Tabellen

C64

W (ZP,X) : indiziert indirekt

Der Inhalt des X-Registers wird zum zweistelligen,
hexadezimalen Operanden addiert und ergibt eine Adresse
in der Zeropage (Speicherbereich $0000 bis $00FF).
Deren Inhalt und der Inhalt der darauffolgenden Adresse
ergibt in der Form Lo-Byte/Hi-Byte die Arbeitsadresse.

Adresse %20 hat den Inhalt #00

Adresse %21 hat den Inhalt #C@

LDX ##QE

LDA (#$12,X)

Der Inhalt der Zeropage—-Adressen #0020 ($000E + *@012)
und #0021 ergibt die Arbeits-Adresse $C000. Deren
Inhalt wird in den Akku geladen.

W (ZP),Y : indirekt indiziert

Der zweistellige, hexdezimale Operand ergibt eine
Adresse in der Zeropage (Speicherbereich $000@ bis
$00FF). Deren Inhalt und der Inhalt der darauffolgenden
Speicherstelle ergibt in der Form Lo-Byte/Hi-Byte eine
Adresse, =zu der der Inhalt des Y-Registers addiert
wird. Das Ergebnis ist die Arbeitsadresse.

Adresse #20 hat den Inhalt $00

Adresse #21 hat den Inhalt $C@

LDY #%10

LDA ($20),Y

Der Inhalt der Adresse $CO10 ($COR0 + $2010) wird in
den Akku geladen.

Tabelle 3. Diese Abkiirzungen werden in den Tabellen 1
und 2 verwendet (SchiuB)

178

ROM-Routinen
in eigenen
Programmen

Das Rad ist schon erfunden! Ahnlich ver-
hélt es sich mit verschiedenen Routinen,
die ein Assembler-Programmierer immer
wieder benotigt. Aber warum soll man sich
die Arbeit des Programmierens machen,
wenn das Betriebssystem viele stindig
benétigte Routinen schon enthélt und man
nur noch zu wissen braucht, ab welcher
Adresse sie stehen?

plexe Dinge programmieren wie beispielsweise eine

neue mathematische Funktion (wie ware es mit dem
Kotangens) und diese auf dem Bildschirm ausgeben. Das ist
eine groBe Aufgabe, zu der zunichst einmal die Ubernahme
des Arguments in das Maschinenprogramm, dann einige
FlieBkomma-Rechenoperationen und schlieBlich die Aus-
gabe auf dem Bildschirm geschrieben werden miiBten, wenn
da nicht schon fast alles an verborgener Stelle als fertige
Programm-Module im Computer vorhanden wére!

Sowohlim unteren (von $A000 bis $BFFF) als auch im obe-
ren ROM-Bereich (von $EOQ0O bis $FFFF) liegt die Firmware
fest verschachtelt vor. Der untere ROM-Abschnitt wird
manchmal auch Basic-Interpreter, der obere ROM-Bereich
Betriebssystem genannt, wobei diese Einteilung aber den
Kern der Sache nicht genau trifft, denn Interpreter, Editor und
Betriebssystem fiihren ein gemischtes Dasein quer durch alle
genannten ROM-Bereiche hindurch.

Mindestens funf Informationen braucht ein Assembler-
Programmierer, wenn er das breite Programmangebot des
ROMs nutzen méchte:

1. Einsprungadresse

2. Format der Eingabeparameter

3. Adressen der Eingabeparameter
4. Adressen der Ausgabeparameter
5. Format der Ausgabeparameter

Nicht alle Routinen, die man benutzen kann, erfordern alle
funf Informationen, manche weniger, einige auch mehr und
schlieBlich gibt es noch Programmroutinen, die noch den Auf-
ruf einer oder sogar mehrerer anderer Routinen nétig
machen.

