
C64 Tabellen

Befehlssatz
des 6510
Hier finden Sie, alphabetisch geordnet,
eine Auflistung aller bekannten Befehle
des C64-Prozessors. Dazu gehören auch
die »illegalen Opcodes«.

uerst ein Wort zu den illegalen Opcodes, die in Tabelle
1 enthaltensind:
Seit Erscheinen des C 64 vor ungefähr drei Jahren sind

einige verschiedene Versionen des Prozessors 6510 gebaut
worden. Diese sind untereinander voll kompatibel, was den
normalen Befehlssatz aus Tabelle 2 anbetrifft. Die illegalen
Opcodes jedoch laufen nicht auf allen Versionen der CPU
6510. Welche Befehle auf welchem Computer eine korrekte
Ausführung bewirken, läßt sich nur durch Ausprobieren fest­
stellen. Äußerst hilfreich dabei ist der SMON aus dieser Aus­
gabe: Er zeigt einen illegalen Opcode nicht wie die meisten
Maschinensprachmonitore durch drei Fragezeichen an, son­
dern disassembliert den Befehl mit den in Tabelle 1 genann­
ten Abkürzungen. Ein vorangestelltes Sternchen (*) kenn­
zeichnet bei SMON den Befehl als illegalen Opcode (zum Bei­
spiel *AXS).

In Tabelle 3 finden Sie eine Übersicht über die in den beiden
anderen Tabellen verwendeten Abkürzungen.

(tr)

■ AXS : AND akku and X-register and subtract from data
Der Wert wird von dem Ergebnis der AND-Verknüpfung
zwischen Akku und X-Register subtrahiert und in das X-
Register geschrieben.

Addressierungsarten:.
Assembler: Hex-Code: Abkürzung: Byte:

AXS #0P CB IM 2

■ DCP : decrement and compare with akku
Entspricht Befehlsfolge:
DEC
CMP

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte:

DCP 0P C7 ZP 2
DCP OP,X D7 ZPX 2
DCP OP CF ABS 3
DCP OP,X DF ABX
DCP OP,Y DB ABY 3
DCP (OP,X) C3 (ZP,X) 2
DCP (OP),Y D3 (ZP) ,Y 2

■ DOP : double NOP
Folgende Codes wirken wie der NOP—Befehl, sind aber
zwei Byte lang. Das zweite Byte wird dabei
übersprungen.

04, 14, 34, 44, 54, 64, 74, D4, F4, 80, 89, 93

■ISC : increment and subtract with carry
Entspricht Befehlsfolge:
INC
SBC

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte:

ISC 0P E7 ZP 2
ISC OP,X F7 ZPX
ISC 0P EF ABS 3
ISC OP,X FF ABX
ISC OP,Y FB ABY
ISC (OP,X) E3 (OP,X) 2
ISC (OP),Y F3 (OP) ,Y 2

■ All : AND register with $11
Das X- beziehungsweise Y-Register wird mit $11 AND-
verknüpft und das Ergebnis X-- beziehungsweise Y-
indiziert abgelegt

A d d r e s s i e r u n g s a r t e n:
Assembler; Hex-Code: Abkürzung: Byte:

All OP,X
All OP,Y

9C ABX
9E ABY

■AAX : AND akku with X-Register and store akku
Entspricht befehlsfolge:
AND zwischen Akku und X-Register
STA

Addressi erungsarten:
Assembler: Hex-Code: Abkürzung: Byte:

■ KIL : killer codes
Folgende Codes bewirken einen Absturz des Prozessors,
dem auch mit einem RUN/STOP-RESTQRE nicht mehr
beizukommen ist.

02, 12, 22, 32, 42, 52, 62, 72, 92, B2, D2, F2

■LAR : load akku, AND with stackregister, transfer
result to akku, X-register and stackregister
Entspricht Befehlsfolge:
LDA
AND
TAX
TXS

Addressierungsarten£
Assembler: Hex-Code: Abkürzung: Byte:

AAX #OP
AAX 0P
AAX OP,Y
AAX 0P
AAX <OP,X>

SB IM
87 ZP
97 ZPY
8F ABS
83 (OP,X)

LAR OB,Y BB ABY

■ ASR : AND with akku and shift right
Entspricht Befehlsfolge:
AND
LSR

■ LAX : load to akku and X-register
Entspricht BefehlsfoJ^e:
LDA
TAX

Addressi erungsarten:
Assembler: Hex-Code:

