C 64

Tabellen

Befehissatz
des 6510

Hier finden Sie, alphabetisch geordnet,
eine Auflistung aller bekannten Befehle
des C64-Prozessors. Dazu gehéren auch
die r»illegalen Opcodes«.

uerst ein Wort zu den illegalen Opcodes, die in Tabelle

1 enthalten sind:

SeitErscheinen des C 64 vor ungefahr drei Jahren sind
einige verschiedene Versionen des Prozessors 6510 gebaut
worden. Diese sind untereinander voll kompatibel, was den
normalen Befehlssatz aus Tabelle 2 anbetrifft. Die illegalen
Opcodes jedoch laufen nicht auf allen Versionen der CPU
6510. Welche Befehle auf welchem Computer eine korrekte
Ausfiihrung bewirken, 1Bt sich nur durch Ausprobieren fest-
stellen. AuBerst hilfreich dabei ist der SMON aus dieser Aus-
gabe: Er zeigt einen illegalen Opcode nicht wie die meisten
Maschinensprachmonitore durch drei Fragezeichen an, son-
dern disassembliert den Befehl mit den in Tabelle 1 genann-
ten Abkulrzungen. Ein vorangestelltes Sternchen (*) kenn-
zeichnetbei SMON den Befehl alsillegalen Opcode (zum Bei-
spiel *AXS).)

In Tabelle 3 finden Sie eine Ubersicht Uber die in den beiden
anderen Tabellen verwendeten Abkurzungen.
(tr)

BA11l : AND register with #11

Das X— beziehungsweise VY-Register wird mit #11 AND-
verknipft und das Ergebnis X- beziehungsweise Y-
indiziert abgelegt

Addressierungsarten:

Assembler: Hex~Code: Abkirzungs Byte:
A1l OF,X oC ARX =
All OF,Y 9E ABY 3

M AAX : AND akku with X-Register and store akku
Entspricht befehlsfolge:

AND zwischen Akku und X-Register

STA

Addressierungsarten:

Assembler: Hex~Code: Abkitrzung: Byte:
AAX #OP 8R M 2
AAX OF 87 F 2
AAX OF,Y 7 IFY 2
AAX OF 8F ARS)
AAX (OF,X) 83 (OF, X) 2

BASR : AND with akku and shift right
Entspricht Befehlsfolge:

AND

LSR

Addressierungsarten:

Assembler: Hex-Code: Abkirzung: Ryte:
ASR #OF bE M 2

MARR : AND with akku and rotate right
Entspricht Befehlsfolge:

AND .

ROR

Addressierungsarten:

Assembler: Hex—-Code: Abkirzung: Byte:
ARR #OF 4b ™ 2

B AXS : AND akku and X-register and subtract from data
t wird von dem Ergebnis der AND-
zwischen Akku und X-Register subtrahiert und in das X-

Der

Wer

Register geschrieben.

Addressierungsarten:

Assembler: Hex—-Code: Abkilrzung: Byte:

AXS

#OP

Ce M

8]

Verkniipfung

MDCF : decrement and compare with akku
Entspricht Befehlsfolge:

DEC

CMF

Addressierungsarten:

Assembler: Hex~-Code: Abkirzung: Byte:
DCF OF c7 F 2
DCF OF,X D7 ZFX 2
DCP OF CF ARS 3
DCF OF,X DF AERX 3
DCP OF,Y DE ARY 3
DCF (OF,X) Cc3 (ZF,X) 2
DCF (OF),Y D3 (ZF),Y 2

HDOP : double NOF

Folgende Codes wirken wie der NOF-Befeiil, sind aber
zwei Byte lang. Das zweite BRyte wird dabei
iibersprungen.

24, 14, 4, 44, 54, 64, 74, D4, F4, 8O, B9, 9T

BISC : increment and subtract with carry

Entspricht Befehlsfolge:

INC

SRC

Addressierungsarten: :

Assembler: Hex—-Code: Abkilrzung: Byte:

15C OF E7 P 2

18C OF,X F7 ZFX 2

I15C OF EF AERS 3

I1sC OF,X FF AEX 3

ISC OP,Y FR ABY 3

ISC (OF,X) EZ (OF, X) 2

ISC (OF),Y FZ (OP) ,Y 2

BEIL : killer codes

Folgende Codes bewirken einen Absturz des Prozessors,
dem auch mit einem RUN/STOF-RESTORE nicht meht

beizukommen ist.

