
Tabellen C64

■ (ZP,X) s indiziert indirekt
Der Inhalt des X-Registers wird zum zweistelligen,
hexadezimalen Operanden addiert und ergibt eine Adresse
in der Zeropage (Speicherbereich $0000 bis $00FF).
Deren Inhalt und der Inhalt der darauffolgenden Adresse
ergibt in der Form Lo-Byte/Hi—Byte die Arbeitsadresse.

Beiseiell
Adresse $20 hat den Inhalt $00
Adresse $21 hat den Inhalt $C0
LDX #$0E
LDA ($12,X)
Der Inhalt der Zeropage-Adressen $0020 ($000E + $0012)
und $0021 ergibt die Arbeits-Adresse $C000. Deren
Inhalt wird in den Akku geladen.

■ (ZP),Y s indirekt indiziert
Der zweistellige, hexdezimale Operand ergibt eine
Adresse in der Zeropage (Speicherbereich $0000 bis
$00FF). Deren Inhalt und der Inhalt der darauffolgenden
Speicherstelle ergibt in der Form Lo-Byte/Hi-Byte eine
Adresse, zu der der Inhalt des Y-Registers addiert
wird. Das Ergebnis ist die Arbeitsadresse.

Adresse $20 hat den Inhalt $00
Adresse $21 hat den Inhalt $C0
LDY #$10
LDA ($20),Y
Der Inhalt der Adresse $C010 ($C000 + $0010) wird in
den Akku geladen.

Tabelle 3. Diese Abkürzungen werden in den Tabellen 1
und 2 verwendet (Schluß)

ROM-Routinen
in eigenen
Programmen
Das Rad ist schon erfunden! Ähnlich ver­
hält es sich mit verschiedenen Routinen,
die ein Assembler-Programmierer immer
wieder benötigt. Aber warum soll man sich
die Arbeit des Programmierens machen,
wenn das Betriebssystem viele ständig
benötigte Routinen schon enthält und man
nur noch zu wissen braucht, ab welcher
Adresse sie stehen?

Angenommen, Sie möchten in Assembler einige kom­
plexe Dinge programmieren wie beispielsweise eine
neue mathematische Funktion (wie wäre es mit dem

Kotangens) und diese auf dem Bildschirm ausgeben. Das ist
eine große Aufgabe, zu der zunächst einmal die Übernahme
des Arguments in das Maschinenprogramm, dann einige
Fließkomma-Rechenoperationen und schließlich die Aus­
gabe auf dem Bildschirm geschrieben werden müßten, wenn
da nicht schon fast alles an verborgener Stelle als fertige
Programm-Module im Computer vorhanden wäre!

Sowohl im unteren (von $A000 bis $BFFF) als auch im obe­
ren ROM-Bereich (von $E000 bis $FFFF) liegt die Firmware
fest verschachtelt vor. Der untere ROM-Abschnitt wird
manchmal auch Basic-Interpreter, der obere ROM-Bereich
Betriebssystem genannt, wobei diese Einteilung aber den
Kern der Sache nicht genau trifft, denn Interpreter, Editor und
Betriebssystem führen ein gemischtes Dasein quer durch alle
genannten ROM-Bereiche hindurch.

Mindestens fünf Informationen braucht ein Assembler-
Programmierer, wenn er das breite Programmangebot des
ROMs nutzen möchte:

1. Einsprungadresse
2. Format der Eingabeparameter
3. Adressen der Eingabeparameter
4. Adressen der Ausgabeparameter
5. Format der Ausgabeparameter

Nicht alle Routinen, die man benutzen kann, erfordern alle
fünf Informationen, manche weniger, einige auch mehr und
schließlich gibt es noch Programmroutinen, die noch den Auf­
ruf einer oder sogar mehrerer anderer Routinen nötig
machen.