ASR #OP 6B

Abkürzung: Byte:

IM 2

Addressierungsarten.:_
Assembler: Hex-Cbde: Abkürzung: Byte:

LAX OP A7 ZP
LAX OP,Y B7 ZPY 2
LAX OP AF ABS
LAX OP,Y BF ABY 3
LAX (OP,X) A3 (OP,X) 2
LAX (OP),Y B3 (OP),Y 2

■ARR : AND with akku and rotate right
Entspricht Befehlsfolge:
AND -
ROR

A d d r e s s i e r u n g s a r t e n:
Assembler: Hex-Code: Abkürzung: Byte:

ARR #OP IM

■ NOP : no operation
Folgende Codes haben wie der Code $EA die NOP-Funktion:

lA, 3A, 5A, 7A, DA, FA

Tabelle 1. Die »illegalen Opcodes« des 6510-Prozessors

171

Tabellen C64

■ RLA : rotate left, AND with akku and store akku
Entspricht Befehlsfolge:
ROL
AND
STA

Addressierungsarten^
Assembler: Hex-Code: Abkürzung: Byte:

RLA OP 27 ZP 2
RLA OP,X 37 ZPX 2
RLA OP 2F ABS 3
RLA OP,X 3F ABX 3
RLA OP,Y 3B ABY 3
RLA (OP,X) 23 (OP,X) 2
RLA (OP),Y 33 (OP),Y 2

■ RRA : rotate right and add with carry
Entspricht Befehlsfolge:
ROR
ADC

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte:

RRA OP 67 ZP 2
RRA OP,X 77 ZPX 2
RRA OP 6F ABS 3
RRA OP,X 7F ABX 3
RRA OP,Y 7B ABY 3
RRA (OP,X) 63 (OP,X) 2
RRA (OP),Y 73 (OP),Y 2

■ SLO : shift left and OR with akku

Entspricht Befehlsfolge:
ASL
ORA

A d d r e s s i e r u n g s a r t e n:
Assembler: Hex-Code: Abkürzung: Byte:

SLO OP 07 ZP 2
SLO OP,X 17 ZPX 2
SLO OP 0F ABS 3
SLO OP,X lF ABX 3
SLO OP,Y lB ABY 3
SLO (OP,X) 13 (OP,X) 2
SLO (OP),Y 03 (OP),Y 2

■ SRE : shift right and EOR with akku
Entspricht Befehlsfolge:
LSR
EOR

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte:

SRE OP 47 ZP 2
SRE OP,X 57 ZPX 2
SRE OP 4F ABS 3
SRE OP,X 5F ABX 3
SRE OP,Y 5B ABY 3
SRE (OP,X) 43 (OP,X) 2
SRE (OP),Y 53 (OP),Y 2

■ TOP : triple NOP
Folgende Codes wirken wie der NOP-Befehl, sind aber
drei Byte lang. Das zweite und das dritte Byte wird
dabei übersprungen.

0C, lC, 3C, 5C, 7C, DC, FC

Tabelle 1. Die »illegalen Opcodes« des 6510-Prozessors
(Schluß)

■ ADC : add with carry
addiere Adresseninhalt plus Carry-Flag zum Akkumulator

Fl.ags:. N Z C I D V
+ + + +

Ad dressi er ungsarten.:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

ADC ttOP 69 IM 2 2
ADC OP 65 ZP 2 3
ADC OP,X 75 ZPX 2 4
ADC OP 6D ABS 3 4
ADC OP,X 7D ABX 3 4
ADC OP,Y 79 ABY 3 4
ADC (OP,X) 61 (ZP,X) 2 6
ADC (OP),Y 71 (ZP),Y 2 5

■ AND : AND akku
verknüpfe Speicher mit Akku durch logische UND

Elagsi N Z C I D V
+ +

Ad d r essi erun gsart en :
Assembler: Hex-Code: Abkürzung: Byte: Takte:

