
Tips und Tricks C64

Tips&THcks
ausführlich
erklärt
Die folgenden Programmbeispiele sollen
vor allem dem Anfänger den Einstieg in die
Maschinensprache des C 64 erleichtern.

Zu ihrem Verständnis sollte man wenigstens ungefähr
mit dem Befehlssatz der 6510-CPU und mit der Spei­
cherorganisation des C 64 vertraut sein. Die Beispiele

stammen aus den verschiedensten Anwendungsgebieten.
Ihnen allen gemeinsam ist:
- eine überschaubare Kürze
- Formulierung als Hypra-Ass-Quelltext
- eine ausführliche Beschreibung der Wirkungsweise.

1. Ein allererster Gehversuch mit Hypra-Ass
Zu diesem und zu allen folgenden Programmen benötigen

Sie den Hypra-Ass. Er wird wie ein Basic-Programm geladen
und mit RUN initialisiert. Jedes weitere RUN startetjetzt einen
Assemberlauf, ist aber zunächst noch wirkungslos, da noch
nichts im Textspeicher des Assemblers steht. Geben Sie nun
folgende vier Zeilen ein:

10 - .BA $C000
20 - LDA #1
30 - STA $400
40 - RTS

Dabei dürfen die Minus-Zeichen nach den Zeilennummern
nicht vergessen werden (Eigenartvon Hypra-Ass). Auch das
Leerzeichen nach den Minus-Zeichen ist wichtig. Sie werden
feststellen, daß der Assember die Zeilen nach Drücken der
RETURN-Taste formatiert. Listen Sie die vier Zeilen auch
einmal probeweise mit

LIST (unformatiert) und
/E (formatiert)

Das Programm ist schnell erklärt:
Mit .BA $C000 wird dem Assembler die Startadresse

(BAsisadresse) des Programms mitgeteilt. .BA ist ein
Pseudobefehl. Ein solcher Befehl steuert die Arbeitsweise
des Assemblers, bewirkt aber keine Erzeugung eines
Maschinenbefehls.

LDA # 1 lädt den Akkumulator mit 1, dem Bildschirmcode
des Buchstabens A.

STA $400 speichert den Akkumulatorinhalt, also die 1 an
die Speicherstelle $400. $400 ist die Startadresse des
Bildschirm-RAMs und entspricht der linken oberen Bild­
schirmecke. Dort muß also ein »A« erscheinen.

RTS (ReTurn from Subroutine) bedeutet Rücksprung aus
einem Unterprogramm. Mit RTS müssen Programme abge­
schlossen sein, die mit JSR (Jump to SubRoutine) oder SYS
(von Basic aus) aufgerufen werden. Dies dürfte für die
überwiegende Mehrheit aller Maschinenprogramme der Fall
sein. Ausnahmen sind:

Programme., die von einem Monitor aus gestartet werden.
Sie sollten mit einem BRK (Break) abgeschlossen sein.

Programme, die durch Interrupts aktiviert werden, werden
normalerweise durch RTI (ReTurn from Interrupt) abge­
schlossen.

Mit RUN wird der Assembler gestartet. Er erzeugt ein 6
Byte kurzes Maschinenprogramm ab $C000 und gibt in einer
Abschlußmeldung den belegten Speicherbereich zusam­
men mit der Assemblierzeit bekannt. Das Maschinenpro­
gramm kann nun mit

SYS $C000 oder SYS 12 * 4096

gestartet werden. (Wenn Hypra-Ass aktiv ist, versteht der C
64 auch Hex-Zahlen). Es müßte ein »A« in der linken oberen
Bildschirmecke erscheinen. Sollte das nicht der Fall sein, so
kann das zwei Ursachen haben:
1. Das »A« wurde nach oben weggescrollt, weil Sie den SYS-

Befehl zu weit unten auf dem Bildschrim eingetippt haben.
2.Sie besitzen eine alte Version des C 64, bei der das Farb­

RAM mit der Hintergrundfarbe vorbesetzt wird.
Im zweiten Fall ergänzen Sie das Programm durch:

35 - STA $D800
Dieser Befehl speichert die immer noch im Akkumulator (im

folgenden nur Akku genannt) stehende 1 an die Startadresse
des Farb-RAMs. Dadurch erscheint das »A« in weißer Farbe.