o2,

1z,

22, I2, 42,

a

2, 62, 72, 92, B2, D2,

)

F2

HLAR @ 1
result to akku, X-register and stackregister
Entspricht Befehlsfolge:

LDA
AND
TAX
XS

oad akku, AND with stackregister,

Addressierungsarten:

Assembler: Hex—Code: Abkilrzung: Byte:

LAR OB,Y

EBE ABY

o

transfer

B LAX : load to akku and X-register
Entspricht BefehlsfolMje:

LDA

TAX

Addressierungsarten:

Assembler: Hex—Code: Abkirzung: Byte:
LAX OF A7 F 2
LAX OF,Y B7 IFrY 2
LAX OF AF ABS 3
LAX OF,Y BF ARY 3
LAX (OF,X) A3 (aFP, X) 2
LAX (OF),Y B3 (OF) ,Y 2

M NOP : no operation

Folgende Codes haben wie der Code $EA die NOP-Funktion:

1A, 3IA, SA, 7A, DA, FA

Tabelle 1. Die »illegalen Opcodes« des 6510-Prozessors

e Kgp

A7

Tabellen

C64

B RLA : rotate left, AND with akku and stare akku
Entspricht RBefehlsfolge:

ROL

AND

STA

Addressierungsarten:

Assembler: Hex-Code: Abkirzung: Byte:
RLA OF 27 P 2
RLA OF,X 37 ZFX 2
RLA OF 2F ABS 3
RLA OF,X 3F ARX 3
RLA OF,Y 3B ABY 3
RLA (OF,X) 23 0P, X) 2
RLA (OF),Y 3z oP),Y 2
B RRA : rotate right and add with carry
Entspricht Befehlsfolge:

ROR

ADC

Addressierungsarten:

Assembler: Hex-Code: Abkilrzung: Byte:
RRA OF &7 434 2
RRA OF,X 77 ZFX 2
RRA OF bF ARS 3
RRA OF,X 7F ARX)
RRA OF,Y 7B ABY 3
RRA (OF,X) 63 (OF, X) 2
RRA (OF),Y 73 (OF) ,Y 2
BSLO : shift left and OR with akku
Entspricht Befehlsfolge:

ASL

ORA

Addressierungsarten:

Assembler: Hex—Code: Abkilrzungs: Byte:
SL0 OF a7 4

SL.0 OF,X 17 IFX

SLO OF aF AES

SL.0 OF,X 1F ABX =
SLO OF,Y 1R ARY k3
SLO (OF,X) 1z (OF, X) 2
SL.O (OF),Y 53 (OF) ,Y 2

M SRE : shift right and EOR with akku
Entspricht Refehlsfolge:

LSR

EOR

Addressierungsarten:

Assembler: Hex—Code: Abkitrzung: Byte:
SRE OF 47 P 2
SRE OP, X 57 ZFX 2
SRE OF 4F ABS 3
SRE OF,X SF ARX 3
SRE OF,Y Sk ABY 3
SRE (OF,X) 43 (OF, X) 2
SRE (OF),Y 53 (OF) ,Y 2

B TOP : triple NOP
Folgende Codes wirken wie der NOF-Eefehl, sind aber
drei Byte lang. Das zweite und das dritte Byte wird
dabei ibersprungen.

ec, ic, 3c, sc, 7C, DC, FC

Tabelle 1. Die »illegalen Opcodes« des 6510-Prozessors
(SchluB)

B ADC : add with carry
addiere Adresseninhalt plus Carry-Flag zum Akkumul ator

Addressierungsarten;

Assembler: Hex—-Code: Abkirzung: Byte: Takte:
ADC #OF &9 M 2 2
ADC OF 65 F 2 3
ADC OF,X 75 ZFX 2 4
ADC OF &D AERS = 4
ADC OP,X 7D ABX 3 4
ADC OF,Y 79 ARY) 4
ADC (OF,X) 61 (ZF,X) 2)
ADC (OF) ,Y 71 (ZF),Y 2 S

E AND : AND akku
verkniipfe Speicher mit Akku durch logische UND

Flags: N Z C I DV
+ +

Addressierungsarten:

Assembler Hex—-Code: Abkilrzung: Byte: Takte:
AND #OF 29 M 2 2
AND OF 25 ZF 2 3
AND OF,X 35 PX 2 4
AND OF 2D AES 3 4
AND OF, X 3D ABX 3 4
AND OF,Y 39 ARY 3 4
AND (OF, X) 21 (ZF,X) 2)
AND (OP),Y 31 (ZF) ,Y 2 S