AND #OP 29
AND OP 25
AND OP,X 35
AND OP 2D
AND OP,X 3D
AND OP,Y 39
AND (OP,X) 21
AND (OP),Y 31

IM
ZP

ZPX
ABS
ABX
ABY

(ZP,X)
(ZP),Y

2

3

3

3
4
4
4
4
6
5

■ ASL : arithmetic shif
schiebe Bits eines Spei

t left
chers um eine Stelle nach links

Elagsi N z c i D v

Addressierungsarten^
Assembler: Hex-Code: Abkürzung: Byte: Takte:

ASL 0A
ASL OP 06
ASL OP,X 16
ASL OP 0E
ASL OP,X lE

Akku
ZP

ZPX
ABS
ABX

1

3
3

6
6
7

■ BCC : branch if carry clear
verzweige, falls das übertragsbit gelöscht ist

Flagsi N Z C I D V
kei ne

Ad d ressi er ungsar ten:.
Assembler: Hex-Code: Abkürzung: Byte: Takte:

BCC 0P 90 REL 2 2

■ BCS : branch if carry set
verzweige, falls das übertragsbit gesetzt ist

Hags:. N Z C I D V
kei ne

A d d r e s s i. e r u n g s a r t e n:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

BCS OP B0 REL 2 2

■ BEQ : branch if equal
verzweige, falls das
gleich (Null) war

(to zero)
Ergebnis der 1etzten Operat i on

Ehgsi N z c i D v
kei ne

Add r ess_ierun gsar teni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

BEQ OP F0 REL 2 2

■ BIT : test bits
verknüpfe Speicher und Akku durch AND, setze
entsprechende Flags (Akku wird nicht verändert !)

Fl.ags:. N Z C I D V
+ + +

Ad d r essier un gsar t e n:_
Assembler: Hex-Code: Abkürzung: Byte: Takte:

BIT OP 24
BIT OP 2C

ZP
ABS

2
4

■ BMI : branch if minus
verzweige, falls das Ergebnis der
kleiner Null war

1etzten Operation

Flags?. N Z C I D V
keine

Add ressierung sar ten:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

BMI 0P 30 REL 2 2

Tabelle 2. Die Befehle des 6510-Prozessors

172

Tabellen C64

■ BNE : branch if not equal (to zero)
verzweige, falls das Ergebnis der letzten Operation
ungleich (Null) war

Elagsi N Z C I D V
kei ne

Addressierungsarten:
Assemblers Hex-Codes

BNE OP D0

Abkürzungs Bytes Taktes

REL 2 2

■ BPL s branch if plus
verzweige, falls das Ergebnis der letzten Operation
größer Null war

Elassi N Z C I D V
kei ne

Add ressierun gsar teni
Assemblers Hex-Codes Abkürzungs Bytes Taktes

BPL OP 10 REL 2 2

Flags:. N Z C I D V

Addressieryngsarteni
Assembler: Hex-Code: Abkürzungs Bytes Taktes

CLV B8 - 1 2

■ CMP s compare with akku
vergleiche Speicher mit Akkuinhalt

Elagsi N Z C I D V

Addressier ungsar ten^
Assembler: Hex-Code: Abkürzung: Byte: Takte:

CMP #0P C9 IM 2 7
CMP 0F C5 ZP 2 3
CMP OP,X D5 ZPX 7 4
CMP 0P CD ABS 3 4
CMP OP,X DD ABX 3 4
CMP OP,Y D9 ABY 3 4
CMP (OP,X) C1 (ZP,X) 7 6
CMP (OP),Y Dl (ZP),Y 2 5

■ BRK s break
Programmstop und Sprung über Breakpointer

Flags! N Z C I D V

Addressierungsarteni
Assemblers Hex-Codes Abkürzungs Bytes Taktes

BRK

■ BVC s branch if overflow clear
verzweige, falls das überlaufsbit gelöscht ist

Flags-. N Z C I D V
keine

Addressierungsarten;.
Assemblers Hex-Codes Abkürzungs Byte: Takte:

BVC OP 50 REL 2 2

■ BVS : branch if overflow set
verzweige, falls das überlaufsbit gesetzt ist

Flags:. N Z C I D V
kei ne

Addressierungsarten.!
Assembler: Hex-Code: Abkürzung: Byte: Takte:

BVS OP 70 REL 2 2

■ CPX s compare with X-register
vergleiche Speicherinhalt mit X-Register

Flags:_ N Z C I D V

Addressi erungsarten s
Assembl er: Hex-Code: Abkürzung: Byte: T a k t e:

