbrechungen frei­
zugeben sind, deren Bits auf 1 gesetzt sind. Alle anderen 
Unterbrechungen, wo also in der dazugehörigen Bitposition 
der einzuschreibenden Zahl eine 0 steht, bleiben 
unverändert.

Ein wichtiger Unterschied zwischen den beiden CIAs ist 
der, daßderUnterbrechungsausgangvonCIA 1 mitdem IRQ- 
Eingang der CPU verbunden ist, wohingegen der entspre­
chende Ausgang von CIA2 an den NMI-Eingang unseres 
Mikroprozessors führt. Daher löst der CIA 1 nur IRQs aus, er 
wird manchmal deshalb auch IRQ-CIA genannt. Der andere 
ist dann der NMI-CIA, weil er nur NMIs anfordern kann.

53. Der IRQ-CIA

Das Register 13des IRQ-CIA (der die Speicherstellen 56320 
bis 56335 belegt), liegt in Zelle 56333 ($DC0D). Die einzel-

7 6 5 4 3 2 1 0

Mehr- 
funktions- 
Bit

---- unbe:nutzt ---- FLAG- 
Eingang

SP- 
Eingang

ALARM 
bei 
interner 
Uhr

Unterlauf 
UhrB

Unterlauf 
UhrA

Bild 40. Genereller Aufbau der Unterbrechungs-Kontroll-Register(13) der beiden CIA-Bausteine
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nen Bits sind wie folgt zugeordnet:
Bit 0 Unterlauf Uhr A
Von hier kommt der IRQ, der 60mal pro Sekunde stattfindet 
zur Tastaturabfrage, zum Weiterstellen der Tl$-Uhr etc.
Bit 1 Unterlauf Uhr B
Spielt bei Kassettenoperationen und dem seriellen Port eine 
Rolle.
Bit 2 ALARM bei interner Uhr.
Spielt beim Zufallszahlengenerator (RND(0)) eine Rolle.
Bit 3 Hier kommen durch den User-Port Unterbrechungs-An­
forderungen.
Bit 4 ist verbunden mit dem seriellen Port und der Kassetten- 
Lese-Leitung.

54. Der NMI-CIA

Ebenso kurz und schmerzlos wie beim CIA 1 soll auch das 
besondere am CIA 2, dem NMI-CIA (er belegt den Speicher 
von 56576 bis 56831) vorgestellt werden. Sein Register 13 
findetsich in Speicherstelle 56589 ($DDOD). Die Bits 0 und 
1 (Unterläufe der beiden Uhren) spielen beim Senden bezie­
hungsweise Empfangen von Daten über die RS232C- 
Schnittstelle eine Rolle, Bit 2 (ALARM) wird nicht verwendet, 
Bit 3 ist direkt mit dem User-Port verbunden ebenso wie Bit 4. 
Der NMI-CIA wird uns in seiner normalen Funktion nicht mehr 
beschäftigen.

55. Die RESTORE-Taste und ein 
kleines Testprogramm

Die RESTORE-Taste ist direkt mit dem NMI-Eingang unseres 
Mikroprozessors verbunden. Das ermöglicht es uns, durch 
einfaches Drücken dieserTastejederzeit ins Geschehen ein­
zugreifen, ohne uns um Details kümmern zu müssen, ob sich 
der Computer gerade im Direkt- oder im Programm-Modus 
befindet und so weiter. Denn NMI hat die höchste Priorität der 
Unterbrechungen.

Ein kleines Testprogramm soll Ihnen hier noch vorgestellt 
werden, das Sie vielleicht aber noch nicht ganz verstehen 
werden, weil wir erst in den nächsten Kapiteln die eingebau­
ten Serviceprogramme kennenlernen werden. Schalten Sie 
also den SMON ein und geben Sie das Programm 5 ein (ab 
$6000):

Programm 5. Ein kleines Testprogramm demonstriert die 
Wirkung einer Unterbrechung: Durch Drücken der 
RESTORE-Taste wird die Rahmenfarbe geändert.

6000 PHA mit diesen Befehlen retten wir Akku und Register auf
6001 TXA den Stapel.
6002 PHA
6003 TYA
6004 PHA

6005 LDA #$7F 01111111 ist das in binär.
6007 STA $DD0D Dadurch werden alle NMIs, die vom CIA 2 kommen 

könnten, gesperrt. Erinnern Sie sich: Bit 7 ist Null 
beim Schreiben, also Sperrfunktion.

600A LDY $DD0D Lesen des Registers 13 löscht dieses und zeigt uns, 
ob die NMI-Anforderung von dort kam.

600D BMI $601A falls NMI-Anforderung vom CIA 2 kam, wird verzweigt
600F LDA $D020 ansonsten kommt der NMI von der RESTORE-Taste, 

und in den Akku wird die Rahmenfarbe eingeladen
6012 EOR #$0E Ausgehend davon, daß als Rahmenfarbe 14 vorliegt, 

wird diese exklusiv geORDERt zu Null. Ist die Rah­
menfarbe 0, dann wird sie wieder 14.

6014 STA $D020 Einschreiben des neuen Farbwertes
6017 JMP $FEBC Sprung in den Rest der normalen NMI-Routine
601A JMP $FE72 Sprung in die normale NMI-Routine für den Fall, daß 

die Anforderung durch den NMI-CIA kam.

Am besten speichern Sie nun das Programm ab und schal­
ten dann mittels dem SMON-Kommando M 0318 die Anzeige 
der Bytes ab $0318 ein. Dort steht in den beiden ersten Spei­
cherzellen 47 und FE. Mit dem Cursor fahren Sie in diese 
Zeile und ändern den Inhalt in 00 und 60, also unsere 
Programmstartadresse in der LSB/MSB-Form. Nach einem 
RETURN läuft nun jede NMI-Anforderung über unser Pro­
gramm. Nun können Sie es ausprobieren, indem Sie mal die 
RESTORE-Tastedrücken. Esgenügtvöllig, alleinedieseTaste 
zu betätigen. Das wirkt - sichtbar durch die Änderung der 
Rahmenfarbe - in jedem Modus und jederzeit. Eine kleine 
Merkwürdigkeit ist, daß man manchmal etwas Geduld aufbrin­
gen muß, bis man die Wirkung sieht. Ich vermute, daß der NMI 
so schnell erledigt wird, daß sich mehrer NMIs pro Tasten­
druck ereignen. Man müßte sich noch eine kleine Routine 
überlegen, die die Wirkung etwas verzögert, denn 2 solche 
EOR-Kommandos nacheinander heben sich gegenseitig auf. 
Zum Schluß noch eine Aufstellung (Tabelle 20) mit den 
besprochenen Befehlen.

56. Der normale Verlauf eines IRQ

Neulich hatten wir bereits festgestellt, daß eine IRQ- 
Anforderung (nach dem Retten des Programmzählers und 
des Prozessorstatus-Registers, sowie dem Setzen der I- 
Flagge) den Inhalt des Vektors $FFFE/FFFF in den Pro­
grammzähler holt. Dort steht die Adresse $FF48(dez. 
65352) und deshalb startet nun das dort im ROM verankerte 
Programm, welches wir uns nun im einzelnen ansehen wer­
den (alle Adressen als Dezimalzahlen, in Bild 41 finden Sie 
das Flußdiagramm dazu)

Befehls- Adressie- Byte- Code Takt- Beeinflussung 
wort rung zahl Hex Dez cyclen vonFlaggen

CLI implizit 1 58 88 2 l-Flagge
SEI implizit 1 78 120 2 l-Flagge
RTI implizit 1 40 64 6 alle Flaggen
BRK implizit 1 00 0 7 B-Flagge vor dem

Schieben auf den 
Stapel, l-Flagge 
danach

Tabelle 20. Die Daten zu den letzten Assembler-Befehlen
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65352 PHA 
TXA 
PHA 
TYA 
PHA

Zunächst werden der Akku und 
die Register X und Y auf den Sta­
pel geschoben

Trickreich sind die beiden folgenden Befehle, mit denen 
das zu Beginn durch die CPU gerettete Statusregister gele­
sen wird:

TSX Stapelzeiger ins X- Register
LDA 260,X Einladen des Status-Registers

Nun wird geprüft, ob die BRK-Flagge gesetzt ist. Wenn das 
der Fall ist, dann ist der Auslöser ein BRK gewesen, anson­
sten ein IRQ:

AND #16 
BEQ 65368

65365 JMP (790)
65368 JMP (788)

Isolieren der BRK-Flagge 
Wenn keine BRK-Flagge, dann 
überspringen des nächsten 
Befehls.
Falls BRK
Falls IRQ

Den vorletzten Sprungbefehl werden wir bei der BRK-Be- 
handlung verfolgen. Interessant für uns ist jetzt der indirekte 
Sprung bei 65368. Der Vektor 788/789 ($314/315) liegt im 
RAM! Damit können wir ihn auf eigene Routinen verstellen. 
Genau hier ist der Ansatzpunkt für nahezu alle Eingriffe in die 
Unterbrechungsbehandlung. Dervoreingestellte Wertin die­
sem Vektor ist die Adresse 59953 ($EA31). Das dort ange­
siedelte Programm wird im Normalfall 60 mal in der Sekunde 
ausgeführt:
59953 JSR 65514 Das ist ein Kernel-Sprungbefehl 

zur Routine UDTIM bei 63131.
In diesem Unterprogramm wird zuerst die UhrTI$ weiterge­

stellt und dann die Tastaturabfrage vorbereitet.
59956 In diesem Programmteil erfolgt
bis die Cursorbehandlung.
60000
60001 Anschließend wird abgefragt, ob
bis eine Recordertaste gedrückt ist
60026 und entsprechende Flaggen

bearbeitet.
60027 JSR 60039 Dieses Unterprogramm dient zur 

Tastaturabfrage.
Auch in dieser Routine tritt übrigens ein indirekter Sprung 

nach einem RAM-Vektor auf (655/656 = $28F/290), der 
normalerweise auf 60232 zeigt, aber auch auf eine eigene 
Routine verbogen werden könnte.

Enthalten in der Tastaturabfrage ist auch die Überprüfung 
der RUN/STOP-Taste, die aber nur zusammen mit den in dem 
UDTIM-Aufrufvoreingestellten Flaggen funktioniert. Deshalb 
wird das Abschalten der RUN/STOP-Taste im allgemeinen 
dadurch durchgeführt, daß man den IRQ-Vektor auf 59956 
stellt und damit den ersten JSR-Befehl überspringt. Aller­
dings wird auf diese Weise auch die Tl$-Uhr nicht weiter­
gestellt.
60030 LDA 56333 Das ist das Unterbrechungs-

Kontrollregister des IRQ-CIA, das 
hier durch Auslesen gelöscht 
wird.

Den Abschluß der IRQ-Routine bildet nun noch das 
Zurückschreiben der Register:

60033 PLA Zurückholen des
TAY Y- und
PLA
TAX des X-Registers
PLA sowie des Akku.

60038 RTI Damit kehrt der Computer zu
dem durch den IRQ unterbroche­
nen Programm zurück.

Somit hätten wir’s. Nun können wirje nach Bedarf entschei­
den, welche von diesen Servicetätigkeiten wir bei einem 
eigenen IRQ-Programm brauchen: Die Uhr Tl$, die Cursor­
behandlung, die Abfrage der Recordertasten und die Tastatu­
rabfrage.

Sehen wir uns nun an, was geschieht, wenn ein BRK-Kom- 
mando der Auslöser war.

57. BRK-Unterbrechung

Wir hatten vorhin am Scheideweg zwischen IRQ und BRK 
den letzteren links liegen gelassen. Normalerweise verwen­
det man beim Programmieren in Assembler ja ein Software- 
Instrument wie zum Beispiel den SMON, der so gebaut ist, 
daß der BRK-Vektor, welchen wir vorhin kennengelernt 
haben ($316/317 = 790/791) auf die Registeranzeige 
weist. Was geschieht eigentlich, wenn der BRK-Vektor unver­
ändert bleibt, so also, wie er im Einschaltzustand des Compu­
ters vorliegt?

Dann zeigt er auf die Adresse 65126 ($FE66), wo ein Teil 
der NMI-Routine zu finden ist (Siehe auch das Flußdiagramm 
in Bild 42):
65126 JSR 64789 Sprung ins Programm RESTOR, 

in dem alle Vektoren (788-819) 
gemäß einer ROM-Liste auf ihre 
Ausgangswerte gesetzt werden.

JSR 64931 Sprung in das Programm 
I/O-RESET.

In diesem Programm werden die beiden CIAs auf die 
Anfangswerte gestellt.

JSR 58648 Sprung in ein Programm, welches 
zuerst den VIC-ll-Chip initialisiert, 
dann einen Bildschirmeditor- 
RESET durchführt.Nach Beenden 
dieser Routine ist der Bildschirm 
gelöscht.

JMP (40962)
Mit diesem indirekten Sprung ist die BRK-Unterbrechung 

beendet. Man sieht aberjetzt schon deutlich, daß es sich hier 
nicht um eine Unterbrechung im eigentlichen Sinn handelt,

RESTOR: 
Initialisieren aller 

Vektoren

I/O-RESET: 
CIAs auf 

Anfangswerte

Initialisierung des 
VIC-II-Chip und 

Bildschirmeditors

Sprung zum 
Basic-Warmstart

Bild 42. Auf diese Weise verläuft ein 
unvorhergesehener BRK im Sande.
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vielmehr um einen Abbruch. In 40962/40963 steht die 
Adresse des Basic-Warmstarts (58235). Danach befindet 
sich der Computer im READY-Zustand in der Eingabe- 
Warteschleife.