In der beigefügten Tabelle sind - nach Anwendungen sor­
tiert - die wichtigsten Firmware-Möglichkeiten mit den erfor­
derlichen Ein- und Ausgabeparametern aufgeführt. Das sind
natürlich beileibenichtalle. DieAuswahlerfolgtesubjektiv! Es
sind einfach diejenigen, die mir bislang am häufigsten unter­
gekommen sind. Außerdem wurde auf die Kernel-Routinen
verzichtet: Man findet diese sehr gut dokumentiert bereits in
einer Reihe von Büchern und im Assembler-Kurs.

Die Tabelle nennt den Label-Namen, die Einsprungadresse
und gibt eine Kurzbeschreibung der Funktion. Das Ein- und
auch das Ausgabeformat ist ebenso angegeben wie auch die
Adressen, an denen diese Parameter übergeben werden. Die
verwendeten Bezeichnungen halten sich eng an die im
Assembler-Kurs kennengelernten. Sie sind allgemein üblich:

178

C64 Tabellen

FAC Fließkomma-Akku 1
ARG Fließkomma-Akku 2
A Akkumulator
X,Y X-, Y-Register
A/Y 2-Byte-Angabe im Format LSB/MSB

im Akku/Y-Register
FLPT Fließkommazahl im Normalformat
MFLPT gepacktes Fließkommaformat

Damit das alles nicht so trocken abläuft, soll noch ein klei­
nes Beispiel vorgestellt werden! Die oben schon erwähnte
Kotangens-Funktion wird in einem Maschinenprogramm
erzeugt, das durch USR anzuspringen ist. In Bild 1 finden Sie
ein Flußdiagramm zu dem Programm, welches hier als Hypra-
Ass-Listing abgebildet ist (Listing 1). Ein kurzes Testpro­
gramm liefert Listing 2.

Der Einsprung mittels USR bietet den Vorteil, daß der Über­
gabewert gleich im FLPT-Fbrmat im FAC »landet«. Es ist aber
sinnvoll, den Übergabeparameter mittels der MOVMF-
Routine zu »retten«, weil durch die Kosinus-Funktion der FAC
verändert wird. Wenn auch das Ergebnis der Kosinus-
Funktion mittels MOVMF beiseite gelegt wurde, holen wir
durch MOVFM den Anfangswert wieder in den FAC und bil­
den mittels SIN den Sinus davon. Schließlich teilen wir den im
Speicher stehenden Kosinuswert durch den im FAC befindli­
chen Sinuswert (unterVerwendung von FDIV). Das Ergebnis
ist der Kotangens:

COTX = (COSX/SIN X)
Dieser Wert befindet sich nun im FAC und wird mit dem RTS

an das Basic-Programm zurückgeliefert. Im Testprogramm
weisen wir ihm dann die Variable E zu.

Dieses kurze Beispiel soll Ihnen den Mund wässrig
machen. Sehr viel detaillierter werden die ROM-Routinen im
Kurs »Von Basic zu Assembler« im 64’er behandelt werden.

(Heino Ponnath/hm)

Literatur:
1. Kassera/Kassera, Programmieren in Maschinensprache, München 1985: Markt&TechnikVerlag,

MT 830
2. West, C64 Computerhandbuch, München 1984, Te-wi
3. Babel/Krause/Dripke, Das Interface Age Systemhandbuch zum C 64, München 1983: Interface

Age Verlag
4. Ponnath, C 64 Wunderland derGrafik, München 1985: Markt&TechnikVerlag MT 756.

hypra-ass <assemblerlisting:

10 .li 1,4,7
20 - .ba

;einsprung mittels usr
;zuvor usr—vektor einstellen!