B ASL : arithmetic shift left
schiebe BRits eines Speichers um eine Stelle nach links

Flags: N Z C I DV
+ + +

Assembler: Hex—-Code: Abkarzung: Byte: Takte:
ASL oA Akku 1 2
ASL OF 86 ZF 2 S
ASL OP,X 16 ZPX 2 6
ASL OF QE AES 3 6
ASL OF,X 1E ABX 3 7

B BCC : branch if carry clear
verzweige, falls das Ubertragsbit geléscht ist

Flags: NZ C I DV
keine

Addressierungsarten:

Assembler: Hex—-Code: Abkirzung: Byte: Takte:

BCC OF 0 REL 2 2

B BCS : branch if carry set
verzweige, falls das Ubertragsbit gesetzt ist

Flags: N Z C I DV
keine

Addressierungsarten:
Assembler: Hex~Code:

Abkilrzung: Eyte: Takte:

BCS OF EB@ REL 2 2

B BEQ@ : branch if egual (to zero)
verzweige, falls das Ergebnis der letzten Operation
gleich (Null) war

Flagg: N Z C I DV

keine
Addressierungsarten:
Assembler: Hex—Code: Abkirzung: Byte: Takte:
BEQ OF F@ REL 2 2

B BIT : test bits
verknipfe Speicher und Akku durch AND , setze
entsprechende Flags (Akku wird nicht verandert !)

Addressierungsarten:

Assembler: Hex—Code: Abkirzung: Byte: Takte:
RIT OF 24 F 2 =
RIT OF 20 ARS 3 4

B BMI : branch if minus
verzweige, falls das Ergebnis der letzten Operation
kleiner Null war

Flags: N Z C I DV
keine

Addressierungsarten:
Assembler: Hex-Code:

Abkiirzung: Byte: Takte:

BMI OF I0 REL 2

r

Tabelle 2. Die Befehle des 6510-Prozessors

172

Tabellen

C 64

B BNE : branch if not equal (to zera)
verzweige, falls das Ergebnis der letzten Operation
ungleich (Null) war

Flags: N Z C I DV
+

Addressierungsartens:

Abkilrzung: Byte: Takte:

CLI 58 - 1 2

B CLV : clear overflow flag
ldsche das Uberlaufbit

Flags: N Z C I DV Assembler: Hex—-Code: Abkitrzung: Byte: Takte:
keine
CLv B8 - 1 2
Addressierungsarten:
Assembler: Hex—Code: Abkirzung: Byte: Takte:
B CMP : compare with akku
BENE OF D@ REL P 2 vergleiche Speicher mit Akkuinhalt
Flags: NZ C I DV
EMBPL : branch if plus oot
verzweige, falls das Ergebnis der letzten Operation X
griéfer Null war Addressierungsartens
i Assembler: Hex—Code: Abkirzung: Byte: Takte:
Flags: N Z C 1 DV
keine CMF #OF ce M 2 2
CMF OF cs ZF 2 3
Addressierungsarten: crHe OF, X DS ZPX 2 4
Assembler: Hex—-Code: Abkiirzung: Byte: Takte: CMP OF CD AES 3 4
CMF OP, X DD AEBX 3 4
EFL OF 10 REL o 2 CMF OP,Y D? ARY 3 4
CMP (OF, X) c1 (ZF,X) 2)
CMF (OF),Y D1 (ZF) ,Y 2 5
B BRK : break
Programmstop und Sprung iber Breakpointer
B CPX : compare with X-register
Flags: N Z C I DV vergleiche Speicherinhalt mit X-Register
+
Flags: N Z C I DV
+ o+ +
Abkirzung: Byte: Takte:
Addressierungsarten:
BRE o0 - 1 7 Assembler: Hex—Code: Abkilrzung: Byte: Takte:
CFX #OF ce M 2 2
BBVC : branch if overflow clear CFEX OF E4 ZF g 3
verzweige, falls das Uberlaufsbit geléscht ist CEX OF EC ABS = 4
Flags: NZ C 1DV .
keine B CPY : compare with Y-register
vergleiche Speicherinhalt mit Y-Register
Addressierungsarten:
Assembler: Hex—~Code: Abkirzung: Byte: Takte: Flags: N Z C 1DV
+ 4+ +
BVC OF 5@ REL 2 2
rungsarten:
H Hex—Code: Abkirzung: Byte: Takte:
M BVS : branch if overflow set N
verzweige, falls das Uberlaufsbit gesetzt ist CFY #0OF cae M 2 2
CFY OF c4 F4s 2 3
Flags: N Z C I DV CFRY OF ce ARS = 4
keine
Addressierungsarten: W DEC :_decre@ent)
Assembler: Hex—-Code: Abkirzung: Byte: Taktes: subtrahiere Eins von Speicherinhalt
BVS OF 7@ REL 2 2
BCLC : clear carry nQdress ngsarcens
lésche das Ubertragsbit “Assembler: Hex~Code: Abkilrzung: Byte: Takte:
’ DEC OF cé zF 2 5
Flags: N Z S I DbV DEC OF,X D6 ZFX 2)
Addressierungsarten: gsg gg X gg zgi 3 ?
Assembler: Hex-Code: Abkirzung: Byte: Takte: ')
tLe 18 - 1 2 B DEX : decrement X-register
subtrahiere Eins vom Inhalt des X-Registers
BCLD : clear decimal mode
A H I v
ldsche das Bit fir den Dezimalmodus Elags: T E € P
Flags: N Z C I 2 v Addressierungsarten:
Addressierungsarten: Assembler;, Hex-Code: Abkirzung: EByte: Takte:
Assembler: Hex-Code: Abkirzung: Byte: Takte: DEX CA - 1 2
CLD D8 - 1 2
B DEY : decrement Y-register
; btrahi e Eins vom Inhalt des Y-Registers
B CLI : clear interrupt flag subtranier wn 9
lésche das Interruptbit (Interrupts nun erlaubt) Flagsg N Z C I DV
Flags: N Z C I DV + o+
+
Addressierungsarten:
Assembler: Hex—Code: Abkilrzung: Byte: Takte:

DEY 88 - 1

Tabelle 2. Die Befehle des 6510-Prozessors
(Fortsetzung)

]

174

C 64

Tabellen

B EOR : exclusive—or

verkniijpfe Akku und Speicher durch logisches EXKELUSIV-
ODER
Elags: N Z C I DV

+ +
Addressierungsarten:
Assembler: Hex~Code: Abkirzung: Byte: Takte:
EOR #O0F 49 M 2 2
EOR OF 45 F 2 3
EOR OF,X 55 IFX 2 4
EOR OF 4D AES = 4
EOR OF,X 5D ARX A 4
EOR OF,Y 59 ARY = 4
EOR (OF,X) 41 (ZF,X) 2)
EOR (OF),Y S1 (ZF) ,Y 2 1
B INC : increment
addiere Eins zu Speicherinhalt
Flags: N Z C 1DV

+ +
Addressierungsarten:
Assembler: Hex—-Code: Abkirzung: Ryte: Taktes:
INC OF E6 F 2 S
INC OF,X Fé ZFX 2 b
INC OF EE ARS 3 b
INC OF,X FE AEX 3 7
B INX : increment X-register
addiere Eins zu X—-Registerinhalt
Flags: N Z C 1 DV

+ +
Addressierungsarten:
Assembler: Hex~Code: Abkilrzung: Byte: Takte:
INX E8B - 1 2
B INY : increment Y-register
addiere Eins zu Y-Registerinhalt
Flags: N Z T I DV

+ +
Addressierungsarten:
Assembler: Hex—-Code: Abkilrzung: Byte: Takte:
INY c8 - 1 2
| JIMP : jump
springe zu Adresse
Flags: N Z C I DV

keine
Addressierungsarten:
Assembler: Hex—-Code: Abkiirzung: Byte: Takte:
JMF OF 4c ARS 3 3
JMF (OF) &C IND 3 S
B JSR : jump subroutine
Springe in Unterprogramm
Flagss N Z C I DV

keine
Addressierungsarten:
Assembler: Hex—-Code: Abkirzung: Byte: Takte:
JSR OF 20 AES 3 b
B LDA : load akku
schreibe Wert in Akku
Flags: N Z C 1 DV

+ +
Addressierungsartel
Assembler: Hex—C Abkirzung: Byte: Takte:
LDA #OF A9 M 2 2
LDA OF AS F 2 3
LDA OF,X BY ZFX 2 4
L.DA OF AD ARS = 4
LDA OF,X ED ABX 3 4
LDA OF,Y B9 ABY 3 4
LLDA (OF,X) Al (ZF, X) 2)
LDA (OF),Y E1l (ZF) ,Y 2)