Das Zurückholen der Register und ein RTI erübrigt sich 
hier, weil ohnehin viele Werte aus dem unterbrochenen Pro­
gramm inzwischen weitgehend zerstört sind und alle Unter­
brechungskontrollregister (CIAs und VIC-ll-Chip) neu belegt 
wurden. Ein unkontrollierter BRK hatalso recht fatale Folgen!

58. Was macht ein NMI?

Wenden wir uns nun der Firmware zu, die zur Bearbeitung 
eines NMI vorgesehen ist (Dazu sehen Sie sich bitte in 
Bild 43 das Flußdiagramm an).

In den letzten Kapiteln erfuhren wir, daß auch für diese Un­
terbrechung am Ende des Speichers ein Vektor vorhanden ist, 
nämlich $FFFA/FFFB (65530/65531). Dort steht die 
Adresse 65091 ($FE43), die nun in den Programmzähler 
gelangt und damit startet das folgende Programm: 
65091 SEI Unterbrechungen niedrigerer

Priorität werden gesperrt.
JMP (792)

Das ist nun wieder ein für uns sehr interessanter Vektor
792/793 ($318/319), der — weil er im RAM-Bereich liegt — 
verstellbar ist. Genau das haben wir am Ende der letzten 
Folge getan mittels des M-Kommandos von SMON um den 
NMI zu testen, den wir mit der RESTORE-Taste ausgelöst 
haben. Der vorher eingestellte Wert in diesem Vektor ist die 
Adresse 65095 ($FE47), also direkt der nächste Befehl 
nach dem indirekten Sprungbefehl.
65095 PHA 

TXA
PHA 
TYA 
PHA
LDA #127 
STA 56589

LDY 56589
BMI 65138

B

Ebenso wie vorhin beim IRQ wer­
den hier die Inhalte des Akku und 
der
Register auf den Stapel 
geschoben.
das ist binär 01111111.
Sperrt alle weiteren NMI- 
Anforderungen
NMI-CIA Kontrollregister laden. 
Wenn der NMI von der 
RESTORE-Taste kam, ist Bit 7 des 
Registers = 0, sonst = 1 (bei 
NMI-Anforderung durch NMI- 
CIA). Wenn also nicht durch die 
RESTORE-Taste, erfolgt Sprung.

An dieser Stelle läuft nun das Programm weiter, wenn die 
RESTORE-Taste der NMI-Auslöser war:
65110 JSR 64770 Das ist ein Unterprogramm, wel­

ches prüft, ob ein Modul ab 
$8000 vorhanden ist.

Dies wird dadurch angezeigt, daß von $8004 bis $8008 
dieWertestehen: 195,194,205, 56,48 (dasist»CBM80«),

BNE 65118 Wenn kein Modulprogramm ab 
$8000 vorliegt, erfolgt ein 
Sprung.

JMP(32770) FallsModul.
Wenn ein Modul angezeigt wurde, erfolgt der indirekte 

Sprung nach dem Vektor $8002/8003, der vom Modul vor­
gegeben wird. Das kann man auch nutzen, um eigene 
Maschinenprogramme zu starten durch einen Druck auf die 
RESTORE-Taste. Man muß dann nur in die Speicherstellen 
$8002 bis 8008 die geforderte Zieladresse beziehungs­
weise »CBM80« schreiben.

Der nun folgende Abschnitt wird nur angesprungen, wenn 
die RESTORE-Taste der NMI-Auslöser war:

Bild 43. Flußdiagramm zum Ablauf einer NMI- 
Unterbrechung.
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65118 JSR 63164 Das ist ein Programmteil, der 
auch schon von der IRQ-Routine 
(nach dem Weiterstellen von Tl$) 
durchlaufen wird. Hier werden 
einige Voreinstellungen für die 
Tastaturabfrage erledigt, die 
insbesondere die RUN/STOP- 
Taste betreffen.

JSR 65505 Kernelroutine STOP.
Dort befindet sich ein indirekter Sprung über den Vektor 

808/809 ($328/329), also auch ein verstellbarer RAM- 
Vektor. Im Normalfall zeigtdieserVektorauf 63213 ($F6ED). 
Dort wird geprüft, ob die RUN/STOP-Taste gedrückt ist. Eine 
andere Methode zum Ausschalten des RUN/STOP bietet 
sich hier an, die die Uhr Tl$ ungeschoren läßt.

BNE 65138 Falls nur die RESTORE-Taste 
(also ohne RUN/STOP) gedrückt 
ist, erfolgt nun ein Sprung.

Waren aber sowohl die RUN/STOP- als auch die RESTORE- 
Taste gedrückt, dann folgt nun ein Programmabbruch, der 
uns schon von BRK her bekannt ist. Hier wie dort endet das 
Ganze dann mit dem Reset der I/O-Bausteine, des VIC-II- 
Chips, derVektoren, des Bildschirmeditors und das Ergebnis 
ist ein Basic-Warmstart.

Ab 65138 befindet sich der Rest der NMI-Routine, auf die 
das Programm läuft, wenn
1) die NMI-Anforderung nichtvon der RESTORE-Taste kommt 
oder
2) zwar von dieser Taste kommt, aber die RUN/STOP-Taste 
nicht gedrückt ist.
65138 bis 65211 Dieser ganze Abschnitt ist zur 

Behandlung der RS232C- 
Schnittstelle eingerichtet.

65212 PLA Abschluß des NMI durch Rück­
TAY schreiben des Akku und der
PLA Register vom Stapel
TAX
PLA

65217 RTI Rückkehr zum unterbrochenen
Programm.

Wenn Sie sich nun mal unser kleines Demo-Programm aus 
Kapitel 55 ansehen, dann werden Sie feststellen, daß der 
Programmteil bis $600E lediglich den ersten Teil der norma­
len NMI-Routine kopiert. Die Prüfung auf das Modul und die 
RUN/STOP-Taste werden übersprungen. Statt dessen erfolgt 
nach der Abarbeitung des für die RESTORE-Taste gebauten 
Programmes das Ende der NMI-Routine ($FEBC = 65212). 
Im anderen Fall, wenn also die RESTORE-Taste nicht der Aus­
löser des NMI war, wird in die normale Routine ab 65138 ein­
gemündet.

59. Eigentlich keine Unterbrechung: 
RESET

Weil wir alle Unterbrechungen hier bearbeiten wollen, soll 
auch der RESET angesprochen werden. Es handelt sich 
dabei aber nicht um eine Unterbrechung im bisher definierten 
Sinn. Mir fällt allerdings kein Platz ein, wo der RESET besser 
hinpassen würde. Ähnlich wie bei NMI und IRQ wird auch hier 
ein Vektorinhalt in den Programmzähler geladen, der in den 
höchsten Speicheradressen zu finden ist (Auch hierzu wie­
der ein Flußdiagramm in Bild 44).

Dieser Vektor liegt in $FFFC/FFFD. Der Inhalt ist die 
Adresse 64738 ($FCE2) und genau dort geht das Pro­
gramm dann weiter:
64738 LDX #255

SEI 
TXS 
CLD

JSR 64770

lm ersten Teil wird der 
Stapelspeicher initialisiert. 
Verhindern von IRQ 
Stapelzeiger auf $FF 
Dezimal-Modus ausschalten (falls 
er eingeschaltet war).
Das ist wieder das Unterpro­
gramm, das auf ein Modul prüft.

Hier ergibt sich die Möglichkeit, auch beim RESET einzu­
greifen, indem man die Kennung CBM80 an die abgefragten 
Orte packt.

BNE 64751 Falls kein Modul, erfolgt Sprung.
64748 JMP(32768)

Dieser indirekte Sprung erfolgt nach dem Vektorinhalt von 
$8000/8001 = 32768/32769. DasisteinandererVektor 
als wir ihn vorhin beim NMI hatten (dort war es $8002/8003 
= 32770/32771). So kann ein anderer Programmteil ange­
steuert werden als durch den NMI, was übrigens auch drin­
gend erforderlich ist, weil der Stapelzeiger zerstört wurde.
64751 Hier läuft das Programm weiter,

falls keine Modulkennung erkannt 
wurde.

Der ganze Rest dient dem Versetzen des Computers in den 
Einschaltzustand. Allerdings bin ich davon überzeugt, daß 
noch irgendein Unterschied bestehen muß zwischen dem 
einfachen Aus- und wieder Anschalten des Computers und 
einem RESET. Es hat sich nämlich bei einigen Programmen 
gezeigt, daß sie nach einem RESET fehlerhafte Verläufe neh­
men können, was nach einem totalen Aus- und wieder 
Anschalten nicht zu beobachten war. Der Grund für diesen 
Unterschied liegt (für mich) noch im Dunkeln. Vielleicht weiß 
dasjajemand von Ihnen. Dann schreiben Sie doch mal!
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60. Die Sache mit dem Moduistart 61. Nutzung der Unterbrechungen

Sowohl beim RESET als auch beim NMI haben wir festge­
stellt, daß der Modulstart-Bereich ab $8000 eine besondere 
Rolle spielt. In Bild 45 finden Sie nochmal zusammengefaßt, 
was sich dort findet wenn ein Modul vorhanden ist.

Wir wollen im folgenden Beispielprogramm (Programm 6) 
ein Modul simulieren, indem wir den SMON mittels des 
RESET anspringen. Der NMI — also die RUN/STOP- 
RESTORE-Tastenkombination — soll dabei wirkungslos 
gemacht werden.

Bild 46 zeigt ein Flußdiagramm dieses Beispiel­
programmes:

Achten Sie bitte darauf, daß Sie nach dem Eintippen des 
Programmes abspeichern und — natürlich — daß die 
SMON-Version ab $C000 im Speicher vorliegt. Wenn Sie nun 
mal die RESTORE-Taste — oder RUN/STOP und RESTORE — 
drücken, passiert offensichtlich nichts. Das liegt daran, daß 
unser Programm lediglich die auf den Stapel gelegten Regi­
ster wieder zurückholt und aus der Unterbrechung mit RTI ins 
normale Geschehen zurückkehrt.

Haben Sie einen RESET-Taster eingebaut? Dann drücken 
Sie doch mal drauf. Zunächst erkennen Sie den normalen 
RESET-Verlauf. Dann meldet sich aber nicht wie gewohnt die 
Nachricht CBM-Basic..., sondern der SMON mit einer Regi­
steranzeige. Das RESET-Programm ab $602E folgt dem 
Firmware-Programm. Auf diese Weise (und mittels eines 
AUTOSTART) sichern sich Softwarehäuser manchmal gegen 
unbefugtes Kopieren ihrer Programme.

Programm 6. Simulation eines Moduls

100 - -LI 1,3
110 -
112 —$

.BA $8000

114 -;*******************************
116 -; MODULSIMULATION
117 -;*******************************
118 -;
120 - -EQ INITCZ=$E3BF
130 - .EQ INITMS=$E422
140 - .EQ INITV=$E453
150 - .EQ SCREENCLR=$E544
160 - .EQ RAMTEST=$FD50
170 - .EQ I0RESET=$FDA3
180 - -EQ TVTAKT=IFF5B
190 -
192 -;

.EQ REST0R=$FF8A

194 —; ******
196 -;

MODULKENNUNG UND -VEKTOREN ****

200 - -WO RESET,NMI
210 -
212 -;

.BY $C3,$C2,$CD,$38,$30

214 -;**♦***
216 -?

RESET-PROGRAMM ********

220 -RESET STX $D016 ;RESET-BIT
230 - JSR IORESET
240 - JSR RAMTEST
250 - JSR RESTOR
260 - JSR TVTAKT
270 - CLI
280 - JSR INITV
290 - JSR INITCZ
300 - JSR INITMS
310 - JSR SCREENCLR
320 -
322 -?

JMP $C000 ;SPRUNG IN SMON

324 -; ** NMI--PROGRAMM (RESTORE-TASTE) **
330 -NMI PLA
340 - TAY
350 - PLA
360 - TAX
370 - PLA
380 - RTI
390 - .SY 1,4

Sowohl was die Hardware als auch die Firmware für die Unter­
brechungsbehandlung angeht, haben wir nun einen guten 
Überblick gewonnen. Es ist jetzt an der Zeit, daß wir uns 
ansehen, auf welche Weise man dieses Reservoir an vielfälti­
gen Möglichkeiten für sich nutzen kann. Dazu soll uns ein 
Überblick dienen:
I) Auslösung der Unterbrechung durch Hardware- 
Einwirkungen.

Da hätten wir beispielsweise den Userport oder den 
Expansion-Port, über die wir per CIAs Unterbrechungen 
anfordern können. Um es gleich zu sagen: Damit werden wir 
uns nicht auseinandersetzen. Meine Kenntnisse auf diesem 
Gebiet sind zu dünn. Aber vielleicht verstehen Sie das auch 
mal als Aufforderung, Ihre Versuche dazu anderen zu offen­
baren? Also: Schreiben Sie doch mal!
II) Unterbrechungsauslösung per Software:

Damit haben wir immer noch ein weites Feld von Möglich­
keiten vor uns:
Ila) Vorgesehene Nutzungen des IRQ
— mittels des VIC-ll-Chips.