CPX #0P C9 IM 7

CPX 0P E4 ZP 7 3
CPX 0P EC ABS 4

■ CPY s compare with Y-register
vergleiche Speicherinhalt mit Y-Register

Flags:. N Z C I D V

Addressierungsarten-^
Assembler: Hex-Code: Abkürzung: Byte: Takte:

CPY #0P C0 IM o 2
CPY 0P C4 ZP 7 3
CPY 0P CC ABS 3 4

■ DEC : decrement
subtrahiere Eins von Speicherinhalt

Flags:. N Z C I D V

■ CLC s clear carry
lösche das Ubertragsbit

Flags:. N Z C I D V
+

Add r essi er un g sar t en:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

LLC 18 _ 1 2

■ CLD : clear decimal mode
lösche das Bit für den Dezimalmodus

Elagsi N Z C I D V ,
+

^dressierungsarteni
Assemblers Hex-Codes Abkürzung: Byte: Takte:

CLD D8 - i 2

■CLI : clear interrupt flag
lösche das Interruptbit (Interrupts nun erlaubt)

Elagsi N Z C I D V
+

Addressierungsarten:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

CLI 58 - i

■CLV : clear overflow flag
lösche das überlaufbit

Addressierungsartens.
-Assembler: Hex-Code: Abkürzung: Byte: Takte:

DEC 0P C6 ZP 5
DEC OP,X D6 ZPX 6
DEC 0P CE ABS 3 6
DEC OP,X DE ABX 7

■ DEX : decrement X-register
subtrahiere Eins vom Inhalt des X-Registers

H.agsi N Z C I D V

A d d r e s s i_ e r u n g s a r t e n s
Assembler^ Hex-Code: Abkürzung: Byte: Takte:

DEX CA - 1 2

■ DEY : decrement Y-register
subtrahiere Eins vom Inhalt des Y-Registers

Flags: N Z C I D V

Addressierungsarten:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

DEY 88 - 1 2

Tabelle 2. Die Befehle des 6510-Prozessors
(Fortsetzung)

174

C64 Tabellen

■ EOR s exclusive-or
verknüpfte Akku und Speicher durch logisches EXKLUSIV­
ODER

Flags:. N Z C I D V

Addressi erungsarten:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

EOR #0P 49 IM 2 2
EOR 0P 45 ZP
EOR OP,X 55 ZPX 4
EOR 0P 4D ABS 4
EOR OP,X 5D ABX 4
EOR OP,Y 59 ABY 4
EOR (OP,X) 41 (ZP,X) 6
EOR (OP),Y 51 (ZP),Y 2 5

■ INC : increment
addiere Eins zu Speicherinhalt

Flagsi N Z C I D V

Ad d ressierung sar t en:_
Assembler: Hex-Code: Abkürzung: Byte: Takte:

INC 0P E6 ZP 2
INC OP,X F6 ZPX 6
INC 0P EE ABS 6
INC OP,X FE ABX 7

■ INX : increment X-register
addiere Eins zu X-Registerinhalt

Flagsi N Z C I D V

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

INX E8 - 1 2

■ INY : increment Y-register
addiere Eins zu Y-Registerinhalt

Flags: N Z C I D V

Addressi erungsarteni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

INY C8 - 1 2

■ JMP : jump
springe zu Adresse

Flagsi N Z C I D V
kei ne

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

JMP OP 4C ABS 3 3
JMP (0P> 6C IND 3 5

■ JSR : jump subroutine
Springe in Unterprogramm

Flags: N Z C I D V
kei ne

A d d r e s s i e r u n g s a r t e n :
Assembler: Hex-Code: Abkürzung: Byte: Takte:

JSR 0P 20 ABS 3 6

■ LDA : load akku
schreibe Wert in Akku

Flags.:.. N Z C I D V

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

LDA #0P A9 IM 2 2
LDA 0P A5 ZP 2
LDA OP,X B5 ZPX 4
LDA 0P AD ABS 3 4
LDA OP,X BD ABX 4
LDA OP,Y B9 ABY 4
LDA (OR,X) Al (ZP,X) 2 6
LDA (OP),Y Bl (ZP),Y 2 5