W LDX : load X—register
schreibe Wert ins X-Register

Flags: NZ C I DV
+ +

Addressierungsarten:

Assembler: Hex-Code: Abkirzung: Byte: Takte:
LDX #OF AR M 2 2
LDX OF AS F 2 3
LDX OF,Y B& ZrY 2 4
LDX OF AE AES 3 4
LDX OF,Y BE ARY 3 4
B LDY : load Y-register
schreibe Wert ins Y-Register
Flags: N Z C I DV

+ +
Addressierungsarten:
Assembler: Hex—-Code: Abkilrzung: Byte: Takte:
LDY #OF AL ™ 2 2
LDY OF A4 F 2 k3
LDY OF,X B4 ZFX 2 4
LDY OF AC ARS 3 4
LDY 0OF,X BC ABX 3 4

M LSR : logical shift right

bitweises Rechtsschieben eines Speicherinhalts

(Bit @ wird ins Carry-Flag geschoben, BRBit 7 wird auf
Null gesetzt)

Flags: N Z C I DV
+

Assembler: Hex—-Code: Abkilrzung: Byte: Takte:
LSR 4A Akku 1 2
LSR OF 46 F 2 S
LSR OP,X 56 ZPX 2)
LSR OF 4E ARS 3 6
LSR OF,X SE ABX 3 7
B NOP : no operation
keine Ausfihrung (Dummy-Befehl)
Flags: NZ C I DV

keine
Addressierungsarten:
Assembler: Hex—-Code: Abkirzung: EByte: Takte:
NOP EA - 1 2

B ORA : OR akku
verkniipfe Speicherinhalt und Akku durch logisches ODER

Flags: N Z € I DV
+ +

Assembler: Hex—-Code: Abkirzung: Byte: Takte:
ORA #OF 4 M 2 2
ORA OF 25 F 2 3
ORA OF,X 15 ZFX 2 4
ORA OF @D ARS 3 4
ORA OP,X 1D ABEX 3 4
ORA OF,Y 19 ARY 3 4
ORA (OF,X) 21 (ZP,X) 2 &
ORA (OF),Y 11 (ZF),Y 2 S
B PHA : push akku
schiebe Akkuinhalt auf Stack
Flags: NZ C I DV

keine
Addressierungsarten:
Assembler: Hex-Code: Abkilrzung: Byte: Takte:
FHA 48 - 1 3

B PHFP : push processor-—-status
schiebe Statusregister auf Stack

Tabelle 2. Die Befehle des 6510-Prozessors
(Fortsetzung)

BA-ET

175

C 64

Flags

ZCIDV
eine

N
b

Addressierungsarten:

Assembler: Hex—Code: Abkiirzung: Byte: Takte:

FHFP 28 - 1 3

B PLA : pull akku
lade Akku mit oberstem Stackbyte

Addressierungsarten:
Assembler: Hex-Code:

Abkirzung: Byte: Takte:

PLA &8 - 1 s

B PLP : pull processor—-status
lade Statusregister mit oberstem Stackbyte

Abkirzung: Byte: Takte:

FLF 28 - 1 4

B ROL : rotate left

rotiere Speicherinhalt um ein Bit nach links

(Bit 7 kommt ins Carryflag, Inhalt des Carry-Flags
kommt ins Bit @)

Flags: N Z C I DV
+ 4+ 4+

Addressierungsarte

Assembler: Hex~Code: Abkiirzungs: Byte: Takte:
ROL 2A Akku 1 2
ROL OF 26 iF 2 S
ROL OF,X 36 ZFX 2)
ROL OF 2E ARS k3 &

3 7

ROL OF,X ZE ARX

B ROR : rotate right

rotiere Speicherinhalt um ein Bit nach rechts

(Bit @ kommt ins Carryflag, Inhalt des Carryflags kommt
ins Rit 7)

Assembler: Hex—-Code: Abkirzungs: Byte: Takte:
ROR bA Akkuw 1 2
ROR OF b6 F 2 S
ROR OF, X 76 FAR¢ 2 b
ROR OF 6E ARS A)
ROR OF, X 7E ABX = 7

B RTI : return from interrupt
nach Ausfilhren eines Interupt normales Frogramm weiter
abarbeiten