Speicher­
platz ($) 8000 8001 8002 8003 8004 8005 8006 8007 8008

Inhalt
LSB

RES
Vel

MSB

>ET- 
rtor

LSB

NMIA

MSB

Rektor

C B M 8 0

Bild 45. Diesen Inhalt müssen die Speicherstellen $8000 
bis $8008 haben, damit ein Modulstart stattfindet.

RESET-PROGRAMM

Bild 46.
Flußdiagramm zum Programm 6, Modulsimulation.
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Da können wir uns auf den Rasterzeileninterrupt, die 
Sprite/Hintergrund- oder die Sprite/Sprite-Kollision stützen. 
— oder mit Hilfe des CIA1

Da ist es vor allem der 60mal pro Sekunde auftretende 
Timer A-Unterlauf, der uns interessieren soll.
Ilb) Vorgesehene Nutzungen des NMI
— CIA2: Läßt man die RS232C-Schnittstellenbehandlung 
außer acht, dann gibt es keine vorgesehene Nutzung.
— RESTORE: Zusammen mit der RUN/STOP-Taste kann man 
die vorgegebene Routine verändern, wie wir es schon in eini­
gen Beispielen gezeigt haben.

Wir können außerdem noch unterscheiden zwischen Nut­
zungen, die periodisch stattfinden sollen (zum Beispiel eine 
spezielle Tastaturabfrage) und solchen, die stochastisch (= 
zufallsabhängig) oder willkürlich erfolgen (zum Beispiel 
Drücken der RESTORE-Taste). Beides ist auch durchführbar 
bei:
llc) Nicht vorgesehene Nutzung der Unterbrechungen.

Da bietet sich vor allem der meistens völlig brach liegende 
CIA2 an mit seinen beiden Timern und der Alarmfunktion.

Wenn Sie aber erst einmal vertraut sind mit der Unterbre­
chungs-Programmierung und auch etwas Zeit zum Tüfteln 
investieren, finden Sie bestimmt noch eine ganze Menge wei­
terer Möglichkeiten.

Bei mehreren gleichartigen Unterbrechungsanforderun­
gen (zum Beispiel IRQs) muß noch ein Weg gefunden wer­
den, wie zwischen den dann vielleicht anfallenden unter­
schiedlichen Service-Routinen differenziert werden kann. 
Denkbar wären beispielsweise Aufgabenstellungen wie:

Jeder 3. Timer-IRQ soll den Joystick abfragen, oder 
RESTORE+h soll den Hilfsbildschirm zeigen, RESTORE+z 
soll den aktuellen Bildschirm wieder restaurieren, etc.

PROGRAMM 7 ,603A C9 F8 CMP #F8
,603C 80 1 1 BCS 604F

,6000 78 SEI ,603E 18 CLC
,6001 A8 28 LDA #28 ,603F 65 02 ADC 02
,6003 8D 14 03 STA 0314 ,6041 8D 12 D0 STA D012
,6006 A8 60 LDA #60 ,6044 A0 03 LDY #03
,6008 8D 15 03 STA 0315 ,6046 88 DEY
,6008 A8 F8 LDA #F8 ,6047 D0 FD BNE 6046
,600D 8D 12 D0 STA D012 ,6049 EE 20 D0 INC D020
,6010 AD 11 D0 LDA D011 ,604C 4C 81 EA JMP EA81
,6013 29 7F AND #7F
,6015 8D 11 D0 STA D011 ,604F A9 00 LDA #00
,6018 A9 81 LDA #81 ,6051 8D 20 D0 STA D020
,601A 8D lA D0 STA D01A ,6054 A9 32 LDA #32
,601D A9 00 LDA #00 ,6056 8D 12 D0 STA D012
,601F 8D 20 D0 STA D020 ,6059 4C 81 EA JMP EA81
,6022 A9 04 LDA #04
,6024 85 02 STA 02 ,605C 78 SEI
,6026 58 CLI ,605D A9 00 LDA #00
,6027 60 RTS ,605F 8D lA D0 STA D01A

, 6062 A8 31 LDA #3 1
,602g AD 19 D0 LDA D019 ,6064 8D 14 03 STA 03 14
,6028 8D 19 D0 STA D019 ,6067 A8 EA LDA #EA
,602E 30 07 BMI 6037 ,6069 8D 15 03 STA 03 15
,6030 AD 0D DC LDA DC0D ,606C A8 0E LDA #0E
,6033 58 CL I ,606E 8D 20 D0 STA D020
,6034 4C 31 EA JMP EA31 ,6071 58 CLI

,6072 60 RTS
,6037 AD 12 D0 LDA D012 —

Programm 7. Das im Artikel entwickelte Programm auf 
einen Blick

MSB LSB

8 7 6 5
4 i3

2 1 0

53265 ^it7) 53266 (BitO-7)

1) Rasterzeile festlegen, bei der ein IRQ ausgelöst werden 
soll, durch Einschreiben in die Register $D012 und Bit 7 von 
$D011.
2) Freigeben des Rasterzeileninterrupts durch Einschreiben 
von 1000 0001 in das lnterrupt-enable-Register $D01A.

Der nächste Schritt betrifft die Bearbeitung des IRQ durch 
die CPU. Wie wir vorhin sahen, springt das Programm beim 
IRQ mittels eines indirekten Sprunges, der auf den Vektor 
788/9 ($314/5) zugreift. Dieser Vektor muß nun auf die 
eigene Routine verbogen werden, also:
3) Vektor $314/5 auf die IRQ-Service-Routine richten.

Damit wären alle Vorbereitungen getroffen. Der Rest liegt 
nun ganz bei uns — beziehungsweise bei dem von uns zu 
schreibenden Service-Programm. Als Bild 48 finden Sie ein 
Flußdiagramm unseres Beispielprogrammes 7.

Bild 47. So sieht das 9-Bit-Register im VIC-ll-Chip aus, 
welches die Rasterzeilen mitzählt.

Sie sehen, eine große Menge Arbeit wartet auf uns. Nicht 
zu allen Möglichkeiten werde ich hier Beispielprogramme zei­
gen. Außerdem dürfen die dann auch nicht zu undurchsichtig 
sein und man sollte möglichst den Erfolg eines solchen 
Demo-Programmes auf dem Bildschirm erkennen können. 
Trotzdem hoffe ich, daß die nachfolgend und in den nächsten 
Kapiteln gezeigten Programmlösungen ausreichen, Ihnen 
die Unterbrechungs-Behandlung mit eigenen Routinen 
durchschaubar zu machen. Ich will Ihnen aber nicht ver­
schweigen, daß auch mir noch längst nicht alle Geheimnisse 
der Unterbrechungsprogrammierung offenbar geworden 
sind. Oft finde ich mich unversehens in Programm- 
Sackgassen wieder. Das soll Ihnen als kleiner Trost dienen, 
wenn Sie mal nach dem 1001. Absturz müde und mit rau­
chendem Kopf vor Ihrem Commodore-Ungeheuer sitzen.

62. Ein Programm zum VIC-II-IRQ

Sehr schöne Effekte lassen sich durch eine periodische 
IRQ-Anforderung per Rasterzeileninterrupt mittels des VIC-ll- 
Chip erzielen. Deshalb ist sowas auch ein beliebtes Objekt 
für Demos von Unterbrechungsprogrammen. Als Ziel setzen 
wir uns, einen Bildschirm zu konstruieren, dessen Rahmen in 
allen Farben schillert.

Leser der Grafikserie werden diese Möglichkeit des VIC-ll- 
Chip schon kennen: Man kann dem Kathodenstrahl, der über 
den Monitor huscht, um das Bild zu erzeugen, über zwei 
Register folgen, die Rasterregister, wo jede Rasterzeile mit­
gezählt wird. Ohne an dieser Stelle allzusehr auf die Einzel­
heiten einzugehen, soll hier nur bemerkt werden, daß die 
Numerierung dabei etwa von 0 bis 280 geht, weil auch der 
Rahmen und nicht sichtbare Teile des Bildschirmes vom 
Strahl überstrichen werden. Wo das Textfeld anfängt, ist von 
Monitor zu Monitor (oder Fernseher) etwas unterschiedlich. 
Bei mir beginnt es oben in Rasterzeile 50 und endet unten bei 
Zeile 248. Sollten die im Beispielprogramm 7 (Programm 7) 
nachher voreingestellten Randwerte bei Ihnen also anders 
sein, können Sie sie durch einige später noch angegebenen 
POKEs ändern. Die beiden Rasterzeilenregister sind:

$D012 (53266) 
$D011 (53265)

Von $D011 allerdings ist nur das Bit 7 als msb der Raster­
zeilenzahl für uns von Bedeutung. Bild 47 soll diese Bele­
gung deutlich machen:

Das Interessante an diesen Registern ist nun, daß man 
auch in sie schreiben kann. Die auf diese Weise festgelegte 
Rasterzeile ist dann der Auslöser des IRQ, falls dieser im 
lnterrupt-enable-Register $D01A freigegeben wurde (das 
kennen wir noch aus Kapitel 51).

Damit kann also unsere primäre Unterbrechungsquelle 
(der VIC-ll-Chip) programmiert werden. Halten wir die zwei 
Schritte dazu nochmal fest:
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Gehen wir nun an die Realisierung. Zunächst also die Initia­ 601A STA D01A ins IRQ-enable-Register
lisierung, die wir bei $6000 (also durch SYS 24576 zu star­ geschrieben, um den
ten) beginnen lassen: Rasterzeilen-IRQ zuzulassen.

6000 SEI Sperren von IRQs
Festlegen einiger Startwerte: 
601D LDA#$00 Farbeschwarz

Schritt 3:
6001 LDA#$28 LSBderlRQ-Routine

601F STA D020 in Rahmen schreiben
6022 LDA#$04 Streifenbreitein

6003 STA 0314 in IRQ-Vektor-LSB 6024 STA 02 Merkregister schreiben.
6006 LDA#$60 MSBderlRQ-Routine 6026 CLI IRQ freigeben
6008 STA 0315 in IRQ-Vektor-MSB 6027 RTS Ende der Initialisierung.
Schritt 1:
600B LDA # $F8 Rasterzeile, bei der das Textfen­

Von nun an laufen alle IRQs über unsere eigene Routine, 
die bei $6028 beginnt.

ster endet. Von da an soll der 
Rahmen schwarz sein.

600D STA D012 in Rasterzeilen-Register (LSB)

Zunächst müssen wir prüfen, ob die Unterbrechung vom 
VIC-ll-Chip kommt oder vom CIA1:
6028 LDA D019 IRQ-Request-Register des VIC-ll-

schreiben.
6010 LDA D011 Register mit dem msb des

Chip (siehe Kapitel 51). Dort ist 
Bit 7 gesetzt, wenn die Anforde­

Rasterzeilenzählers 
6013 AND #$7F 0111 1111 loschtdasBit7

rung vom VIC-ll-Chip kam.
602B STA D019 Zurückschreiben

6015 STA D011 Zurückschreiben. Damit ist die 602E BMI 6037 Sprung, falls VIC-IRQ, sonst
Rasterzeile, die den IRQ auslösen 
soll, festgelegt.

Schritt 2:
6018 LDA#$81 1000 0001 wirdnun

CIA-IRQ.
Bearbeiten eines CIA-IRQ:
6030 LDA DCOD Löschen des CIA1

Unterbrechungs-Kontrollregisters.
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6033 CLI IRQ zulassen. Damit können
innerhalb eines CIA- IRQ auch 
unsere VIC-IRQs geschehen.

6034 JMP EA31 Bearbeitung des CIA-IRQ durch 
die normale Routine.

Unser Programm für VIC-ll-IRQs:
6037 LDA D012 Rasterzeilen-Register laden um 

festzustellen, welche Zeile den 
IRQ auslöste.

603A CMP #$F8 Vergleich mit Ende des Text­
fensters.

603C BCS 604F Wenn unterhalb des Textfensters, 
Sprung.

Der folgende Programmteil ist wirksam, wenn der IRQ- 
Auslöser eine Zeile in Höhe des Textfensters war:
603E CLC Addition vorbereiten.
603F ADC 02 Streifenbreite aus dem Merkregi­

ster addieren.
6041 STA D012 Neuen Wert in Rasterzeilen-

Register schreiben.
Damit wird eine neue Rasterzeile als IRQ-Auslöser festge­

legt, die um die Streifenbreite tiefer liegt als die vorher­
gegangene.

Es folgt eine kleine Verzögerungsschleife, die aber nur zum 
Experimentieren eingebaut wurde:
6044 LDY #$03 Schleifen-Startwert
6046 DEY Herunterzählen
6047 BNE 6046 NEXT Y, bis Y=0.
Ändern der Rahmenfarbe bis zum nächsten Raster-IRQ:
6049 INCD020 Farbcode+1.WennCodeim

Rahmenfarbregister größer als 15 
wird, fängt wieder Farbcode 0 an, 
weil die Bits 5-7 keine Funktion 
haben.

Abschließend erfolgt der Rücksprung in den Rest der nor­
malen IRQ-Routine: 
604C JMP EA81 Siehe unsere Untersuchung der 

IRQ-Firmware.
Damit ist der Rahmen in Höhe des Textfensters behandelt. 