In der beigefugten Tabelle sind - nach Anwendungen sor-
tiert - die wichtigsten Firmware-Mdglichkeiten mit den erfor-
derlichen Ein- und Ausgabeparametern aufgefiihrt. Das sind
natdrlich beileibe nicht alle. Die Auswahl erfolgte subjektiv! Es
sind einfach diejenigen, die mir bislang am haufigsten unter-
gekommen sind. AuBerdem wurde auf die Kernel-Routinen
verzichtet: Man findet diese sehr gut dokumentiert bereits in
einer Reihe von Buchern und im Assembler-Kurs.

Die Tabelle nennt den Label-Namen, die Einsprungadresse
und gibt eine Kurzbeschreibung der Funktion. Das Ein- und
auch das Ausgabeformatist ebenso angegeben wie auch die
Adressen, an denen diese Parameter ibergeben werden. Die
verwendeten Bezeichnungen halten sich eng an die im
Assembler-Kurs kennengelernten. Sie sind allgemein tiblich:

Z¥4p

n ngenommen, Sie méchten in Assembler einige kom-

N e

C 64

FAC FlieBkomma-Akku 1

ARG FlieBkomma-Akku 2

A Akkumulator

XY X-, Y-Register

AlY 2-Byte-Angabe im Format LSB/MSB
im Akku/Y-Register

FLPT FlieBkommazahl im Normalformat

MFLPT gepacktes FlieBkommaformat

Damit das alles nicht so trocken ablauft, soll noch ein klei-
nes Beispiel vorgestellt werden! Die oben schon erwéhnte
Kotangens-Funktion wird in einem Maschinenprogramm
erzeugt, das durch USR anzuspringen ist. In Bild 1 finden Sie
ein FluBdiagramm zu dem Programm, welches hier als Hypra-
Ass-Listing abgebildet ist (Listing 1). Ein kurzes Testpro-
gramm liefert Listing 2.)

Der Einsprung mittels USR bietet den Vorteil, daB der Uber-
gabewert gleich im FLPT-Format im FAC »landet«. Es ist aber
sinnvoll, den Ubergabeparameter mittels der MOVMF-
Routine zu »retten<, weil durch die Kosinus-Funktion der FAC
verandert wird. Wenn auch das Ergebnis der Kosinus-
Funktion mittels MOVMF beiseite gelegt wurde, holen wir
durch MOVFM den Anfangswert wieder in den FAC und bil-
den mittels SIN den Sinus davon. SchiieBlich teilen wir denim
Speicher stehenden Kosinuswert durch den im FAC befindli-
chen Sinuswert (unter Verwendung von FDIV). Das Ergebnis
ist der Kotangens:

COT X = (COS X/SIN X)

Dieser Wert befindet sich nun im FAC und wird mit dem RTS
an das Basic-Programm zurtickgeliefert. Im Testprogramm
weisen wir ihm dann die Variable E zu.

Dieses kurze Beispiel soll lhnen den Mund wéssrig
machen. Sehr viel detaillierter werden die ROM-Routinen im
Kurs »Von Basic zu Assembler« im 64’er behandelt werden.

(Heino Ponnath/hm)

Literatur:
1. K /Kassera, Prog
MT 830
2. West, C 64 Computerhandbuch, Minchen 1984, Te-wi
3. Babel/Krause/Dripke, Das Interface Age Systemhandbuch zum C 64, Miinchen 1983: Interface
Age Verlag
4. Ponnath, C 64 Wunderland der Grafik, Miinchen 1985: Markt&Technik Verlag MT 756.