NZCIDV
wie vor Ausfihrung des Interrupts

Addressierungsarte
Hex~Code:

Assembler: Abkilrzung: Byte: Takte:
RTI 4Q - 1 b
.
B RTS : return from subroutine
Rilcksprung aus Unterprogramm
Flagg: N Z C 1DV
keine
Addressierungsarten:
Assembler: Hex—~Code:s Abkidrzung: Byte: Takte:
RTS 6@ - 1 b

B SEC : subtract with carry
subtrahiere Speicherinhalt vom Akku unter Berilcksichti-—
qung des Vorzeichens

Flags: N Z C I DV
+ + + +

Abkirzung: Byte: Takte:
SRC #O0F E? ™M 2 2
SERC OF ES F 2 3
SHC OF,X FS FX 2 4
SRC OF ED AES k3 4
SBC OF,X FD ABX I 4
SRC OF,Y F9 ARY 3 4
SBC (OF,X) E1 (ZF,X) 2 b
SEC (OF),Y F1 (ZF) ,Y 2 S
B SEC : set carry
setze das Ubertragsflag auf Eins
ags: N Z C I DV
+

Addressierungsarten:
Assembler: Hex—Code: Abkilrzung: Byte: Takte:
SEC i8 - 1 2
B SED : set decimal mode
setze das Dezimal-Modus-Flag auf Eins
Flags: N Z C 1 DV

+
Addressierungsart
Assembler: Hex~-Code: Abkilrzung: Byte: Takte:
SED F8 - 1 2

B SEI : set interrupt

setze das Interruptflag auf Eins (es werden keine
Interrupts mehr erlaubt)
Addressierungsarten:
Assembler: Hex—-Code: Abkilrzung: Eyte: Takte:
SEI 78 - 1 2
B STA : store akku
schreibe Akkuinhalt in Speicher

NZCIDV

keine
Addressierungsarten:
Assembler: Hex—-Code: Abkirzung: Byte: Takte:
STA OF 85 ZF 2 3
8TA 0OF,X 95 ZFX 2 4
STA OF 8D ARS 3 4
STA OF,X 9D AEX 3 5
STA OF,Y 99 ARY 3 S
8TA (OF,X) 81 (ZF,X) 2 b
STA (OP),Y 91 (ZF) ,Y 2 b
M STX : store X-register
schreibe X-Registerinhalt in Speicher
Flags: N Z C I DV

keine
Addressierungsarten:
Assembler: Hex—~Code: Abkirzung: EByte: Takte:
8TX OF 86 F 2 3
8TX OF,Y Fé ZFY 2 4
8TX OF 8E ARS k3 4
B STY : store Y-register
schreibe Y-Registerinhalt in Speicher
Flags: Nz C 1DV

keine
Addressierungsarten:
Assembler Hex—-Code: Abkilrzung: Byte: Takte:
STY OF 84 F 2 3
8TY 0OF,X 4 IFX 2 4
STY OF 8c AES 3 4

Tabelle 2. Die Befehle des 6510-Prozessors
(Fortsetzung)

C 64 Tabellen

B TAX : transfer akku to X-register B ABY : absolut Y-indiziert
schreibe Akkuinhalt ins X-Register Der Operand ist eine vierstellige hexadezimale Zahl.
Der Inhalt des Y-Registers wird zum Operanden addiert
Flags: N Z C I DV und ergibt die Arbeits-Adresse.
+ +
Beispiel:
Addressierungsarten: LDY ##10@
Assembler: Hex~Code: Abkilrzung: Byte: Takte: LDA %C@eoo,Y
Der Inhalt der Speicherstelle #C010 ($C000 + $0010)
TAX AA - 1 2 wird in den Akku geladen.
B TAY : transfer akku to Y-register >>Byte<< : In den Tabellen 2 und I gibt diese Spalte
schreibe Akkuinhalt ins Y-Register die jeweilige Lange des kompletten Eefehls mit

Operand an.

Flags: NZ C I DV
+ +

>»Flags<< : einzelne Bits des Statusregisters

Assembler: Hex~Code: Abkidrzung: Byte: Takte: N : negative flag. Zeigt an, daB bei einer Operation
einer der beiden Operanden zwischen $8@ (128) und $FF
TAY A8 - 1 2 (255) liegt, also das letzte Bit gesetzt ist.
| i Z : zero flag. Zeigt an, daf das Ergebnis einer
B TSX : transfer stackregister to X-register Operation im Akku gleich Null ist.

schreibe Stackregisterinhalt ins X-Register

C : carry flag. Zeigt an, daB bei einer Operation ein
Flags: T f crov iUbertrag entstanden ist.