Es schließt sich nun der Teil an, der die Rahmenbereiche 
unter- und oberhalb bearbeitet:
604F LDA #$00 Farbcode schwarz
6051 STA D020 in Rahmenfarb-Register.
6054 LDA #$32 Rasterzeile, bei der oben das 

Textfenster beginnt.
6056 STA D012 In Rasterzeilen-Register 

schreiben
6059 JMP EA81 Abschluß durch Sprung zum

Ende der normalen IRQ- Routine.
Damit ist festgelegt, daß ober- und unterhalb des Textfen­

sters die Rahmenfarbe schwarz wird.
Unsere eigene Routine istjetzt abgeschlossen. Zum guten 

Ton gehört es, dem Benutzer auch die Möglichkeit zu öffnen, 
diese Routine wieder abzuschalten. Das erfolgt im letzten 
Programmteil, der mittels SYS24688 aktiviert werden kann:

Unser Programm ist komplett. Speichern Sie es bitte vor 
dem Starten ab. Nach dem SYS 24576 finden Sie einen hüb­

605C SEI IRQ sperren
605D LDA #$00 Raster-IRQ
605F STA D01A abschalten
6062 LDA #$31 IRQ-Vektor
6064 STA 0314 restaurieren
6067 LDA #$EA auf den
6069 STA 0315 Normalwert.
606C LDA #$0E Farbcode hellblau
606E STA D020 in Rahmenfarb-Register

schreiben
6071 CLI IRQ zulassen
6072 RTS

schen bunten Rahmen vor, oberhalb und unterhalb des Text­
fensters ist er schwarz. Besonders gut — finde ich — sieht 
das Ganze aus, wenn man die Hintergrundfarbe des Textfen­
sters auch auf Schwarz setzt. Das Programm erlaubt noch 
einige Experimente:

Durch POKE-Kommandos in die Speicherstelle 2 kann die 
aktuelle Streifenbreite variiert werden, durch POKEs in die 
Zelle 24645 der Startwert der Verzögerungsschleife. Pro­
bieren Sie’s doch mal aus. Eine Erkenntnis werden Sie gewin­
nen: In der Unterbrechungs-Programmierung spielt die Zeit 
eine wichtige Rolle. Das zeigt sich auch, wenn man zum Bei­
spiel Cursorbewegungen durchführt: Die Streifen fangen an 
zu wandern.

Weitere Möglichkeiten zum Experimentieren sind gege­
ben, wenn Sie die Rasterzeilen verändern, die den oberen 
und unteren Rand des Textfensters markieren:

Durch POKE 24661,Zahl verschieben Sie die obere, durch 
POKE 24635,X:POKE 24588,X die untere Rasterzeile, von 
der an alles schwarz ist. Wie schon vorhin erwähnt, habe ich 
im Programm diese Werte auf 50 beziehungsweise 248 
fixiert, weil genau dort auf meinem Monitor das Textfenster 
liegt.

Mit diesem Beispiel und dem aus der Grafikserie sollte es 
Ihnen nun möglich sein, auch andere Unterbrechungspro­
gramme zu schreiben, die sich der Rasterzeilen- 
Unterbrechung per VIC-ll-Chip bedienen. Eine Bemerkung 
sollte ich Ihnen noch auf den Weg Ihrer eigenen Versuche 
mitgeben: Der Elektronenstrahl, der über den Bildschirm 
saust und beim Erreichen des von uns bestimmten Rasterzei­
lenwertes zum Auslösen des IRQ führt, ist enorm schnell. Die 
Serviceprogramme dürfen deshalb nicht zu lang sein, sonst 
steht der nächste IRQ schon wieder an, bevor der vorange­
gangene bearbeitet ist.

63. Unterbrechungen mit den CIAs

Lassen Sie uns kurz rekapitulieren: Als primäre Unterbre- 
chungsanforderer hatten wir drei Bausteine unseres Compu­
ters benannt, nämlich den VIC-ll-Chip und die beiden CIA- 
Bausteine. CIA kommt von »Complex Interface Adapter« und 
ist die Bezeichnung für die beiden Ein- und Ausgabe-Baustei­
ne, die den gesamten Verkehr zwischen dem zentralen 
Gehirn unseres C 64 und der Peripherie managen. Wir hatten 
bemerkt, daß ein CIA, der IRQ-CIA (Adressen von 56320 bis 
56575), ausschließlich für die maskierbaren Unterbrechun­
gen zuständig ist. Dazu gehören die 60mal pro Sekunde statt­
findenden »Timer-Interrupts«, die die Cursorbehandlung, die 
Tl$-Uhr, dieTastaturabfrage etc. bearbeiten. DerandereCIA, 
genannt NMI-CIA, (Adressenraum 56576-56831) ist nurfür 
die nicht maskierbaren Unterbrechungen verantwortlich und 
wird bei normaler Nutzung des C 64 so gut wie nie eingesetzt. 
Ich gehe im folgenden davon aus, daß Sie keine RS232C- 
Schnittstelle in Ihren Computer eingesetzt haben. Sollte das 
aber der Fall sein, dann müßten Sie darauf achten, die folgen­
den Beispiele - die den NMI-CIA betreffen - ohne gleichzeiti­
gen Betrieb dieser Schnittstelle anzuwenden, weil sich sonst 
Störungen ergeben könnten.

In Kapitel 52 haben wir uns ein Register (das Register 13, 
Interrupt-Kontrollregister) der CIAs schon genauer angese­
hen und auch die Unterschiede beider Bausteine festgestellt. 
Dort war dann die Rede von Timern, Echtzeituhren, 
Alarm-Funktionen etc. Was es damit auf sich hat und wie man 
diese Möglichkeiten nutzen kann, das soll nun unser Thema 
sein. Wir werden uns dazu alle Register der CIAs genauer 
ansehen, die für die von uns ausgewählten Unterbrechungs­
optionen eine Rolle spielen. Dabei fallen einige unter den 
Tisch - das habe ich aber schon in Kapitel 52 angekündigt -, 
nämlich diejenigen, die mit dem Verkehr über den seriellen
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Port, beziehungsweise über die RS232C-Schnittstelle, zu 
tun haben. Es bleibt dann anderen - kompetenteren - über­
lassen, darüber zu schreiben. Wie wäre es zum Beispiel mit 
Ihnen ?

Auch so bleibt uns genug zu tun. In Tabelle 21 finden Sie 
zunächst eine Übersicht der von uns behandelten Register.

Sie sehen darin, daß jeder CIA über zwei sogenannte Timer 
(A und B) verfügt, sodann über die »Time of Day« (zu deutsch 
etwa »Tageszeit«) genannte Echtzeituhr mit vier Registern und 
schließlich noch über drei Kontrollregister, zu denen auch 
das schon erwähnte Register 13 gehört. Sehen wir uns 
zunächst die Timer an.

64. Die Timer der CIAs

Insgesamt verfügen wir über vier dieser Timer: Timer A und 
B im CIA1 und dasselbe nochmal im CIA2. Es handelt sich 
dabei um 16-Bit-Register, in die ein Startwert geschrieben 
werden kann, von dem an dann heruntergezählt wird. Jedes­
mal, wenn dann der Wert 0 unterschritten ist, gibt es für uns 
die Möglichkeit, bestimmte Ereignisse stattfinden zu lassen. 
Man kann diese Register unabhängig voneinander, aber auch 
kombiniert, benutzen. Ein Lesen des Registers liefert immer 
den momentan gerade aktuellen Wert. Ein Schreiben in das 
Register führt automatisch zum Festlegen eines Startwertes. 
Was an Optionen mit diesen Timern möglich ist, wird über 
Kontrollregister gesteuert. Das CRA (Register $ 0E) bezieht 
sich vor allem auf den Timer A, das CRB (Register $ 0F) auf 
Timer B. Die 16-Bit-Register werden - wie gewohnt - in der 
Form LSB/MSB betrieben. In den Timer A des CIA1 wird bei 
jedem I/O-Reset folgendes Wertepaar eingetragen:

56324 dezimal 37 LSB
56325 dezimal 64 MSB

Das entsprichteinem Startwertvon 16421. Im PAL-System 
hat der Quarz, der die Taktfrequenz bestimmt, eine Frequenz 
von 17.734472 MHz. DieProzessorfrequenzerrechnetsich 
daraus mittels Division durch 18 zu 985248.4 Hz (also etwas 
weniger als 1 MHz, was den europäischen C 64 langsamer 
machtalsdenamerikanischen, deretwasmehrals 1 MHzver- 
wendet). Wenn mit dieser Geschwindigkeit der Timer herun­
tergezählt wird, erhält man alle %o Sekunden genau einen 
Unterlauf. Das ist der Weg, eine kontrollierte Zeitspanne 
durch den Timer zählen zu lassen. Sei X der gesuchte Start­
wert, der zu einer Spanne von T Sekunden führt, dann kann 
man X berechnen mittels:

X = 985248.4 * T
Der Integerwert von X ist dann in ein LSB und ein MSB zu tei­

len und in die Timer-Register einzutragen. Allerdings ergibt 
sich so eine natürliche Grenze. Die höchste durch 2 Byte 
darstellbare Zahl istja 65535. Wenn wir diesen Wert in den 
Timer schreiben, dann ist er alle 1/15 Sekunden auf 0 herun-

tergezählt. Für längere Zeiten ist aber vorgesorgt. Die beiden 
Timer A und B sind kombinierbar (wie, dazu kommen wir 
gleich noch) zu einem 32-Bit-Register. Die höchste Zahl X ist 
dann:

4 294 967 296 = 232
Damit kann im Extremfall eine Herabzählzeit von 1 Stunde, 

12 Minuten und zirka 40 Sekunden eingeplant werden, was 
für die meisten Zwecke ausreichen dürfte.

Möchten Sie also genau eine Sekunde Spielraum haben 
beim Herunterzählen, dann muß die Zahl 985248 als 4-Byte- 
lnteger-Wert in die Speicher von Timer A und Timer B 
gebrachtwerden. DasführtdannzudenWerten 0,15,8,160 
(weil 985248 = 0*16777216 + 15*65536 + 8*256 + 
160). 0 und 15 gelangen als MSB beziehungsweise LSB in 
Timer B (also Register 07 und 06), 8 und 160 sind MSB und 
LSB für den Timer A (Register 05 und 04). Sehen wir uns nun 
an, wie wir dem Computer sagen, was mit diesen Startwerten 
in den Timer-Registern geschehen soll. Die beiden Kontroll­
register CRA und CRB beziehen sich weitgehend auf die 
gleichnamigen Timer. Im Bild 49 finden Sie das Register $0E, 
also CRA und in Bild 50 das andere Kontrollregister CRB 
($0F):

Die Bedeutung der Bits 0 bis 4 ist - jeweils für den dazuge­
hörigen Timer - identisch:
Bit 0 an dieser Stelle führt zum sofortigen Anhalten 

des Timers. 1 in diesem Bit startet das Herun­
terzählen.

Bits 1 und 2 Diese beiden Bits hängen mit dem externen 
Signalverkehr zusammen und werden von uns 
außer acht gelassen.

Bit 3 lstdieses Bit = 1, dann ist der sogenannte »One
Shot«-Betrieb des Timers aktiv. Das bedeutet, 
daß vom Startwert an heruntergezählt wird bis 
aufNull. Esfindetnun dasprogrammierte Ereig­
nis statt (zum Beispiel ein IRQ). Anschließend 
wird der Startwert wieder eingeladen und der 
Timer gestoppt.

Im Gegensatz dazu läuft der »Continuous«- 
Betrieb, wenn das Bit den Wert 0 enthält. Dabei 
geschieht zunächst dasselbe wie beim One 
Shot Modus, der Timer wird aber nicht angehal­
ten, sondern der ganze Vorgang wiederholt 
sich in einer Endlosschleife.

Bit4 Ein Hineinschreiben einer 1 in dieses Bit 
erzeugt ein sofortiges Neuladen der Timer- 
Register mit dem Startwert. Dabei ist es gleich-

Bild 49. Das Kontrollregister des Timers A.

7 6 5 4 3 2 1 0

TODIN externer in MODE Force­ ONE externer Signal­ Start/
50Hz Signal­ load Shot/ verkehr /Stop
60 Hz verkehr Continu­

ous

Tabelle 21. Die wichtigen Register der beiden CIAs.

Register 
Nr. ($)

Adresse (dez.) Name Funktion
CIA-1 CIA-2

04 56324 56 580 TALO TIMER A LSB
05 56325 56 581 TAHI TIMERA MSB
06 56326 56582 TBLO TIMER B LSB
07 56327 56 583 TBHI TIMER B MSB
08 5Q328 56584 TOD10THS Vio-Sekunden-Register
09 56329 56 585 TODSEC Sekunden-Register
0A 56330 56 586 TODMIN Minuten-Register
OB 56331 56 587 TODHR Stunden-Register, 

AM/PM-Flagge
0D 56 333 56 589 JCR Unterbrechungs-Kon­

trollregister
0E 56334 56 590 CRA Kontrollregister A
0F 56 335 56591 CRB Kontrollregister B

Bild 50. Dasselbe für den Timer B.

7 6 5 4 3 2 1 0

ALARM In MODE Force­ ONE Shot/ externer Signal­ Start/
load Continuous verkehr ^top

Bild 51.Die Register der Echtzeituhren.