■ LDX : load X--register
schreibe Wert ins X-Register

Flagsi N Z C I D V
+ +

Ad d ressier un g sarteni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

LDX #0P A2 IM 2 2
LDX OP A5 ZP 3
LDX OP,Y B6 ZPY 4
LDX OP AE ABS 4
LDX OP,Y BE ABY 4

■ LDY : load Y-register
schreibe Wert ins Y-Register

Flags:. N Z C I D V
+ +

Ad d ressi er un g sar t en:.
Assembler: Hex-Code: Abkürzung: Byte: T akte:

LDY #OP A0 IM 2 7
LDY OP A4 ZP 2 7.
LDY OP,X B4 ZPX 4
LDY OP AC ABS 3 4
LDY OP,X BC ABX 3 4

■ LSR : logical shift right
bitweises Rechtsschieben eines Speicherinhalts
(Bit 0 wird ins Carry-Flag geschoben
Null gesetzt)

, Bit 7 wird auf

Flags:. N Z C I D V
+ + +

Ad d ressi erung sar ten:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

LSR 4A Akku 1 2
LSR OP 46 ZP 2 5
LSR OP,X 56 ZPX 7 6
LSR OP 4E ABS 6
LSR OP,X 5E ABX 3 7

■ NOP : no operation
keine Ausführung (Dummy-Befehl)

Flagsi N Z C I D V
kei ne

Addressierungsarten:
Assembler: Hex-Code: Abkürzung: Byte: T a k t e:

NOP EA 1 2

■ ORA : OR akku
verknüpfe Speicherinhalt und Akku durch logisches ODER

Flagsi N Z C I D V
+ +

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

ORA #OP 09 IM 7 2
ORA OP 05 ZP 2
ORA OP,X 15 ZPX 2 4
ORA OP 0D ABS 7, 4
ORA OP,X lD ABX ■3 4
ORA OP,Y 19 ABY 3 4
ORA (OP,X) 01 (ZP,X) 2 6
ORA (OP),Y 11 (ZP),Y 5

■ PHA : push akku
schiebe Akkuinhalt auf Stack

Flags:. N Z C I D V
kei ne

Address_ierungsarten:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

PHA 48 1 3

■ PHP : push processor-status
schiebe Statusregister auf Stack

Tabelle 2. Die Befehle des 6510-Prozessors
(Fortsetzung)

330? 175

Tabellen C64

Flagsi N Z C I D V
kei ne

Ad d r essierungsart en:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

PHP 08 - 1 3

■ PLA : pull akku
lade Akku mit oberstem Stackbyte

Flags:. N Z C I D V
+ +

Add r essi er un g sarten:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

PLA 68 - 1 3

■ PLP : pull processor-status
lade Statusregister mit oberstem Stackbyte

Flags: N Z C I D V
+ + + + + +

A d d r e s s i e r _u n g s a r t e n £
Assembler: Hex-Code: Abkürzung: Byte: Takte:

PLP 28 - 1 4

■ ROL : rotate left
rotiere Speicherinhalt um ein Bit nach links
(Bit 7 kommt ins Carryflag, Inhalt des Carry-Flags
kommt ins Bit 0)

Flags: N Z C I D V

A d d r e s s i e r _u n g s a r t e n:,
Assembler: Hex-Code: Abkürzung: Byte: Takte:

ROL 2A Akku 1 n
ROL OP 26 ZP 5
ROL OP,X 36 ZPX 6
ROL OP 2E ABS 3 6
ROL OP,X 3E ABX 3 7

A d d r e s s i e r u n g s a r t e n i
Assembler: Hex-Code: Abkürzung: Byte: Takte:

SBC #0P E9
SBC OP E5
SBC OP,X F5
SBC OP ED
SBC OP,X FD
SBC OP,Y F9
SBC (OP,X) El
SBC (OP),Y Fl

IM
ZP

ZPX
ABS
ABX
ABY

(ZP,X)
(ZP),Y

3
2

2
3
4
4
4
4
6
5

■ SEC : set carry
setze das Ubertragsflag auf Eins

Fl.agsi N Z C I D V
+

E^dC.essierungsarte
Assembler: Hex-Code: Abkürzung: Byte: Takte:

SEC 38 1 2

■ SED : set decimal mode
setze das Dezimal-Modus-FTag auf Eins

Flags:. N Z C I D V

Ad d ressi er ung sar t en:.
Assembler: Hex-Code: Abkürzung: Byte: Takte:

SED F8 - 1 2

■ SEI : set interrupt
setze das Interruptflag auf Eins
Interrupts mehr erlaubt)

(es werden keine

Flags:. N Z C I D V
+

Add r essi erungsart en:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

SEI 78 - 1 2

■ ROR : rotate right
rotiere Speicherinhalt um ein Bit nach rechts
(Bit 0 kommt ins Carryflag, Inhalt des Carryflags kommt
ins Bit 7)

Flags:. N Z C I D V

Ad d r e s s ier un g sar ten_:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

ROR 6A Akku 1 o
ROR OP 66 ZP 5
ROR OP,X 76 znx o 6
ROR OP 6E ABS 3 6
ROR OP,X 7E ABX 3 7

■ STA : store akku
schreibe Akkuinhalt in Speicher

Flags: N Z C I D V
kei ne

A d d r e s s i e r u n g s a r t e ni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

STA 0P 85 ZP o
STA OP,X 95 ZPX 4
STA 0P 8D ABS T 4
STA OP,X 9D ABX 3
STA OP,Y 99 ABY T 5
STA (OP,X) 81 (ZP,X) 7 6
STA (OP),Y 91 (ZP),Y 7 6

■ RTI : return from interrupt
nach Ausführen eines Interupt normales Programm weiter
abarbei ten

Flags:. N Z C I D V
wie vor Ausführung des Interrupts

A d d r e s s i e r u n g s a r t e n:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

RTI 40 -- 1 6

■ STX : store X-register
schreibe X-Registerinhalt in Speicher

FUgs:. N Z C I D V
keine

A d d r e s s i e r u n g s a r t e n i
Assembler: Hex —Code: Abkürzung: Byte: Takte:

STX 0P 86 ZP T
STX OP,Y 96 ZPY 4
STX 0P 8E ABS 3 4

■ RTS : return from subroutine
Rücksprung aus Unterprogramm

Flags:. N Z C I D V
kei ne

A d d r e s s i e r u n g s a r t e n:
Assembler: Hex-Code: Abkürzung:

RTS 60

Byte:

■ SBC : subtract with carry
s u b t r a h i e r e S p e i c h e r i n h a 11 v o m A k k u u n t e r B e r ü c k s i c h t i -
gung des Vorzeichens

■ STY : store Y-register
schreibe Y-Registerinhalt in Speicher

Flagsi N Z C I D V
kei ne

A d d r e s s i e r u n g s a r t e n i
Assembler: Hex-Code: Abkürzung: Byte: Takte:

STY OP 84 ZP 2 3
STY OP,X 94 ZPX 2 4
STY OP 8C ABS 3 4

Flags:. N Z C I D V Tabelle 2. Die Befehle des 6510-Prozessors
(Fortsetzung)

176

C64 Tabellen

■ TAX : transfer akku to X-register
schreibe Akkuinhalt ins X-Register

Flags: N Z C I D V

Addressierungaarteni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

TAX AA - 1 2

■ ABY : absolut Y-indiziert
Der Operand ist eine vierstellige hexadezimale Zahl.
Der Inhalt des Y-Registers wird zum Operanden addiert
und ergibt die Arbeits-Adresse.

lelsßieh
LDY#$10
LDA $C000,Y
Der Inhalt der Speicherstelle $C010 ($C000 + $0010)
wird in den Akku geladen.

■ TAY : transfer akku to Y-register
schreibe Akkuinhalt ins Y-Register

Flagsi N Z C I D V

>>Byte<< : In den Tabellen 2 und 3 gibt diese Spalte
die jeweilige Länge des kompletten Befehls mit
Operand an.

Addressierungsarteni
Assembler: Hex-Code: Abkürzung: Byte: Takte:

TAY A8 - 1 2

■ TSX : transfer stackregister to X-register
schreibe Stackregisterinhalt ins X-Register

Flags.:. N Z C I D V

Addressierungsarten^
Assembler: Hex-Code: Abkürzung: Byte: Takte:

TSX BA - 1 2

■ TXA : transfer X-register to akku

Flagsi N Z C I D V

>>Flags<< : einzelne Bits des Statusregisters

N : negative flag. Zeigt an, daß bei einer Operation
einer der beiden Operanden zwischen $80 (128) und $FF
(255) liegt, also das letzte Bit gesetzt ist.