I : interrupt flag. Durch Setzen dieses Bit lassen sich

Addressierungsarten: Interrupts unterbinden.

Assembler: Hex—Code: Abklrzung: Byte: Takte:

D : decimal flag. Durch Set:zen dieses Bit wir der
Prozessor in den Dezimalmodus geschaltet. Das bedeutet,
daf zum Beispiel das Ergebnis der Addition von %09 und
$@1 nicht $0@A, sondern #10@ ergibt.

TS8X EBA - 1 2

W TXA : transfer X-register to akku

N V : overflow flag (Uberlauf). Zeigt an, daB das
Flags: T f cI1DpVv Ergebnis einer Operation gréfer $FF (=255) war.
Addressierungsarten:

. B IM : immediate (unmittelbar)

A H Hex— H g4 H H te:

ssembler ex~Code Abkiirzung Byte Takte Die Adressierungsart >rimmediate<< bedeutet, daB der
XA an _ 1 o Operand unmittelbar als Wert weiterverarbeitet wird.

Beispiel:
B TXS : transfer X-register to stackregister LPA #300)
schreibe X-Registerinhalt ins Stackregister 31fad2ixad921male Zahl %00 wird direkt in den Akku
e .

Flags: NZ C I DV
kei

ne M OP : Operand

Je nach Adressierungsart besteht der Operand eines
Takte: Befehls aus einem (Adressierung >rimmediate<< und
srzeropage<<) oder zwei Byte (:rabsolute<<).

Addressierungsarten:
Assembler: Hex—Codes Abkirzung: Byte:

TXS A - 1 2

B ZP : zeropage

Der Operand besteht aus einem Byte und gibt eine
Adresse in der Zeropage (Speicherbereich $000@ bis
$@0OFF) an.

B TYA : transfer Y-register to akku
schreibe Y-Registerinhalt in Akku

Flags: NZ C I DV
o) EEeEEaEa

Der Inhalt ‘der Speicherstelle $@@2B wird in den Akku

Assembler: Hex-Code: Abkilrzung: Byte: Takte: geladen.

Tva 78 - ! 2 W ZPX : Zeropage X-indiziert

Der Inhalt des X-Registers wird =zum zweistelligen,
hexadezimalen Operanden addiert. Das Ergebnis ist eine

Tabelle 2. Die Befehle des 6510-Prozessors (SchluB) Adresse in der Zeropage (Speicherbereich #0000 bis

LDX #£@5

LDA #43,X

Der Inhalt der Adresse $0048 ($0043 + $000S) wird in
den Akku geladen.

B ABS : absolute (absolut)
Der Operand ist eine vierstellige, hexadezimale m ZPY
Adresse.

: Zeropage Y-indiziert

Der Inhalt des Y-Registers wird zum =zweistelligen,
hexadezimalen Operanden addiert. Das Ergebnis ist eine
““““““““ Adresse in der Zeropage (Speicherbereich #0008 bis

LDA *Co00 $QOFF)
Der Inhalt der Adresse $CO0® wird in den Akku geladen. .
2 Beispiel:
M ABX : absolut X-indiziert LDY #3505
: : : : : LDA $43,Y
Der Operand ist eine vierstellige hexadezimale Zahl. Der Inhalt der Adresse $0048 ($0043 + $00@5) wird in

Der Inhalt des X-Registers wird zum Operanden addiert

und ergibt die Arbeits-Adresse. den Akku geladen.

LDX #£10

LDA #CR08,X . . .

Der Inhalt der Speicherstelle $CO10 ($CO0@ + $0010) Tabelle 3. Diese Abkiirzungen werden in den Tabellen 1
wird in den Akku geladen. und2verwendet

177

Tabellen

C64

W (ZP,X) : indiziert indirekt

Der Inhalt des X-Registers wird zum zweistelligen,
hexadezimalen Operanden addiert und ergibt eine Adresse
in der Zeropage (Speicherbereich $0000 bis $00FF).
Deren Inhalt und der Inhalt der darauffolgenden Adresse
ergibt in der Form Lo-Byte/Hi-Byte die Arbeitsadresse.