Register 
Name Nr. 7 6 5 4 3 2 1 0

TOD1OTHS 08 unbenutzt 7iX-Sekundenwert

TODSEC 09 unbenutzt Zehnerstelle Sekunden Einerstelle Sekunden

TODMIN 0A unbenutzt Zehnerstelle Minunten Einerstelle Minuten

TODHR OB AM/PM 
Flagge

unbenutzt Zehnerstelle
Stunden

Einerstelle Stunden
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gültig, ob der Timer gerade läuft oder nicht. 
Schreibt man eine Null ein, hat das keine Wir­
kung.

Beim Lesen des Registers ist dieses Bit 
immer 0.

Zu diesem Bit und seiner Wirkung ist noch 
etwas zu sagen. Das Neuladen des Timers 
geschieht
- immer dann, wenn ein Unterlauf stattgefun­
den hat oder
- falls der Timer steht und in die Register ein 
Startwert geschrieben wird. Dabei ist der CIA 
so konstruiert, daß man kein zwangsweises 
Laden (also mit Bit 4 = 1) braucht, wenn man 
den Startwert in der Reihenfolge LSB MSB in 
die Register bringt.

Die Bits 5 bis 7 haben nun unterschiedliche Bedeutung im 
CRA und im CRB:
Register CRA ($0E)
Bit 5: Ist dieses Bit gleich Null, dann wird im System­

takt gezählt. Den hatten wir vorhin zur Zeitbe­
rechnung schon verwendet. Wenn das Bitauf 1 
gesetzt ist, zählt der Timer externe Signale.

Bit 6: Spielt für den Signalverkehr über den seriellen
Port eine Rolle und soll uns hier nicht weiter 
beschäftigen.

Bit 7: Damit steuert man nicht den Timer A, sondern
dieses Bit bezieht sich auf die gleich noch zu 
behandelnde Echtzeituhr.

Register CRB ($0F)
Die Bits 5 und 6 sind hier im Zusammenhang von Bedeu­

tung. Es gibt vier Kombinationsmöglichkeiten:
Bit 6 - Bit 5 Der Timer B wird - wie vorhin der Timer A - im

0 - 0 Systemtakt heruntergezählt.
0 - 1 Der Timer B wird durch externe Signale herun­

tergezählt.
1 - 0 Der Timer B zählt die Unterläufe von Timer A. 

Das ist der vorhin erwähnte Punkt, der beide 
Timer kombiniert zum 32-Bit-Zähler. Man kann 
also im Extremfall 65536 mal 65536 Takte zäh­
len lassen.

1 - 1 Auch in diesem Fall zählt Timer B die Unterläufe 
von Timer A. Er tut das aber nur, wenn ein 
bestimmtes externes Signal vorhanden ist.

Bit7: Auch beim Register CRB steuert dieses Bit
bestimmte Möglichkeiten der Echtzeituhr. Des­
halb haben Sie noch ein wenig Geduld, bis wir 
diese Uhr behandeln.

Wir kennen uns nun ganz gut aus, wie wir mit den Timern 
umzugehen haben. Unser Wissen soll in einem kleinen Test 
erprobt werden. Dazu bedienen wir uns des %o Sekunden 
IRQ. Wirverändern diese regelmäßige Unterbrechung derart, 
daß sie nur noch einmal in der Sekunde geschieht. Welche 
Zahlen dazu in ein 32-Bit-Register gepackt werden müssen, 
haben wir schon vorhin berechnet. Jeweils in der Reihenfolge 
LSB/MSB müssen wir sie einschreiben und vorher die Timer 
anhalten, indem die Bits 0 der Kontrollregister CRA und CRB 
auf 0 gesetzt werden. Nach dem Einschreiben und Starten 
der beiden Timer müssen folgende Bitmuster in CRA und 
CRB stehen:
CRA

Bit 0 = 1 Start Timer A
Bit 3 = 0 Dauerlauf
Bit 5 = 0 Systemtakt 

CRB
Bit 0 = 1 Start Timer B
Bit 3 = 0 Dauerlauf
Bit 5 = 0
Bit 6 = 1 Timer B zählt Unterläufe von Timer A.

Bevor wir die Timer starten, muß auch noch das lnterrupt- 
Kontrollregisterverändertwerden (das hatten wiruns in Kapi­
tel 52 genauer angesehen). Bislang erzeugt ein Unterlauf 
des Timers A eine Unterbrechung. Wir möchten aber, daß der 
Timer B (damit wir das 32-Bit-Register voll ausnutzen) der 
Auslöser ist. Dazu muß Bit 0 des ICR gelöscht und statt­
dessen Bit 1 gesetztwerden.

Im Programm »Timer-Test« (siehe Listing 8 und 9) ist all das 
realisiert. Mit SYS 49152 gestartet, zeigt sich sofort ein deut­
lich verlangsamter Cursor. Noch langsamer kann alles wer­
den, indem Sie höhere Werte in die Timer-Register schreiben.

programm : prg.timer-testc000 c051

c000 : 78 ad 0e dc 29 fe Bd 0e 4b 
c008 : dc ad B* dc 29 fe 8d 0f f9 
c010 : dc a9 0f 8d 06 dc a9 00 24 
c019 : 8d 07 dc a9 a0 8d 04 dc d5 
c020 : a9 08 Bd 05 dc a9 1* 8d 84 
c02B : 0d dc a9 82 8d 0d dc ad 6e 
c030 : 0e dc 29 d7 8d 0e dc ad 0a 
c038 : 0f dc 29 d7 8d 0f dc ad lb 
c040 : 0e dc 09 01 8d 0e dc ad 37 
c048 : 0f dc 09 41 8d 01 dc 58 a5 
c050 : 60 ff 00 ff 00 ff 00 ff b0

Listing 8. Programm Timer- 
Test, ein Beispiel für die 
Anwendung eines 
32-Bit-Timers.

Listing 9. Der Quelltext zum Timer-Set.

PASS 1

PASS 
7000 
7000 
7000 
7000 
7000 
7000 
7000 
7000 
7000 
7000 
7000 
7000 
7000 
7000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C000 
C001 
C001

78

AD 0E DC

0823 
084C 
0875
088E 
08C7
08F0 
0919 
0942 
0968
0994 
09BD 
09E6 
09E9
09EC 
09F8
09FE 
0A01
0A27 
0A2A 
0A3A
0A4A 
0A5A
0A6A 
0A79 
0A88 
0A97
0A9A 
0AC3
0AC6 
0AE5
0AE8 
0AF2

; * * * * * * * * + * 4 * * * * * * * f t * * t 4 * * * * * * * * * * * * * * 
; * *
;* TIMER-TEST *
; * *
7 4 TIMER A UMD B DES C1A1 WERDEN SO *
,'4 GESCHALTET, DASS NUR NOCH 1 MAL *
;* PRO SEKUNDE DER TIMER-IRQ AUFTRITT *,' 4 *
;* HEIMO PONNATH HAMBURG 1985 *
; * *.: * * * * * * * * * * * * * * 4 * 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

.BA *C000 

.OS

;+++ BENUTZTE ADRESSEN DES CIA 1 +++

TALO .DE SDC04
TAH I .DE $DC05
TBLO .DE SDC06
TBHI .DE *DC07
ICR .DE $DC0D
CRA .DE $DC0E
CRB .DE $DC0F

,*+ + + EINSCHALTEN DES 1 SEKUNDEN IRQ + + +

START SEI ;SPERREN ALLER IRQS

LDA CRA
C004
C006

29 
8D

FE 
0E DC

0B03 
0818

AND 
STA

#Z11111110 
CRA ;STOP TIMER A

C009 AD 0F DC 0B25 LDA CRB
C00C
C00E

29
8D

FE
0F DC

0B36
0B4E

AND 
STA

#Z11111110 
CRB ,-STOP TIMER B

C01 1
C01 1
C013

A9 
8D

0F
06 DC

0B51 
0B6F 
0B8A

;
LDA 
STA

#15 ;NEUER STARTWERT IN
TBLO ;32-BIT-REGISTER

C016
C018

A9
8D

00
07 DC

0894
0B9F

LDA
STA

#00 
TBHI

C01B
C01D

A9 
8D

A0 
04 DC

0BAA 
0BB5

LDA 
STA

#160
TALO

C020
C022

A9 
8D

08
05 DC

0BBF
0BCA

LDA 
STA

#08 
TAHI

C025
C025
C027

A9
8D 0D DC

0BCD
0BDE
0BFB

LDA 
STA

#Z000111 1 1
ICR /ALLE IRQ VERBOTEN

C02A
C02C

A9
8D

82
0D DC

0C0C
0C27

LDA
STA

#Z10000010 
ICR ;NUR TIMER B IRQ

C02F
C02F AD 0E DC

0C2A 
0C34 LDA CRA

C032
C034

29
8D

D7 
0E DC

0C45
0C61

AND 
STA

#Z1101011 1
CRA ;BITS 3 UND 5 = 0

C037
C037 AD 0F DC

0C64
0C6E LDA CRB

C03A
C03C

29
8D

D7
0F DC

0C7F
0C8F

AND 
STA

#Z11010111 
CRB ;DITO

C03F
C03F AD 0E DC

0C92
0C9C

;
LDA CRA

C042
C044

09
8D

01 
0E DC

0CAD
0CC6

ORA 
STA

#Z00000001 
CRA ;TIMER A START

C047
C047 AD 0F DC

0CC9
0CD3 LDA CRB

C04A
C04C

09
8D

4 1 
0F DC

0CE4 
0D01

ORA 
STA

#Z01000091
CRB ,'TIMER B START MIT

C04F 
C04F
C04F
C050
C050
C051 
C05 1

58

60

0D24 
0D27
0D3D 
0D40
0D46 
0D49
0D4F

CLI

RTS

. EN

TIMER A UNTERLAUF

;IRQS FREIGEBEN
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Den Normalzustand stellen Sie einfach durch Drücken der 
RUN/STOP- und der RESTORE-Tasten her. Dabei wird ja - wie 
Sie aus dem letzten Kapitel her wissen, auch ein I/O-Reset 
ausgeführt, der den Ausgangszustand wiederherstellt.

Die Verlängerung des IRQ-Zyklus hat übrigens noch einen 
sinnvollen Nebeneffekt. Je seltener ein laufendes Programm 
unterbrochen wird, desto schneller wird es mit seinen Jobs 
fertig. Das kann man immer dann tun - im Extremfall sogar den 
IRQ ganz ausschalten - wenn man die Möglichkeiten, die der 
Computer während des normalen IRQ anbietet, nur selten 
oder aber gar nicht braucht.

65 . Die Echtzeituhren

Wir kennen nun fünf Uhren in unserem Computer: Die vier 
Timer üeweils A und B im CIA1 und CIA2), die wir, weil wir die 
Impulszahlen in Zeiteinheiten umrechnen können, zur Zeit­
messung einsetzen könnten und die im Basic verfügbare Uhr 
Tl$, die aber - wie wir nun wissen - lediglich die Umsetzung 
des Timers A im CIA1 in ein bequemer handhabbares 
Software-Instrument ist. Zudem ist die Ganggenauigkeit die­
ser Uhr recht gering. Schon einige Kassettenoperationen 
genügen, sie völlig aus dem Takt zu bringen.

Um so mehr verwundert es, daß zwei hervorragende Echt­
zeituhren im Commodore 64 so gut wie nie benutzt werden, 
ja nicht einmal in irgendeiner Weise softwaremäßig unter­
stützt werden. Vielleicht ist das ein bißchen zuviel »mehr sein 
als scheinen«, was Commodore da betreibt, wenn man 
bedenkt, welche verborgenen Schätze da alle zutage geför­
dert werden können (man denke nur an die hochauflösende 
Grafik) bei genauer Untersuchung des Computers.

Jeder der beiden CIAs verfügt über solch eine Uhr, die 
direkt von der Netzfrequenz getaktet wird. Die Zählung der 
Zeit geschieht in vier Registern (Register $08 bis $0B), die 
in Bild 51 gezeigt sind.

Vielleicht fällt Ihnen etwas auf, wenn Sie sich diese vier 
Byte mal genauer ansehen: Die Speicherung geschieht in 
Form von Einer- und Zehnerstellen. Das kann also weder im 
Binärformat noch als ASCII-Zeichen funktionieren. Hier wer­
den die Ziffern als BCD-Zahlen abgelegt. In Kapitel 13 wurde 
dieses »binary coded decimal«-Format erklärt. Das ist lange 
her und soll deshalb hier nochmal vorgestellt werden, damit 
alle wissen, wovon die Rede ist.

In dieser Zahlendarstellung wird jede Dezimalstelle einer 
Zahl gesondert in eine Binärzahl umgewandelt. Dann ergibt 
sich der folgende Zusammenhang:

Binär Dezimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

Das war’s! Die anderen möglichen Binärkombinationen 
(also zum Beispiel 1010 etc.) werden nicht benutzt. Die Zahl 
25 beispielsweise lautet im BCD-Format: 

0010 0101
t t
2 5

Jetzt ist es Ihnen sicherlich verständlich, warum für die 
Sekunden- und Minuten-Zehnerstellen nicht mehr als drei

Bit reserviert wurden: größer als 6 wird die Zehnerstelle nicht.
Zum Stundenregister TODHR ist aber noch etwas zu 

sagen: Dort ist nur ein Bit reserviert für die Stunden- 
Zehnerstelle. Die Uhr läuft nicht bis 24 Uhr, sondern lediglich 
bis 12 Uhr. Zur Unterscheidung, ob vor- oder nachmittags 
gemeint ist, dient das Bit 7. Dieses sogenannte AM/PM-Flag 
ist orientiert an der angelsächsischen Gewohnheit, zum Bei­
spiel für 16 Uhr den Ausdruck 4 PM zu verwenden. PM kommt 
vom lateinischen »post meridiem«, was übersetzt heißt »nach 
dem Mittag«, wohingegen AM steht für »ante meridiem«, also 
»vor dem Mittag«. Meint man nun AM, dann muß diese Flagge 
auf 0, bei PM aber auf 1 gesetzt sein.