Z : zero flag. Zeigt an, daß das Ergebnis einer
Operation im Akku gleich Null ist.

C : carry flag. Zeigt an, daß bei einer Operation ein
übertrag entstanden ist.

I : interrupt flag. Durch Setzen dieses Bit lassen sich
Interrupts unterbinden.

D : decimal flag. Durch Setzen dieses Bit wir der
Prozessor in den Dezimalmodus geschaltet. Das bedeutet,
daß zum Beispiel das Ergebnis der Addition von $09 und
$01 nicht $0A, sondern $10 ergibt.

V : overflow flag (überlauf). Zeigt an, daß das
Ergebnis einer Operation größer $FF (=255) war.

A d d r e s s i e r u n g s a r t e n s
Assembler: Hex-Code: Abkürzung: Byte: Takte:

TXA 8A - 1 2

■ TXS : transfer X-register to stackregister
schreibe X-Registerinhalt ins Stackregister

Flags:. N Z C I D V
kei ne

^ddressierungsarten:
Assembler: Hex-Code: Abkürzung: Byte: Takte:

TXS 9A ~ 1 2

■ IM : immediate (unmittelbar)
Die Adressierungsart >>immediate<< bedeutet, daß der
Operand unmittelbar als Wert weiterverarbeitet wird.

Beispiel :_
LDA #$00
Die hexadezimale Zahl $00 wird direkt in den Akku
geladen.

■ OP : Operand
Je nach Adressierungsart besteht der Operand eines
Befehls aus einem (Adressierung >>immediate<< und
>>zeropage<<) oder zwei Byte (>>absolute<x).

■ TYA : transfer Y-register to akku
schreibe Y-Registerinhalt in Akku

Flagsi N Z C I D V

0ddressierungsarten:.
Assembler: Hex-Code: Abkürzung: Byte: Takte:

TYA 98 - 1 2

■ ZP : zeropage
Der Operand besteht aus einem Byte und gibt eine
Adresse in der Zeropage (Speicherbereich $0000 bis
$00FF) an.

Beisgieli
LDA $2B
Der Inhalt der Speicherstelle $002B wird in den Akku
geladen.

Tabelle 2. Die Befehle des 6510-Prozessors (Schluß)

■ ZPX : Zeropage X-indiziert
Der Inhalt des X-Registers wird zum zweistelligen,
hexadezimalen Operanden addiert. Das Ergebnis ist eine
Adresse in der Zeropage (Speicherbereich $0000 bis
$00FF).

Beiseieh
LDX #$05
LDA $43,X
Der Inhalt der Adresse $0048 ($0043 + $0005) wird in
den Akku geladen.

■ ABS : absolute (absolut)
Der Operand ist eine vierstellige, hexadezimale
Adresse.

Beispiel:.
LDA $C000
Der Inhalt der Adresse $C000 wird in den Akku geladen.

_t_____ ___
■ ABX : absolut X-indiziert
Der Operand ist eine vierstellige hexadezimale Zahl.
Der Inhalt
und ergibt

des X-Registers wird zum Operanden addiert
die Arbeits-Adresse.

Beispiel^
LDX #$10
LDA $C000,X
Der Inhalt der Speicherstelle $C010 ($C000 + $0010)
wird in den Akku geladen.

■ ZPY : Zeropage Y-indiziert
Der Inhalt des Y-Registers wird zum zweistelligen,
hexadezimalen Operanden addiert. Das Ergebnis ist eine
Adresse in der Zeropage (Speicherbereich $0000 bis
$00FF).

P§i§BL®ll
LDY #$05
LDA $43,Y
Der Inhalt der Adresse $0048 ($0043 + $0005) wird in
den Akku geladen.

Tabelle 3. Diese Abkürzungen werden in den Tabellen 1
und 2 verwendet

177

Tabellen C64

■ (ZP,X) s indiziert indirekt
Der Inhalt des X-Registers wird zum zweistelligen,
hexadezimalen Operanden addiert und ergibt eine Adresse
in der Zeropage (Speicherbereich $0000 bis $00FF).
Deren Inhalt und der Inhalt der darauffolgenden Adresse
ergibt in der Form Lo-Byte/Hi—Byte die Arbeitsadresse.