ieren in Maschi prache, Miinchen 1985: Markt&Technik Verlag,

hypra—ass assemblerlisting:
Y] - .1i 1,4,7
20 - .ba $6000

einsprung mittels usr
z

.
.
szuvor usr—vektor einstellen!
.
H

168 - .eq cos=¥e2b64
165 - .eq movim=%bbaZ2
17¢ - .eq movmf=%bbd4
188 - .eq sin=fe2éb
198 - .eq fdiv=$bb@f
200 - .eq wert=%7000
205 - .eq wertl=%7010
.
6000 a21@ :212 -—-start ldx #< (wer;tl)
6002 a@70@ 1214 - ldy #>(wertl)
6004 20d4bb =216 - isr movmf
6007 2064e2 220 - jsr cos
600a a200 : 238 - 1dx #<{(wert)
60@c aB70 1248 - l1dy #>(wert)
6@00e 2@d4bb :258 - jsr movmf
6011 a?1@ :1252 - lda #<(wertl)
6013 aB70 : 254 - ldy #>(wertl)
6815 20a2bb :256 - jsr movfm
6018 206be2 :260 - jsr sin
401b a?0@ 12786 - lda #< (wert)
6@1d a@7@ 1280 -— ldy #>(wert)
&B1f 20@fbb =298 - jsr fdiv
6022 48 308 - rts
E]
320 - .sy 1,4,7
symbols in alphabetical order:
cos = $e264
fdiv = $bb@f
movfm = %$bbaZ
movmf = %bbd4 .
sin = $e26b Listing 1.
start = sos@0@ Hypra-Ass-Listing der
wert = $7000 Kotangens-Funktion
wertl = $7010

end of assembly 0:25.9
base = $600@ last byte at $46022

Einsprung uber
cor USR-Vektor

Wert sichern
durch MOVMF

l

Ccos

Ergebnis sichern
durch MOVMF

Anfangswert
zurtck in FAC -
mittels MOVFM

SIN

Division des
Cosinus durch
den Sinus mit FDIV

Bild 1. FluBdiagramm einer Kotangens-Funktion

10 REM***TEST FUER COTANGENS#*##*

2@ POKE785,08:POKE786,96:REM USR-VEKTOR

30 INPUT"WINKEL";W:W=W#1/180:REM AUF BOGENMASS
4@ E=USR (W) :REM AUFRUF DES PROGRAMMES

58 PRINTW,E:REM ERGEBNIS IN E

6@ END

READY. Listing 2. Test der Kotangens-Funktion

1. Routinen, die die Kooperation von Basic und
Assembiler erleichtern:

Label Adresse Funktion Eingabe Ausgabe
Format Adresse Format Adresse
CHRGET 0073 Holtndchstes Byte 1Byte Basic-Text 1Byte A
CHRGOT 0073 Holt aktuelles Byte 1Byte Basic-Text 1Byte A
READY A474 Erzeugt READY-Status - - - -
LINGET A96B Holt Integerwert ASCII-Zahl Basic-Text 2-Byte ~ 14/15
(0-63999) Integer
FRMNUM AD8A Holtbeliebigen nume- Basic- Basic-Text FLPT FAC
rischen Ausdruck Ausdruck
FRMEVL AD9E Holt beliebigen Basic- Basic-Text a) bei FlieBkomma:
Ausdruck Ausdruck FLPT FAC
b) bei Integer:
FLPT FAC
c) bei String:

Zeiger auf FAC+3
Descriptor FAC+4
Diese Routine setzt auBerdem eine Reihe von Flaggen:
VALTYP($0D) 0=Zahl FF=String
INTFLAG ($0E) 0=FlieBkomma 80=integer