Beim Stellen der Uhren sollte eine Reihenfolge eingehalten 
werden. Sobald nämlich in das Stundenregister geschrieben 
wird, hält die Zählung automatisch an. Man kann nun die ande­
ren Werte in die Register schreiben. Den Startschuß liefert 
das Schreiben in das Register TOD1 OTH: von nun an tickt die 
Uhr wieder.

Ähnlich funktioniert das Lesen der Uhrzeit. Sobald das 
Stundenregister gelesen wird, führt das zum Anhalten der 
Uhr, so daß die restlichen Register reibungslos auslesbar 
sind. Wieder ist es das Zehntelsekundenregister, das beim 
Auslesen ein Weiterlaufen der Uhr bewirkt. Aber, so werden 
Sie bemerken, wenn der Auslesevorgang eine bestimmte Zeit 
beansprucht, führt das zu Verzögerungen? Die Lösung ist, 
daß der gesamte Inhalt der vier Register gleichzeitig mit dem 
Auslesen des Stundenwertes in einen internen Speicher 
transferiert wird und dort weiterläuft. Nach dem Lesen des 
TOD10TH kommt der aktuelle Wert zurück in die Register und 
dieser wird weitergezählt.

Nun wird es höchste Zeit, daß wir uns die beiden Bits im 
CRA und im CRB ansehen, die wir vorhin bei der Timer-Be­
handlung links liegen ließen. Bit 7 im CRA kündigt der Echt­
zeituhr an, welche Netzfrequenz zu erwarten ist. Eine 1 an 
dieser Stelle steht für 50 Hz, eine 0 für 60 Hz. Unser Strom­
netz in Deutschland liefert einen Wechselstrom mit 50 Hz, 
weshalb wir dann dort die 1 setzen sollten. Da gibt es ein klei­
nes Problem: Beim I/O-Reset, der durch Drücken der 
RUN/STOP- und der RESTORE-Tasten zusammen ausgelöst 
wird, schreibt der Computer immer den amerikanischen Wert 
für 60 Hz in dieses Bit. Dann geht die Uhr aber empfindlich 
nach. Man muß also einen Weg finden, der erlaubt, dort in die­
sem Fall wieder eine 1 einzuschreiben. Das ist durch eine 
eigene NMI-Routine möglich. Sie sehen schon, der Weg zur 
Nutzung dieser verlockenden Uhren ist ziemlich dornen­
reich!

Noch interessanter ist das Bit 7 im CRB. Das Setzen der 
Uhrzeit ist nämlich nur möglich, wenn dieses Bit den Inhalt 0 
hat. Was geschieht, wenn dort eine 1 steht? Dann bestimmt 
man nicht die aktuelle Uhrzeit, sondern man stellt einen 
Wecker (das ist die Alarmzeit). Das geschieht nach dem Set­
zen dieses Bits genauso wie vorhin das Einschreiben der 
Uhrzeit (also erstaunlicherweise auch in genau dieselben 
Register!). Im Unterschied dazu ist allerdings ein Lesen der 
Alarmzeit nicht möglich - das ergibt immer die aktuelle Uhr­
zeit. Man muß für diesen Fall die Weckzeit irgendwo abspei­
chern und bei Bedarf dann von dort lesen.

Weil man ja meistens nach dem Erreichen der Alarmzeit 
irgendeine Reaktion erwartet, ist im ICR (also dem Unterbre­
chungskontrollregister 13) jedes CIAs noch ein Bit reserviert 
- das Bit 2 —, mit dessen Hilfe der Alarm per IRQ oder NMI wie 
auch immer geartet losbrechen kann. Der Phantasie sind hier 
nur wenige Grenzen gesetzt. Wie man mit diesem ICR 
umgeht, haben wir schon besprochen.

Damit sind wir durch die Eigenheiten der CIAs durch. Man 
braucht tatsächlich keine Scheu zu haben, diese Echtzeituh­
ren zu nutzen. Lediglich die Uhr im CIA1 wird manchmal ver­
wendet, einen bestimmten Wert für die Zufallszahlenerzeu­
gung zu generieren. Aber das sollte einer eigenen Uhren-
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Routine nicht in die Quere kommen. Solch eine Echtzeituhr 
finden Sie in Listing 10 und 11.

Durch SYS49152 aktivieren Sie die Uhr, die Sie mit 
SYS49261 auchwiederabschaltenkönnen. Durchein USR- 
Kommando A=USR (String) stellen Sie die Startzeit ein. 
String kann dabei eine Stringvariable sein oder auch direkt ein 
String der Fbrm »HHMMSST« (also Stunden, Minuten, Sekun­
den, Zehntelsekunden). In A steht eine 0, wenn kein Fehler, 
aber eine -1, wenn ein Fehler aufgetreten ist. Das Lesen der 
Uhr erfolgt über ein zweites USR-Kommando:

PRINTUSR(Zahl). Dabei kann Zahl eine beliebige Zahl oder 
Variable sein. Eine Alarmzeit ist ebenfalls einstellbar durch ein 
USR-Kommando, in dem vor der Zeiteingabe noch ein Buch­
stabe steht. Beispielsweise stellt A=USR(»A1200000«) 
einen Wecker auf 12 Uhr. Der Alarm im Programm läßt den 
Bildschirmrahmen blinken. Abstellen kann man das durch 
Auslösen eines RESTORE-NMI (also RUN/STOP und RE­
STORE). Sollten Sie vor dem eingestellten Alarm mal solch 
einen NMI auslösen, dann muß die Alarmzeit neu gestelltwer- 
den. Als Basisfür dieses Programm diente ein Listing aus dem 
schon oft erwähnten Buch von Babel/Krause/Dripke »Das 
Interface Age Systemhandbuch zum Commodore 64«.

Die Unterbrechungs-Programmierung ist damit abge­
schlossen - ebenso dieser Kurs, der als Einführung in die 
Assembler-Alchimie nun alle Geheimnisse der Kunst aufge­
deckt hat. In den letzten Kapiteln sind wir schon in die Mei­
stergrade der Zunft aufgestiegen. Vielleicht ging es man­
chem etwas zu schnell? Dann wird Ihnen der Kurs »Von Basic 
zu Assembler« eine Hilfe sein, der behutsam und mit vielen an 
Basic angelehnten Beispielen die nötige Programmierpraxis 
vermitteln wird (ab 64’er, Ausgabe 1/86). So wie die Segler 
sich oft »Mast- und Schotbruch« wünschen, verabschiede ich 
mich, indem ich Ihnen viele grandiose Abstürze wünsche.

(Heimo Ponnath/gk)

programm : abj..alarmuhr c000 cl8d

c000 :: a9 8e 8d 11 03 a9 c0 8d 11
c008 : 12 03 a9 ld 8d 18 03 a9 a3
c010 :: c0 8d 19 03 ad 0e dd 09 12
c01B : 80 8d 0e dd 60 48 8a 48 al
c020 :: 98 48 a9 74 8d 0d dd dC 49
c028 :: 0d dd 10 06 4c 6a cl 4c a0
c030 :i 72 fe 20 bc 46 20 el 44 b9
c038 :: d0 45 a2 04 bd 24 4d 9d b4
c040 :: 13 03 Cd d0 47 a2 la bd la
c048 :: 35 4d 9d 19 03 Cd d0 47 c0
c050 :i a9 74 8d 0d dc 8d 0d dd e8
c058 :; 8d 00 dc a9 08 8d 0e dc 30
c060 :: a9 88 8d 0e dd a9 08 20 4e
c068 :: b6 4d 4c 6c f e a9 48 Bd 37
c070 :. 11 03 a9 b2 8d 12 03 78 2a
c078 s: a9 47 8d 18 03 a9 4e 8d c0
c080 :! 19 03 a9 31 8d 14 03 a9 84
c088 :: ea 8d 15 03 58 60 24 0d 12
c090 :: 30 03 4c 20 cl 20 82 b7 40
c098 :: c0 07 d0 40 ad 04 dd 29 35
c0a0 :: 74 8d 04 dd a0 00 a9 24 5e
c0a8 :: 20 4e c0 d0 02 a9 24 c9 23
c0b0 :: 13 90 07 48 38 e9 12 d8 b9
c0b8 :: 09 80 8d 0b dd 20 f c c0 la
c0c0 :: 8d 0a dd 20 4c c0 8d 09 ec
c0c8 :: dd 20 66 cl 8d 08 dd a9 6b
c0d0 :: 00 4c 3c bc 68 68 68 68 d9
c0d8 :: a9 44 d0 45 c0 08 d0 48 45
c0e0 :i ad 04 dd 09 80 8d 04 dd la
c0e8 :: a9 84 8d 0d dd a9 3c 85 44
c040 :: 04 85 02 a9 44 85 03 a0 e6
c0f8 :: 01 4c a6 c0 a9 60 85 24 dd
cl00 :i 20 13 cl 0a 0a 0a 0a 85 80
cl08 :: 25 20 13 cl 05 25 c5 24 13
cll0 :i b0 c4 60 bl 22 38 e9 30 5d
cll8 :: 90 ba c9 0a b0 b6 c8 60 5e
cl20 :i a9 07 20 7d b4 a0 00 ad b0
cl28 s: 0b dd 08 29 14 c9 12 d0 73
cl30 :: 02 a9 00 28 10 05 48 18 49
cl38 :: 69 12 dB 20 55 cl ad 0a 13
cl40 :: dd 20 55 cl ad 09 dd 20 96
cl4B :: 55 cl ad 08 dd 20 60 cl ce
cl50 :: 68 68 4c Cd b4 48 4a 4a a4
cl58 : 4a 4a 20 60 cl 68 29 04 4e
cl60 :: 09 30 91 62 c8 60 20 13 68
cl68 : cl 60 a9 77 8d 14 03 a9 8b
cl70 s: cl 8d 15 03 4c bc 4e c6 d2
cl78 : 02 40 03 4c 31 ea a5 04 46
cl80 : 85 02 ad 20 d0 45 03 8d d4
cl88 : 20 d0 4c 31 ea 00 44 00 48

Listing 10. Eine Echtzeituhr.