Beiseiell
Adresse $20 hat den Inhalt $00
Adresse $21 hat den Inhalt $C0
LDX #$0E
LDA ($12,X)
Der Inhalt der Zeropage-Adressen $0020 ($000E + $0012)
und $0021 ergibt die Arbeits-Adresse $C000. Deren
Inhalt wird in den Akku geladen.

■ (ZP),Y s indirekt indiziert
Der zweistellige, hexdezimale Operand ergibt eine
Adresse in der Zeropage (Speicherbereich $0000 bis
$00FF). Deren Inhalt und der Inhalt der darauffolgenden
Speicherstelle ergibt in der Form Lo-Byte/Hi-Byte eine
Adresse, zu der der Inhalt des Y-Registers addiert
wird. Das Ergebnis ist die Arbeitsadresse.

Adresse $20 hat den Inhalt $00
Adresse $21 hat den Inhalt $C0
LDY #$10
LDA ($20),Y
Der Inhalt der Adresse $C010 ($C000 + $0010) wird in
den Akku geladen.

Tabelle 3. Diese Abkürzungen werden in den Tabellen 1
und 2 verwendet (Schluß)

ROM-Routinen
in eigenen
Programmen
Das Rad ist schon erfunden! Ähnlich ver­
hält es sich mit verschiedenen Routinen,
die ein Assembler-Programmierer immer
wieder benötigt. Aber warum soll man sich
die Arbeit des Programmierens machen,
wenn das Betriebssystem viele ständig
benötigte Routinen schon enthält und man
nur noch zu wissen braucht, ab welcher
Adresse sie stehen?

Angenommen, Sie möchten in Assembler einige kom­
plexe Dinge programmieren wie beispielsweise eine
neue mathematische Funktion (wie wäre es mit dem

Kotangens) und diese auf dem Bildschirm ausgeben. Das ist
eine große Aufgabe, zu der zunächst einmal die Übernahme
des Arguments in das Maschinenprogramm, dann einige
Fließkomma-Rechenoperationen und schließlich die Aus­
gabe auf dem Bildschirm geschrieben werden müßten, wenn
da nicht schon fast alles an verborgener Stelle als fertige
Programm-Module im Computer vorhanden wäre!

Sowohl im unteren (von $A000 bis $BFFF) als auch im obe­
ren ROM-Bereich (von $E000 bis $FFFF) liegt die Firmware
fest verschachtelt vor. Der untere ROM-Abschnitt wird
manchmal auch Basic-Interpreter, der obere ROM-Bereich
Betriebssystem genannt, wobei diese Einteilung aber den
Kern der Sache nicht genau trifft, denn Interpreter, Editor und
Betriebssystem führen ein gemischtes Dasein quer durch alle
genannten ROM-Bereiche hindurch.

Mindestens fünf Informationen braucht ein Assembler-
Programmierer, wenn er das breite Programmangebot des
ROMs nutzen möchte:

1. Einsprungadresse
2. Format der Eingabeparameter
3. Adressen der Eingabeparameter
4. Adressen der Ausgabeparameter
5. Format der Ausgabeparameter

Nicht alle Routinen, die man benutzen kann, erfordern alle
fünf Informationen, manche weniger, einige auch mehr und
schließlich gibt es noch Programmroutinen, die noch den Auf­
ruf einer oder sogar mehrerer anderer Routinen nötig
machen.

In der beigefügten Tabelle sind - nach Anwendungen sor­
tiert - die wichtigsten Firmware-Möglichkeiten mit den erfor­
derlichen Ein- und Ausgabeparametern aufgeführt. Das sind
natürlich beileibenichtalle. DieAuswahlerfolgtesubjektiv! Es
sind einfach diejenigen, die mir bislang am häufigsten unter­
gekommen sind. Außerdem wurde auf die Kernel-Routinen
verzichtet: Man findet diese sehr gut dokumentiert bereits in
einer Reihe von Büchern und im Assembler-Kurs.

Die Tabelle nennt den Label-Namen, die Einsprungadresse
und gibt eine Kurzbeschreibung der Funktion. Das Ein- und
auch das Ausgabeformat ist ebenso angegeben wie auch die
Adressen, an denen diese Parameter übergeben werden. Die
verwendeten Bezeichnungen halten sich eng an die im
Assembler-Kurs kennengelernten. Sie sind allgemein üblich:

178