$6000

160 -
165 -
170 -
180 -
190 -
200 -
205 -

.eq

.eq

. eq

.eq

.eq

.eq

.eq

cos=$e264
movfm=$bba2
movmf=$bbd4
sin=$e26b
fdiv=$bb0f
wert=$7000
wertl=$7010

6000 a210 :212 -start ldx #<(we^tl)
6002 a070 :214 - ldy #>(wert1)
6004 20d4bb :216 - jsr movmf
6007 2064e2 :220 - jsr cos
600a a200 :230 - ldx #<(wert)
600c a070 :240 - ldy #>(wert)
600e 20d4bb :250 - Jsr movmf
6011 a910 :252 - lda #<(wertl)
6013 a070 :254 - ldy #>(wertl)
6015 20a2bb :256 - jsr movfm
6018 206be2 :260 - jsr sin
601b a900 :270 - lda #<(wert)
601d a070 :280 - ldy #>(wert)
601f 200fbb
6022 60

symbols in

cos
fdiv
movfm
movmf
sin

: 290 -
:300 -

320 -

alphabetical

= $e264
= $bb0f
= $bba2
= $bbd4
= $e26b

jsr
rts

.sy

order:

fdiv

1,4,7

Listing 1.
start = $6000 Hypra-Ass-Listing der
wert = $7000
wertl = $7010

end of assembly 0:25.9
base = $6000 last byte

Kotangens-Funktion

at $6022

Wert sichern
durch MOVMF

orung über
-Vektor

10 REM***TEST FUER COTANGENS***
20 POKE785,0:POKE786,96:REM USR-VEKTOR
30 INPUT"WINKEL";W:W=W*n/180:REM AUF BOGENMASS
40 E=USR(W):REM AUFRUF DES PROGRAMMES
50 PRINTW,E:REM ERGEBNIS IN E
60 END
READY. Listing 2. Test der Kotangens-Funktion

COS

Ergebnis sichern
durch MOVMF

Anfangswert
zurück in FAC

mittels MOVFM

Division des
Cosinus durch

den Sinus mit FDIV

(RTS

1. Routinen, die die Kooperation von Basic und
Assembler erleichtern:
Label Adresse Funktion Eingabe Ausgabe

Format Adresse Format Adresse

CHRGET 0073 HoltnächstesByte 1 Byte Basic-Text 1 Byte A
CHRGOT 0073 Holt aktuelles Byte 1 Byte Basic-Text 1 Byte A
READY A474 ErzeugtREADY-Status - - -
LINGET A96B Holtlntegerwert

(0-63999)
ASCII-Zahl Basic-Text 2-Byte

Integer
14/15

FRMNUM AD8A Holtbeliebigennume-
rischen Ausdruck

Basic-
Ausdruck

Basic-Text FLPT FAC

FRMEVL AD9E Holtbeliebigen
Ausdruck

Basic-
Ausdruck

Basic-Text a) bei Fließkomma:
FLPT FAC
b) bei Integer:
FLPT FAC
c) bei String:
Zeigerauf FAC+3,
Descriptor FAC+4

Diese Routine setzt außerdem eine Reihe von Flaggen:
VALTYP($OD) O=Zahl FF=String
INTFLAG ($0E) O=FlieBkomma 80=integerBild 1. Flußdiagramm einer Kotangens-Funktion

179

Tabellen C64
War Ausdruck einfache Variable, dann zeigt VARNAM ($45/6)

das 1. Byte des Variablen-Namens
CHKCLS AEF7 Prüftauf»)« ASCII Basic-Text
CHKOPN AEFA Prüft auf»(« ASCII Basic-Text
CHKCOM AEFD Prüftauf»,« ASCII Basic-Text
SYNCHR AEFF PrüftaufZeichen ASCII Basic-Text

im Akkumulator A
Diese 4 Routinen überlesen das Zeichen, wenn vorhanden.
Wenn nicht vorhanden, folgt SYNTAX ERROR

ISVAR AF28 SuchtVariablenwert Name+ $45/46 a)Zahl:
Kennung FLPT FAC

b) String:
Descriptor-FAC+3

ORDVAR B0E7 SuchtVariablennamen Name+ $45/46
Kennung Adresse $47/48

GTBYTC B79B HoltZahl(0-255) ASCII Basic-Text1Byte X
GETNUM B7EB Liest2lntegerzahlen ASCII Basic-Text 2Byte-lnt. $14/15