PASS 2
7000 0823 /
7000 084C / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *4 *
7000 0875 /* *
7000 089E ;* ECHTZEITUHR MIT ALARMFUfXT10N *
7000 08C7 /* *
7000 08F0 ;* LAEUFT MIT DEM NMI-CIA *
7000 0919 /♦ IN VERBINDUNG MIT DEM IRQ FUER *
7000 0942 7* DEN ALARM *
7000 0968 /* *
7000 0994 /* HEIMO PONNATH HAMBURG 1985 *
7000 09BD /* *
7000 09E6 ;* (TEILWEISE WURDE EIN PROGRAMM AUS 4
7000 0Ä0F /* DEM INTERFACE AGE SYSTEMHANDBUCH ♦
7000 0A38 ;* ZUM COMMODORE 64 , SEITE 114 *
7000 0A61 /* ALS BASIS VERWENDET ) *
7000 0A8A ;* 4
7000 0AB3 / ******t*****H*******tt*t*************
7000 0AB6 /
C000 0AC2 .BA «C000
C000 0AC8 .0S
C000 0ACB ;
C000 0AF4 ,•******♦*♦* ZEROPAGE-LABELS ♦♦♦******♦*
C000 0AF7 /
C000 0B18 VERZ .DE #02 /AKTUELLE VERZOEG.
C000 0B38 FARB .DE #03 /WERT FUER RAHMEN
C000 0B57 / EOR-OPERATION
C000 0B78 VORW .DE #04 ;VERZOEGERUNGSWERT
C000 0B9B VALTYP .DE #0D ;lNHALT:FF^STR 0=N
C000 0B9E /
C000 0BAO INDEX .DE #22
C000 0BC6 INDEX3 .DE #24 /POINTER
C000 0BD6 INDEX4 .DE #25
C000 0BF5 FAC1 .DE #62 ;l.MANTlSSENBYTE
C000 0BF8 /
C000 0C21 /#****#**♦* LABELS PAGES 3 ************
C000 0C24 /
C000 0C44 USRADDL .DE #0311 /USR-POlNTER
C000 0C57 USRADDH .DE #0312
C000 0C5A /
C000 0C6A FREI .DE #0313
C000 0C6D ;
C000 0C8A IRQVL .DE #0314 /IRQ-VEKTOR
C000 0C9B IRQVH .DE #0315
C000 0C9E /
C000 0CBC NMINVL .DE «0318 /NMI-VEKTOR
C000 0CCE NMINVH .DE #0319
C000 0CD1 /
C000 0CFA /♦*♦**♦**** LABELS INTERPRETER ********
C000 0CFD /
C000 0D23 ILLQUERR .DE «B248 /ILLEGAL QUANTITY
C000 0D4B / ERROR*NORMALWERT USR-VEKTOR
C000 0D4E /
C000 0D70 STRINI8 .DE #B47D /SPEICHERPLATZ
C000 0D99 / PRUEFEN,STRINGPOlNTER SETZEN
C000 0DBF STRLIT67 .DE #B4CA /REST DER STRING-
C000 0DD8 ; LESE-ROUTINE
C000 0DF7 LEN1 .DE #B782 /STRINGLAENGE
C000 0E11 / IN Y-REGISTER
C000 0E32 ACTOFC .DE #BC3C /AKKU NACH FAC
C000 0E35 /
C000 0E5E ;♦**♦*****♦ LABELS VIC-II-CHIP ********
C000 0E61 /
C000 0E7E RAND .OE #0020 ;RAHMENFARBE
C000 0E81 J
C000 0EAA ;'****♦♦**** LABELS CIA-BAUSTEINE ******
C000 0EAD /
C000 0ECA CIA1 .DE #OC00 /STARTCIA-1
C000 0EEC ICR1 .DE «DC0D /IRQ-KONTROLLREG.
C000 0F0E CRA1 .DE #DC0E /TIMER-A KONTRREG
C000 0F11 /
C000 0F34 TOD10TH2 .DE #DD08 /1/10 SEKUfOEN
C000 0F51 T0DSEC2 .DE «DD09 /SEKUNDEN
C000 0F6D TODMIN2 .DE «OD0A /MINUTEN
C000 0F8F TODHR .DE «DD0B /STUNDEN ♦ AM^M
C000 0FB1 ICR2 .DE #DD0D /NMI-KONTROLLREG.
C000 0FD3 CRA2 .DE *DD0E /TIKER-A KONTRREG
C000 0FF5 CRB2 .DE #DD0F /TIMER-B KONTRREG
C000 0FF8 /
C000 0FFB /
C000 1024 /********* LABELS OBERES ROM **********
C000 1027 /
C000 1045 NORM .DE «EA31 /NORMALER lRQ
C000 1048 /
C000 1068 TASTFLAG .DE #F6BC /TEIL DER NMI-
C000 108E / ROUTINE (KEIN MODUL)
C000 10AO VECTAB .DE #FD2F /TABELLE DER
C000 10C8 / ROM-VEKTOREN
C000 10E9 VECTA87 .DE #FD35 /MSB DES NMI-
C000 110E / VEKTORS IN DER TABELLE
C000 1132 I0RESET19 .DE #FDB6 /IZO-RESETiBEI
C000 1157 / SETZEN DES CRA IRQ-CIA
C000 117B NMIXCT16 .DE #FE6C /NMI-ROUTINE AB
C000 119D / SCREEN-EDITOR-RESET
C000 11C1 NMIRS232 .DE #FE72 /NMI-ROUTIKE AB
C000 llDE / RS232-HANDLING
C000 llFF KNIEND .DE #FEBC /ENDE DER NMI-
C000 1215 / ROUTINE
C000 1237 STOP .DE #FFE1 /KERNAL STOP SPRG
C000 1254 / NACH JMP(«328)
C000 1257 /
C000 125A /
C000 1283 /**♦***♦**♦ AKTIVIEREN ****************
C000 1286 /
C000 A9 8E 12A2 INIT LDA #L,USR /USR-VEKTOR
C002 8D 11 03 1287 STA USRADDL /LADEN
C005 A9 C0 12C4 LDA #H,USR
C007 8D 12 03 12D2 STA USRADDH
C00A 1205 /
C00A A9 lD 12F2 LDA #L,NMI /NMI-VEKTOR MIT
C00C 8D 18 03 130D STA NMINVL /STARTADRESSE
C00F A9 C0 1327 LDA #H,NMI /DER EIGENEN
C011 8D 19 03 1345 STA NMINVH /NMI-ROUTINE LAD
C014 1348 /
C014 AD 0E DD 1365 LDA CRA2 /BIT7 CRA SETZEN*
C017 09 80 137C ORA ««80 /Z1000 8000
C019 8D 0E DD 1397 STA CRA2 /NETZFREQ.>50HZ
C01C 139A /
C01C 60 13A0 RTS
C01D 13A3 /
C01D 13CC /********** EIGENE NMI-ROUTIKE ********
C01D 13CF /
C01D 48 13EF NMI PHA /AKFANG NORMALE NMI-R.

Listing 11. Der Quelltext zur Echtzeituhr.
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C0iE 8ft 1406 TXft /REGISTER RETTEN C8B3 lE4D /
C01F 48 140C PHA C0B3 F8 1E67
C020 98 1412 TYA C0B4 38 lE7B
C021 48 1418 PHA C0B5 E9 12 lE8B
C022 141B J C0B7 03 1E91
C822 A9 7F 1439 LDA #«7F /SPERREN ALLER NMI C0B8 09 80 lEA9
C024 8D 00 DD 1444 STA ICR2 C0BA lEAC ;
C027 1447 ; C0BA 80 0B 00 lECF STDSET
C027 AC 00 00 1462 LDY ICR2 /PRUEFEN 08 NMI C0BD lEF7 /
C02A 10 06 1481 BPL RESTNMI /V0M ClA2 KOMMT. C0BD lEFA :
C02C 14A4 I WENN NEIN-SPRUNG C0BD 20 FC C0 1F18
C02C 4C 6A Cl 14C1 JMP ALARM ;WENN JA, ALARM C0C0 lF3F ;
C02F 4C 72 FE 14E1 CIANMI JMP NMIRS232 /REST DER C0C0 3D 0A DD lF5A
C032 1508 ; NORMALEN NMI-ROUTINE C0C3 lF7F )
C032 150B ; C0C3 1F82 ;
C032 1534 )***** EIGENE RESTORE-NMI-ROUTINE ***** C0C3 20 FC C0 lF9F
C032 1537 J C0C6 80 09 00 lFBB
C032 155F 1 DIE MODULPRUEFUNG WIRD AUSGELASSEN C0C9 lFBE /
c032 1562 ’ C0C9 20 66 Cl lFDA
C032 20 BC F6 1587 RESTNMI JSR TASTFLAG ;TEIL DER NMI- C0CC lFF9 /
C035 20 El FF 15A5 JSR STOP ;ROUTINE ZUR STOP- C0CC 80 08 DD 2017
C038 D0 F5 15C2 BNE CIANMI ,'TASTEN-ABFRAGE c0CF 2039 ;
C03« 15C5 ; C0CF 205D / DIE UH
C03A A2 04 15E3 LDX «$04 NRQ UND BRK VEKT. C0CF 2060 J
C03C BD 2F FD 1606 UMLAD1 LDA VECTAB,X /RESTAURlEREN C0CF A9 00 207D
C03F 9D 13 03 1613 STA FREI,X C0D1 4C 3C BC 20A2 AKKUFAC
C042 CA 1619 DEX C0D4 20C9 J
C043 D0 F7 1626 BNE UMLAD1 C0D4 20CC /
C045 '1629 ; C0D4 20F5 ;***♦**♦♦
C045 1651 ; DER NMI-VEKTOR WIRD UEBERSPRUNGEN C0D4 20Fg •
C045 1654 ' C0D4 68 2116 FEHLER
C045 A2 lA 1671 LDX #$lA ;RESTAURIEREN DER C0D5 6g 2i2A
C047 BD 35 FD 1693 UMLAD2 LDA VECTAB7,X .;RESTLICHEN C0D6 212D .
C04A 9D 19 03 16AC STA NMINVH,X )VEKTOREN C0D6 6g 213g ERROR
C04D CA 16B2 DEX C0D7 gg 213E
C04E D0 F7 16BF BNE UMLAD2 C0D8 2141 1
C050 16C2 ; C0D8 A9 FF 2164 ERROR1
C050 16E3 ; ZUNAECHST NORMALER I/O-RESET C0DA 00 F5 2180
C050 16E6 ; C0DC 2183 ;
C050 A9 7F 16FD LDA #$7F ;= 0111 111 C0DC 21AC JENDE DIE
C052 8D 00 DC 1718 STA 1CR1 ;SPERREN ALLER IRQ C0DC 21D5 I-------------------
C055 8D 0D DD 1739 STA ICR2 ;SPERREN ALLER NMI C0DC 21D8 I
C058 8D 00 DC 1753 STA CIA1 >DATENREGlSTER C0DC 2201 /***♦ ALA
C05B 177A 1 PORT A AUF NORMALWERT C0DC 2204 ;
C05B A9 08 1791 LDA «$08 ;=0000 1000 C0DC 222A I AUFRUF
C05D 8D 0E DC 17AD STA CRA1 )TIMER A IM CIA1 C0DC 222D I
C060 17B0 J C0DC C0 08 224B ALSET
C060 17D2 I ERSATZ FUER BELEGUNG DES CRA2 C0DE D0 F8 2265
C060 17D5 I C0E0 2268 I
C060 A9 88 17EC LDA #«88 )=1000 1000 C0E0 AD 0F DD 2273
C062 8D 0E DD 1809 STA CRA2 ;TlMER A IM ClA2: C0E3 09 80 228E
C065 1829 I BIT 0 AUF STOP C0E5 80 0F 00 22A1
C065 184F I BIT 3 AUF EINZELLAUF C0E8 22A4 ;
C065 1875 I BIT 5 SYSTEMTAKT EIN C0E8 A9 84 22C0
C065 189D I BIT 7 ECHTZEITUHR=50HZ C0EA 80 0D 00 2205
C065 18A0 I C0ED 2208 I
C065 18C0 I REST DES NORMALEN I/O-RESET C0ED A9 3C 22F3
C065 18C3 I C0EF 85 04 2300
C065 18C6 I C0F1 85 02 2318
C065 A9 08 18DE LOA #«08 ) = 0000 1000 C0F3 A9 FF 2336
C067 20 B6 FD 18EE JSR I0RESET19 C0F5 85 03 2341
C06A 18F1 I C0F7 A0 01 235F
C06A 1919 I REST DER NORMALEN RESTORE-NMI-ROUT. C0F9 4C A6 C0 236D
C06A i91C I C0FC 2370 I
C06A 4C 6C FE 193A JMP NMIXCT16 ;EINSPRUNG BEI C0FC 2373 I
C06D 195F ; SCREEN EDITOR RESET C0FC 239C ;*♦*****♦
C06D 1962 I C0FC 23C5 /UNTERPRO
C06D 198B ,'**** ABSCHALTEN DER TIME OF DAY UHR ** C0FC 23EC ,'CODES IN
C06D 198E I C0FC 23FF ;EINGABE-
C06D 19AD I DURCH SYS-KOMMANDO C0FC 2402 ;
C06D 19B0 I C0FC A9 60 2427 ASCBCD1
C06D A9 48 19D1 AUS LDA #L,ILLQUERR ;USR-VEKTOR C0FE 244F ;
C06F 8D 11 03 19EF STA USRADDL lAUF NORMALWERT C0FE 2452 ;
C072 A9 B2 1A01 LDA #H,ILLQUERR C0FE 85 24 2465 ASCBCD
C074 8D 12 03 1A0F STA USRADDH C100 20 13 Cl 2482
C077 1A12 ; C103 0A 249A
C077 78 1A18 SEI C104 0A 24AB
C078 A9 47 1A35 LDA #*47 /RESTAURIEREN DES C105 0A 24B2
C07A 8D 18 03 lA4F STA NMINVL /NMI-VEKTORS C106 0A 24B9
C07D A9 FE lA5A LDA #$FE C107 85 25 24D7
C07F 8D 19 03 1A67 STA NMINVH C109 24DA I
C082 lA6A I C109 20 13 Cl 24F7
C082 A9 31 1A87 LDA #L,NORM )RESTAURIEREN C10C 2510 ;
C084 8D 14 03 lAA4 STA IRQVL IDES IRQ-VEKTORS C10C 05 25 252C
C087 A9 EA lAB2 LOA #H,NORM C10E 2552 I
C089 80 15 03 iABE STA IRQVH C10E C5 24 256F
C08C 1AC1 I C110 B0 C4 2580
C08C 58 lAC7 CLI C112 2590 I
C08D 60 lACD RTS C112 60 2596
C08E 1AD0 I C113 2599 I
C08E lAF9 I**** DURCH USR AUFRUFBARE ROUTINE ♦*** C113 25C2 J** PRUEF
C09E lAFC I C113 25C5 I
C09E 24 0D lBlD USR BIT VALTYP ,'WELCHER TYP VON C113 Bl 22 25E8 TEST1
C090 1B44 I VARIABLEN LIEGT VOR ? C115 2607 I
C090 30 03 lB5F BMI STRING lWENN STRING, C115 38 2600
C092 1B83 I DANN UEBERSPRINGEN C116 E9 30 2625
C092 4C 20 Cl lB9F JMP ZAHLVAR lSONST SPRUNG Cli8 90 BA 263D
C035 lBA2 I CllA 2640 I
C095 lBCB ;*♦**♦* STELLEN DER ECHTZEITUHR ******* CllA C9 0A 2659
C095 lBEB ) DURCH USR("HHMMSST') CliC B0 B6 2671
C095 lBEE I CllE 2674 f
C095 20 82 B7 1C0F STRING JSR LEN1 /Y=STRINGLAENGE CllE C8 2690
C093 C0 07 lC2C CPY #«07 /STRING=7ZEICHEN? CUF 60 2696
C09A D0 40 lC4A BNE ALSET ,'NEIN DANN ALARM C120 2699 I
C03C 1C69 I ZEIT STELLEN? C120 26C2 /**#* END
C09C iC6C I C120 26C5 I
C09C AD 0F DD 1C88 LDA CRB2 ;TlMER B lN CIA2 ci20 26EE I-------------------
C09F 29 7F lCA3 AND #«7F /BlT7 LOESCHENä C120 26F1 I
C0A1 8D 0F DD lCBF STA CRB2 /NORMALE UHRZEIT C120 271A /********
C0A4 lCE4 I IN ECHTZEITUHR CIA2 C120 2710 I
C0A4 lCE7 ; C120 273E I GES
C0A4 1D05 / AUSLESEN DES ZEIT-STRINGS C120 2741 I
C0A4 1D08 I C120 A9 07 2761 ZAHLVAR .
C0A4 A0 00 1D22 LDY #«08 /ZAEHLER AUF 0 C122 20 7D B4 277F
C0A6 A9 24 1D47 STELLEN LDA #«24 /BCD 24 STD-VERGL. C125 27A7 I \‘
C0A8 20 FE C0 1D65 JSR ASCBCD /ZEICHENTEST UND C125 27CF I '
C0AB lD8D I UMWANDLUNG IN BCD-ZAHL C125 27F6 I 1 (
C0AB D0 02 lDAB BNE STD12 /STUNDEN UNGLEICH C125 2314 I h,