Adresse %20 hat den Inhalt #00

Adresse %21 hat den Inhalt #C@

LDX ##QE

LDA (#$12,X)

Der Inhalt der Zeropage—-Adressen #0020 ($000E + *@012)
und #0021 ergibt die Arbeits-Adresse $C000. Deren
Inhalt wird in den Akku geladen.

W (ZP),Y : indirekt indiziert

Der zweistellige, hexdezimale Operand ergibt eine
Adresse in der Zeropage (Speicherbereich $000@ bis
$00FF). Deren Inhalt und der Inhalt der darauffolgenden
Speicherstelle ergibt in der Form Lo-Byte/Hi-Byte eine
Adresse, =zu der der Inhalt des Y-Registers addiert
wird. Das Ergebnis ist die Arbeitsadresse.

Adresse #20 hat den Inhalt $00

Adresse #21 hat den Inhalt $C@

LDY #%10

LDA ($20),Y

Der Inhalt der Adresse $CO10 ($COR0 + $2010) wird in
den Akku geladen.

Tabelle 3. Diese Abkiirzungen werden in den Tabellen 1
und 2 verwendet (SchiuB)

178

ROM-Routinen
in eigenen
Programmen

Das Rad ist schon erfunden! Ahnlich ver-
hélt es sich mit verschiedenen Routinen,
die ein Assembler-Programmierer immer
wieder benotigt. Aber warum soll man sich
die Arbeit des Programmierens machen,
wenn das Betriebssystem viele stindig
benétigte Routinen schon enthélt und man
nur noch zu wissen braucht, ab welcher
Adresse sie stehen?

plexe Dinge programmieren wie beispielsweise eine

neue mathematische Funktion (wie ware es mit dem
Kotangens) und diese auf dem Bildschirm ausgeben. Das ist
eine groBe Aufgabe, zu der zunichst einmal die Ubernahme
des Arguments in das Maschinenprogramm, dann einige
FlieBkomma-Rechenoperationen und schlieBlich die Aus-
gabe auf dem Bildschirm geschrieben werden miiBten, wenn
da nicht schon fast alles an verborgener Stelle als fertige
Programm-Module im Computer vorhanden wére!

Sowohlim unteren (von $A000 bis $BFFF) als auch im obe-
ren ROM-Bereich (von $EOQ0O bis $FFFF) liegt die Firmware
fest verschachtelt vor. Der untere ROM-Abschnitt wird
manchmal auch Basic-Interpreter, der obere ROM-Bereich
Betriebssystem genannt, wobei diese Einteilung aber den
Kern der Sache nicht genau trifft, denn Interpreter, Editor und
Betriebssystem fiihren ein gemischtes Dasein quer durch alle
genannten ROM-Bereiche hindurch.

Mindestens funf Informationen braucht ein Assembler-
Programmierer, wenn er das breite Programmangebot des
ROMs nutzen méchte:

1. Einsprungadresse

2. Format der Eingabeparameter

3. Adressen der Eingabeparameter
4. Adressen der Ausgabeparameter
5. Format der Ausgabeparameter

Nicht alle Routinen, die man benutzen kann, erfordern alle
funf Informationen, manche weniger, einige auch mehr und
schlieBlich gibt es noch Programmroutinen, die noch den Auf-
ruf einer oder sogar mehrerer anderer Routinen nétig
machen.

In der beigefugten Tabelle sind - nach Anwendungen sor-
tiert - die wichtigsten Firmware-Mdglichkeiten mit den erfor-
derlichen Ein- und Ausgabeparametern aufgefiihrt. Das sind
natdrlich beileibe nicht alle. Die Auswahl erfolgte subjektiv! Es
sind einfach diejenigen, die mir bislang am haufigsten unter-
gekommen sind. AuBerdem wurde auf die Kernel-Routinen
verzichtet: Man findet diese sehr gut dokumentiert bereits in
einer Reihe von Buchern und im Assembler-Kurs.

Die Tabelle nennt den Label-Namen, die Einsprungadresse
und gibt eine Kurzbeschreibung der Funktion. Das Ein- und
auch das Ausgabeformatist ebenso angegeben wie auch die
Adressen, an denen diese Parameter ibergeben werden. Die
verwendeten Bezeichnungen halten sich eng an die im
Assembler-Kurs kennengelernten. Sie sind allgemein tiblich:

Z¥4p

n ngenommen, Sie méchten in Assembler einige kom-

N e