(TrennungdurchKomma) 1Byte-lnt. X
1.Zahl:Obis65535
2.Zahl:0bis255

COMBYT E200 Prüftauf»,«undholt ASCII Basic-Text1Byte X
folgende Zahl

2. Routinen, die Verschiebungen im Speicher
durchführen:
BLTUC A3BF Verschiebt Blöcke Adressen:

Quelle
Start $5F/60
Ende+1 $5A/5B
Ziel
Ende+1 $58/59

PUTINT A9C4 SchiebtFACalslnteger FLPT FAC 2Byte- angegebene
inVariable Adresse $49/50 Integer Variable

PTFLPT A9D6 Schiebt FAC FLPT FAC MFLPT angegebene
in Variable Adresse $49/50 Variable

GETSPT AA2C SchiebtString- Zeiger FAC+3
descriptor in Variable Adresse $49/50 Descriptor angegebene

Variable
STRVAL B7B5 Zahlenstringin ASCII ab$22 FLPT FAC

FAC einlesen Länge A
CONUPK BA8C LädtARGausSpeicher MFLPT A/Y FLPT ARG
MOVFM BBA2 LädtFACausSpeicher MFLPT A/Y FLPT ARG
MOVMF BBD4 Schiebt FAC FLPT

inSpeicher Adresse FACX/Y MFLPT ange­
gebener
Speicher

MOVFA BBFC ARGinFACkopieren FLPT ARG FLPT FAC
MOVAF BCOC FAC in ARG kopieren FLPT FAC FLPT ARG
ACTOFC BC3C Akku in FAC schieben - 1Byte A_______FLPT FAC

3. Routinen zur Arithmetik:
ASCADD AA27 AddiertASCII-Ziffer ASCII A FLPT FAC

zu FAC Ziffer
OROP AFE6 FAC=(FAC)OR(ARG) FLPT FAC,ARG FLPT FAC
ANDOP AFE9 FAC=(FAC)AND(ARG) FLPT FAC,ARG FLPT FAC

0 Y
FACINX B1AA FACwirdalslnteger FLPT FAC 2Byte- A/Y

in A/Y abgelegt Integer
UMULT B357 16-Bit-Multiplikation 2-Byte-lnteger

Zahl1 $28/29 2Byte- X/Y
Zahl2 $71/72 Integer

CIVAYF B391 lnteger(-32768bis 2Byte- A/Y FLPT FAC
32767) in FAC Integer

SGNFT B3A2 lnteger(0bis255) 1Byte y FLPT FAC
inFAC

GETADR B7F7 WandeltFACzu FLPT FAC 2Byte- Y/A
lnteger(0-65535) Integer +$14/15

FADDH B849 FAC = FAC + 0,5 FLPT FAC FLPT FAC
FSUB B850 FAC=Speicherzahl MFLPT ZeigerA/YFLPT FAC

-FAC
FLPT FAC

FSUBT B853 FAC = ARG-FAC FLPT ARG,FAC FLPT FAC
FADD B867 FAC=Speicherzahl MFLPT ZeigerA/YFLPT FAC

+FAC MFLPT FAC
FADDT B86A FAC = ARG + FAC FLPT ARG,FAC FLPT FAC
COMPLT B947 ErzeugtZweier- FLPT FAC FLPT FAC

komplement von FAC

LOG B9EA FAC = ln(FAC) FLPT FAC FLPT FAC
FMULT BA28 FAC=Speicherwert*FAC MFLPT ZeigerA/YFLPT FAC