C0AD lDCF / NULL ? DANN SPRUNG C125 2317 /
C0AD A9 24 lDE6 LDA ««24 /SONST « 24 •) C125 A0 00 2831 J
C0AF lDE9 I /' ;1 C127 AD 0B DD 284F l‘
C0AF C9 13 1E0B STD12 CMP #«13 /STUNDEN GROE$SER C12A 2878 I ||'
C0B1 30 07 lE2A BCC STDSET /ODERGLEICHj2 ? C12A 28A1 I ä;

j< C12A 28C7 I |
,^! C12A 28EF I $

' Ci2A 2914 )

NEIN, DANN SPRUNG 
SED /SONST DAVON BCD
SEC /SUBTRAHIEREN
SBC #«12 /UND
CLD 
ORA #«80 /BIT7 SETZEN

STA TODHR /BCD-STUNDEN UND
AM/PM-FLAG IN T0D-CIA2

JSR ASCBCD1 /ZEICHENTEST U.
UMWANDELN IN BCD-ZAHL 

STA T0DMIN2 /ERGEBNIS IN
TOD-MINUTENREGISTER

JSR ASCBCD1 /DASSELBE FUER
STA T0DSEC2 /DIE SEKUNDEN

JSR TEST /PRUEFEN,OB 1/10
SEKUNDEN=ZAHL 

STA TOD10TH2 /UND EINTRAGEN
INS TOD-REGISTER 

R BEGINNT JETZT ZU LAUFEN

LDA #«00 /KENNUNG FUER OK.
JMP ACTOFC /AKKU ZUR UEBER-

GABE INS BASIC IN FAC

♦* FEHLER AUFGETRETEN ********

PLA /JSR-ADRESSEN VOf
PLA /STAPEL HOLEN

PLA 
PLA

LDA #«FF /FEHLERKENNUNG If
BNE AKKUFAC )AKKU UND FAC

SES TEILS D. UNBEDINGTEN SPRG.

RMZEIT EINLESEN **************

DURCH Z.B. USR("AHHMhEST") 

CPY #«08 / 8 ZEICHEN ?
BNE ERROR1 /NEIN=FEHLER

LDA CRB2 
ORA #7.10000000 ,'ALARMBIT
STA CRB2 /SETZEN

LDA #7.10000100 /ALARM-NMI
STA ICR2 /ZULASSEN

LDA #«3C /VERZOEGERUNGS-
STA VORW /WERT VORGEBEN
STA VERZ 
LDA #«FF /EOR-WERT VORGEBE
STA FARB 
LDY #«01 /BUCHSTABE UEBERL
JMP STELLEN

****************************** 
GRAMM ZUR UMWANDLUNG DER ASCII 
I BCD-ZAHLEN UND PRUEFUNG DER 
ZEICHEN.

LDA #«60 /BCD 60 ALS GREN2
FUER MIN UND SEK WERTE

STA INDEX3 
JSR TEST1 /PRUEFEN OB ZAHL
ASL /AUS LSB INS MSB
ASL /SCHIEBEN
ASL 
ASL 
STA INDEX4 /UND ZW.SPEICHER

JSR TEST1 JNflECHSTE ZIFFER
PRUEFEN 

ORA INDEX4 /MSB AUS ZWSP.
UND LSB ZUSAMMENOREN 

CMP INDEX3 /UNTER GRENZW.?
BCS ERROR )NEIN=FEHLERAUSG.

RTS

UNG OB ASCII-ZAHL VORLIEGT ***

LDA (lNDEX),Y /ZEICHENEIN-
LESEN IN AKKU 

SEC 
SBC #«30 ;< ASCI I 0 ?
BCC FEHLER ;JA=FEHLER

CMP #«0A /> = ASCII ! ?
BCS FEHLER /JA=FEHLER

INY /SCHLEIFENZAEHLEF
RTS

E PROGRAMMTEIL UHR STELLEN ***

*♦ UHR LESEN *****************

CHIEHT DURCH USRCZAHL)

LDA #»07 /STRINGLAENGE
1 JSR STRINI8 /SCHAFFT 7 BYTE
* PLATZ FUEF^ STRING UND

LEGT STAR^NACH «62/63 
i SOWIE LAE^E NACH »61
i (FAC »61-66)

* LDY #»00 'M /ZAEHLER AUF 0 j
LDA TODHR I ;STUNDE AUSLESEN,

l ! DABEI WIRD GESAMTE ZEIT 1

ZWISCHENGESPEICHERT UND 
ERST NACH'LESEN DER 
l/10-SEK ZÜRUECKGEHOLT 
MIT AKTUELLEN WERT.
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C 64/VC 20 Kurs

Ci2R 2917 C15A 2E42 ;
C12A 03 2935 PHP ;STATUS ZWISCHENSPEICH. C15A 20 60 C1 2E5E JSR BCDASC1 ;lN ASCII UM­
C12B 2938 C15D 2E85 RECHNEN UND SPEICHERN
C12B 23 lF 294F AND #«iF ;=0001 1111 C15D 2E88 ;
C12D 2978 LOESCHEN DER AbUPM-FLAG C15D 68 2EA5 PLA )ZURUECKHOLEN DER BCD-
C12D 09 12 2996 CMP »«12 ;=0001 0010 =BCD12 C15E 29 0F 2EC3 AND #J0F lZAHL,LOESCHEN DES
C12F □ 0 02 29B0 BNE N012 ;<>DANNSPRUNG C160 2ED8 ! MSB
C131 A9 00 29CE LDA #«00 ;SONST STATTDESSEN C160 2EDB
C133 29D1 C160 09 30 2F00 BCDASC1 ORA #«30 ;DAZUODERN VON «30
C133 28 29F0 14012 PLP lSTATUS ZURUECKHOLEN C162 2F28 ERZEUGT (WEIL NUR ZAHL
C134 10 05 2A0A BPL AM lFALLS KEINE AM/ C162 2F4F : ZWISCHEN 0 UND 9) DEN
C136 2A2F PM-FLAG GESETZT WAR C162 2F78 : ASCIl-WERT («30 BIS 39)
C136 2A32 C162 2F7B 1
C136 F8 2A4C SED 4SONST ADDIEREN V0N C162 91 62 2F98 STA (FACl),Y ,'EINTRAGEN IN
0197 18 2A62 CLC )BCD 12 WEIL PM C164 2FB7 STRINGTABELLE
C138 69 12 2A6D ADC ##12 C164 2FBA ;
C13A D3 2A73 CLD C164 C8 2FCC INY )ZAEHLER +1
C!3B 2A76 C165 2FCF ;
C13B 20 55 C1 2A96 AM JSR BCDASC lUP ZUR UMRECHNG C165 60 2FD5 RTS
0130 2ABC V0M BCD IN ASCII UND C166 2FD8
C13E 2AE5 ; ABLEGEN IM STRING. HIER C166 3001 ;****** REST DES UP ASCII-BCO *********
0130 2B02 STUNDENWERT C166 3004
C13E 2B05 ; C166 20 13 C1 3020 .TEST JSR TEST1 )PRUEFT AUF
C13E AD 0A DD 2B22 LDA T0DMlN2 ;DASSELBE FUER C169 3042 ASCII-ZAHL (0-9)
C141 20 55 01 2B3C JSR BCDASC ;MINUTENWERT C169 60 3048 RTS
C144 2B3F C16A 304B
3144 AD 09 DD 2B5C LDA T0DSEC2 lUND SEKUNDEN- C16A 3074 ;****** NMI -REAKTION AUF ALARM ********
0147 20 55 C1 2B6F JSR BCDASC lWERT C16A 3077
C14A 2B72 ; C16A A9 77 3097 ALARM LDA #L,ALIRQ )NEUER IRQ-
C14A AD 08 DD 2B8C LDA TOD10TH2 ;UND 1/10- C16C 8D 14 03 30AB STA IRQVL )VEKTOR
C14D 20 60 C1 2BA8 JSR BCDASC 1 ;SEKUNDENWERT C16F A9 C1 30BA LDA #H,ALlRQ
0150 2BAB C171 8D 15 03 30C6 STA lRQVH
C150 68 2BC7 PLA 1USR-STRING-ARGUMENT- C174 30C9 ;
0 151 68 2BE5 PLA ;RUECKSPRUNG VORBEREIT. C174 4C BC FE 30E5 JMP NMIEND ,’REST DER NOR­
C152 2BE8 C177 3108 MALEN NMI-ROUTINE
0152 4C CA B4 2C06 JMP STRLIT67 )BRINGT STRING C177 310B
C!55 2C23 DESCRIPTOR lN DIE C177 3134 ;****** DIE NEUE IRQ-ROUTINE *********
0 155 2C52 DESCRIPTORTABELLE («19- C177 3151 RAHMEhBLINKEN
C155 2C79 «21),SETZT POINTER lN C177 3154
C155 2CA2 FAC(HIER «64/65) DARAUF C177 3157
C155 2CC8 SETZT STRING-FLAGGE, C177 C6 02 3175 ALIRQ DEC VERZ )ZEITSCHLEIFE
C155 2CE9 ERHOEHT LETZTEN C179 F0 03 3191 BEQ BLINK ,'BLINKEN WENN 0
0 155 2D10 ; DESCRIPTOR-INDEX UM 3 C17B 3194 ;
0155 2D38 ROUTINE ENDET MIT RTS. C17B 4C 31 EA 3182 JMP NORM )SONST NORMALE lRQ
C155 2D3B C17E 3iB5
C155 2D64 ;*♦** ENDE DES L.ESENS DER UHR ********* C17E A5 04 31D5 BLINK LDA VORW )ZAEHLER RUECK-
C155 
0 155

2D67 C180
C182

85 02 31E8 
31EB

STA VERZ ;SETZEN

Ci55 2D33 C182 AD 20 D0 3203 LDA RAND ; RAHMENFARBE
C155 2DBC 7 * UNTERPROGRAMM Z. UMRECHNUNG BCD IN * C185 45 03 321B EOR FARB )INVERTIEREN
C!55 2DE5 7 * ASCI I U.■EINTRÄGEN IN STRINGSPEICHER* C187 80 20 D0 3226 STA RAND
0155 2DE8 C18A 3229 ;
0155 48 2E0B BCDASC PHA )AUF STAPEL ZW.SPEICH. C18A 4C 31 EA 3244 JMP NORM JZUM NORMAL-IRQ
C156 2E0E C18D 3247 ;
0156 4A 2E2A LSR )MSB INS LSB SCHIEBEN C18D 324D .EN
C157 4A 2E31 LSR
0156
0159

4A 
4A

2E38
2E3F

LSR 
LSR Listing 11. Der Quelltext zur Echtzeituhr (Schluß)

No<h mehr 
ausführliche 

Informationen 
zuausgewähltenThemen 

finden C64^nwender 
in zwei weiteren
Y^a^

PROGRAMM-SONDERHEFT: 
ANWENDUNGEN/DFO
Das neue 64'er-Sonderheft ist der heiße Tip für 
alle, die Ihren C64 nicht nur für Spiele, sondern 
auch für professionelle Anwendungen nutzen 
wollen: Textverarbeitung, Dateiverwaltung, 
Buchführung, Aktienverwoltung, Wahlhelfer, 
Diskettenverwaltung, Autokauf-Kalkulation, 
Rechnungshelfer, Haushaltskasse, Mathematik, 
Elektrotechnik, Business Grafik etc.
Zusätzlich finden Interessenten und Spezialisten 
der Datenfernübertragung (DFÜ) interessante 
Mailbox- und Terminalpregramme.

TOMHEMEN AUS 64'er: 
AUSGIWlHLTE SUPER-LISTINGS 
Anwendungen: Schach, Kegelstatistik, Sternen­
karte und »Happysynth«-Sound. Grafik: 
Provic 64, Turtle-Grafik, Trickfilm und 
HI-EDDI. Hilfsprogramme: Bitmap- 
Compander, Exsort, Strubs, II- 
ny-Forth-Compiler, Hypro- 
Load und Hypra-Save. 
Spiele: Grab des Pha­
rao, Castle of 
Doom und Apo- 
calypse Now.

PROGRAMM-
SONDER-

73