BaET,

179

Tabellen CcC64
War Ausdruck einfache Variable, dann zeigt VARNAM ($45/6) LOG BO9EA FAC = In(FAC) FLPT FAC FLPT FAC
das 1. Byte des Variablen-Namens FMULT BA28 FAC=Speicherwert+FAC MFLPT Zeiger A/YFLPT FAC
CHKCLS AEF7 Priftauf»)« ASCII Basic-Text - - FLPT FAC
CHKOPN AEFA Priftauf» (« ASCI Basic-Text - - FMULTT BA30 FAC = ARG + FAC FLPT ARG,FAC FLPT FAC
CHKCOM AEFD Prift auf »« ASCII Basic-Text - - MULI0O BAE2 FAC =10« FAC FLPT FAC FLPT FAC
SYNCHR AEFF Prift auf Zeichen ASCII Basic-Text - - DIV10 BAFE FAC = FAC/10 FLPT FAC FLPT FAC
im Akkumulator A FDIVF BBO7 FAC=ARG/Speicher- MFLPT Zeiger AYFLPT FAC
Diese 4 Routinen tiberlesen das Zeichen, wenn vorhanden. zahl FLPT ARG
Wenn nicht vorhanden, folgt SYNTAX ERROR FDIV BBOF FAC=Speicherzahl/FAC MFLPT Zeiger A/YFLPT FAC
ISVAR AF28 SuchtVariablenwert ~ Name + $45/46 a)Zah!: FLPT FAC
Kennung FLPT FAC FDIVT BB14 FAC = ARG/FAC FLPT.- FACARG FLPT FAC
b) String: SIGN BC28 Ermittelt Vorzeichen ~ FLPT FAC 1Byte A
Descriptor-FAC+3 von FAC 1-+
ORDVAR BOE7 SuchtVariablennamen Name+ $45/46 0-0
Kennung Adresse $47/48 FF — -
GTBYTC B79B Holt Zahl (0-255) ASCII BasicText 1Byte X ABS BC58 FAC = ABS(FAC) FLPT FAC FLPT FAC
GETNUM B7EB Liest 2 Integerzahlen ~ ASCII Basic-Text 2Byte-Int. $14/15 FCOMP BC5B Vergleicht FAC mit MFLPT Zeiger A/Y 1Byte: A
(Trennung durch Komma) 1Byte-Int. X Speicherzahl FLPT FAC 1: FAC > Speicher
1. Zahl: 0 bis 65535 0: FAC = Speicher
2. Zahl: 0 bis 255 FF: FAC < Speicher
COMBYT E200 Priftauf»«undholt ASCH Basic-Text 1Byte X INT BCCC FAC = INT(FAC) FLPT FAC FLPT FAC
folgende Zahl AADD BD7E Addiert A zu FAC FLPT FAC FLPT FAC
. . . R . 1Byte A
2. Routinen, die Verschiebungen im Speicher SQR BF71 FAC = SQR(FAC) FLPT FAC FLPT FAC
durchfiihren: , MPOT BF78 FAC=Speicherwert FLPT FAC FLPT FAC
BLTUC ~ A3BF Verschiebt Blocke Adressen: t FAC
Quelle MFLPT Zeiger A'Y
Start $5F/60 FPWRT BF7B FAC=ARG!FAC FLPT ARGFAC FLPT FAC
Ende+1 $5A/5B NEGOP BFB4 FAC = -FAC FLPT FAC FLPT FAC
Ziel EXP BFED FAC = elFAC FLPT FAC FLPT FAC
Ende+1 $58/59 - - POLYX EO59 Polynomberechnung Adresse Zeiger A'YFLPT FAC
PUTINT A9C4 Schiebt FAC als Integer FLPT FAC 2Byte- angegebene FAC=a0+alx+a2x2+...
in Variable Adresse $49/50 Integer Variable Zeiger weist auf Start der Konstantentabelle.
PTFLPT A9D6 Schiebt FAC FLPT FAC MFLPT angegebene 1. Byte = Polynomgrad
in Variable Adresse $49/50 Variable Weitere Bytes sind die Koeffizienten des Polynoms
GETSPT AA2C Schiebt String- Zeiger FAC+3 in der Reihenfolge an,......a0 im MFLPT-Format.
descriptorin Variable ~ Adresse $49/50 Descriptor angegebene | cOS E264 FAC = COS(FAC) FLPT FAC FLPT FAC
Variable SIN E26B FAC = SIN(FAC) FLPT FAC FLPT FAC