FLPT FAC
FMULTT BA30 FAC = ARG * FAC FLPT ARG,FAC FLPT FAC
MUL10 BAE2 FAC = 10 * FAC FLPT FAC FLPT FAC
DIV10 BAFE FAC = FAC/10 FLPT FAC FLPT FAC
FDIVF BB07 FAC=ARG/Speicher- MFLPT ZeigerA/YFLPT FAC

zahl FLPT ARG
FDIV BBOF FAC=Speicherzahl/FACMFLPT ZeigerA/YFLPT FAC

FLPT FAC
FDIVT BB14 FAC = ARG/FAC FLPT FAC,ARG FLPT FAC
SIGN BC28 Ermittelt Vorzeichen FLPT FAC 1Byte A

von FAC 1 - +
0-0
FF--

ABS BC58 FAC = ABS(FAC) FLPT FAC FLPT FAC
FCOMP BC5B Vergleicht FAC mit MFLPT Zeiger A/Y 1Byte: A

Speicherzahl FLPT FAC 1: FAC > Speicher
0: FAC = Speicher
FF: FAC < Speicher

INT BCCC FAC = INT(FAC) FLPT FAC FLPT FAC
AADD BD7E AddiertAzuFAC FLPT FAC FLPT FAC

1Byte A
SQR BF71 FAC = SQR(FAC) FLPT FAC FLPT FAC
MPOT BF78 FAC=Speicherwert FLPT FAC FLPT FAC

! FAC
MFLPT Zeiger A/Y

FPWRT BF7B FAC = ARG 1 FAC FLPT ARG,FAC FLPT FAC
NEGOP BFB4 FAC = -FAC FLPT FAC FLPT FAC
EXP BFED FAC = etFAC FLPT FAC FLPT FAC
POLYX E059 Polynomberechnung Adresse ZeigerA/YFLPT FAC

FAC=aO+a1x+a2x2+...
Zeiger weist auf Start der Konstantentabelle.
1. Byte = Polynomgrad
Weitere Bytes sind die Koeffizienten des Polynoms
in der Reihenfolge an..... ,aO im MFLPT-Format.

COS E264 FAC = COS(FAC) FLPT FAC FLPT FAC
SIN E26B FAC = SIN(FAC) FLPT FAC FLPT FAC
TAN E2B4 FAC = TAN(FAC) FLPT FAC FLPT FAC
ATN E30E FAC = ATN(FAC) FLPT FAC FLPT FAC

4. Auswahl von Ein-/Ausgabe-Routinen:
ERROR A437 Fehlermeldung aus- Fehler- X ASCII Bildschirm

geben und READY nummer
LIST A69C Listet Basic-Programm
NUMDON AABC DrucktFACauf FLPT FAC ASCII Bildschirm

Bildschirm aus
STROUT AB1E GibtStringaufBild- Adresse ZeigerA/YASCII Bildschirm

schirm aus. Ende=O
SYNERR AF08 AusgabeSYNTAXERROR - - ASCII Bildschirm
OVERR B97E AusgabeOVERFLOWERR. - - ASCII Bildschirm
LINPRT BDCD Druckt Integerzahl 2Byte- X/A ASCII Bildschirm

(0 bis 65535) aus. Integer
FACOUT BDD7 DrucktFACauf FLPT FAC ASCII Bildschirm

Bildschirm aus
FOUT BDDD FACwirdzuASCII- FLPT FAC ASCII ab$100

String (Ende=0). (Ende=O)
Kann direkt mit STROUT Startadr.
ausgegeben werden. A/Y

SAVET E156 Save ParameterausBasic-Text
VERFYT E165 Verify ParämeterausBasic-Text
LOADT E168 Load ParameterausBasic-Text
SLPARA E1D4 Holt Parameter für Save, Verify, Load aus dem Basic-Text
PLOTK E50A Setzt Cursorposition Zeile X

Spalte Y
HOME E566 Cursor in Home-Position
PLOTR E56C Setzt Cursor-Position Zeile $D6

Spalte $D3
GETKBC E5B4 HoltZeichenaus - - 1Byte A

Tastaturpuffer
PRT E716 GibtZeicheninA 1Byte A ASCII Bildschirm

auf Bildschirm aus
CLRLN E9FF LöschtxteBild- Zeilen- X

schirmzeile nummer

Tabelle der ROM-Routinen

180