STRVAL B7B5 Zahlenstringin ASCII ab$22 FLPT FAC TAN E2B4 FAC = TAN(FAC) FLPT FAC FLPT FAC
FAC einlesen Linge A ATN E30E FAC = ATN(FAC) FLPT FAC FLPT FAC
CONUPK BA8C LadtARGausSpeicher MFLPT A/Y FLPT ARG - "
MOVFM BBA2 LadtFACausSpeicher MFLPT AY FLPT ARG 4. Auswahl von Ein-JAusgabe-Routinen:
MOVMF BBD4 Schiebt FAC FLPT ERROR A437 Fehlermeldungaus- Fehler- X ASCIl Bildschirm
in Speicher Adresse FACX/Y MFLPT ange- geben und READY nummer
gebener LIST A69C Listet Basic-Programm - - - -
Speicher NUMDON AABC Druckt FAC auf FLPT FAC ASCHl Bildschirm
MOVFA BBFC ARG in FAC kopieren ~ FLPT ARG FLPT FAC Bildschirm aus
MOVAF BCOC FAC in ARG kopieren ~ FLPT FAC FLPT ARG STROUT ABIE Gibt String auf Bild- Adresse Zeiger A/Y ASCIl Bildschirm
ACTOFC BC3C Akkuin FAC schieben - 1Byte A FLPT FAC schirm aus. Ende=0
. . . SYNERR AF08 Ausgabe SYNTAX ERROR - - ASCIl Bildschirm
3. Routinen zur Arithmetik: OVERR BO7E Ausgebe OVERFLOWERR - - ASCIl Bildschim
ASCADD AA27 Addiert ASCII-Ziffer ~ ASCIl A FLPT FAC LINPRT BDCD Druckt Integerzahl 2Byte- X/A ASCIl Bildschirm
2uFAC Zitfer (0 bis 65535) aus. Integer
OROP AFE6 FAC=(FAC)OR(ARG) FLPT FACARG FLPT FAC FACOUT BDD7 Druckt FAC auf FLPT FAC ASCIl Bildschirm
ANDOP AFE9 FAC=(FAC)AND(ARG) FLPT FACAARG FLPT FAC Bildschirm aus
0 Y FOUT BDDD FACwirdzuASCI- FLPT FAC ASCIl ab $100
FACINX B1AA FAC wirdals Integer FLPT FAC 2Byte- AJY String (Ende=0). (Ende=0)
in A/Y abgelegt Integer Kann direkt mit STROUT Startadr.
UMULT B357 16-Bit-Multiplikation ~ 2-Byte-Integer ausgegeben werden. AY
Zahit $28/29 2Byte- X/Y SAVET E156 Save Parameter aus Basic-Text
Zahi2 87172 Integer VERFYT E165 Verify Parameter aus Basic Text
CIVAYF B391 Integer (-32768 bis 2Byte- A/Y FLPT FAC LOADT E168 Load Parameter aus Basic-Text
32767) in FAC Integer SLPARA E1D4 Holt Parameter fiir Save, Verify, Load aus dem Basic-Text
SGNFT ~ B3A2 Integer (0 bis 255) 1Byte FLPT FAC PLOTK E50A Setzt Cursorpositon Zeile X
in FAG Spalte Y
GETADR B7F7 Wandelt FAC zu FLPT FAC 2Byte- YA HOME E566 Cursor in Home-Position
Integer (0-65535) Integer +$14/15 | plOTR E56C Setzt Cursor-Position Zeile ~ $D6
FADDH B849 FAC=FAC+05 FLPT FAC FLPT FAC Spate $D3
FSUB B850 FAC=Speicherzahl MFLPT Zeiger AIYFLPT FAC GETKBC E5B4 Holt Zeichen aus - - 1Byte A
-FAC Tastaturpuffer
FLPT ~ FAC PRT E716 Gibt Zeichenin A Byte A ASCIl Bildschirm
FSUBT B853 FAC=ARG-FAC FLPT ARGFAC FLPT FAC auf Bildschirm aus
FADD B867 FAC=Speicherzahl MFLPT Zeiger A/YFLPT FAC CLRLN EOFF Léscht xte Bild- Zeilen- X _ _
+FAC MFLPT FAC schirmzeile nummer
FADDT B86A FAC = ARG + FAC FLPT ARG,FAC FLPT FAC
COMPLT B947 Erzeugt Zweier- FLPT FAC FLPT FAC
komplement von FAC Tabelle der ROM-Routinen

180