Ergänzen Sie Ihr kleines Programm einmal durch den
Pseudobefehl

5 - .LI 1,3,0
und assemblieren Sie mit RUN. Der Assembler erzeugtjetzt
ein Listing, dessen Zeilen von links nach rechts wie folgt
aufgebaut sind:
- Speicheradresse des folgenden Maschinenbefehls
- Der Code des Maschinenbefehls. ,Da es Maschinen­

befehle mit ein, zwei oder drei Byte gibt, sind diese
Einträge unterschiedlich lang.

- Ein Doppelpunkt und die ursprüngliche Quelltextzeile. Bei
Pseudobefehlen, diejakeinen Code erzeugen, entfälltder
Teil bis einschließlich zum Doppelpunkt.
Das Assemblerlisting ist bei der Fehlersuche mit einem

Monitor nützlich, da es zu jedem Maschinenbefehl seine
Adresse enthält. Mit dem Pseudobefehl:

.11 1,4,0

erhält man ein Druckerlisting. Angenehm dabei ist, daß es bei
ausgeschaltetem Drucker automatisch auf den Bildschrim
umgeleitet wird.

Die abgedruckten Listings enthalten allerdings keine
Speicheradressen mit zugehörigem Maschinencode. Diese
Information ist zum Studieren der Programme uninteressant
und zum Eintippen der Listings nicht erforderlich. Die Listings
wurden mit dem Editorbefehl /E (formatiertes Listen) ge­
wonnen, nachdem vorher die Ausgabe durch

OPEN 4,4:CMD 4

auf den Drucker umgeleitet wurde.
2. Eine einfache Programmschleife

Das folgende kleine Programm (Listing 1) schreibt 240mal
den Buchstaben »A« auf den Bildschirm. Zur Arbeitsweise:
Akku A wird wieder mit dem Bildschirmcode des Buchsta­
bens A geladen. Das X-Register übernimmt zwei Aufgaben:
Es zählt Schleifendurchläufe und liefert Werte zur Adreß­
verschiebung. X wird mit 0 vorbesetzt. In Zeile 1280 ist

100
110
120
130
140

-; PROGRAMMSCHLEIFE
-; 240 MAL "A"
-1 AUF BILDSCHJRM SCHREIBEN

150 -
160 -
170 -
180 -LOOP
190 -
200 -
210 -
220 -

.BA *C000
LDA «1
LDX «0
STA *400,X
INX
CPX #240
BNE LOOP
RTS

;PROGRAMM-STARTADRESSE
;BILDSCHIRMCODE VON "A"
;SCHLEIFENZAEHLER
;ZEICHEN AUF BILDSCHIRM SCHREIBEN
;X HOCHZAEHLEN
;X MIT 240 VERGLEICHEN
;FALLS UNGLEICH, GEHE NACH “LOOP"
;FALLS X=240, DANN PROGRAMMENDE

READY.

Listing 1. Programmschleife

C64 Tips und Tricks

LOOP ein Label (auch SYMBOL oder Sprungmarke). LOOP
steht für die Adresse des STA-Befehls, die man an anderen
Programmstellen durch den Namen LOOP ansprechen kann,
ohne daß man den Wert dieser Adresse kennt. Den
Assemblerprogrammierer interessieren absolute Adressen
normalerweise auch gar nicht, es sei denn, es handelt sich
um systemspezifische Adressen, wie zum Beispiel die
Adressen der Video-Chip-Register. Eine derartige Zu­
ordnung einer Programmadresse zu einem Label nennt man
implizite Definition.

Die Zieladresse des STA-Befehls in Zeile 180 ergibt sich
durch die Summe aus $400 und X. Da X am Anfang 0 gesetzt
worden ist, wird also eine 1 an die Stelle $400 gespeichert.
INX erhöht X um Eins. CPX # 240 vergleicht X mit der Zahl
240. Bei Ungleichheit wird das Zero-Flag im Statusregister
auf 0 gesetzt. Auf dieses Zero-Flag bezieht sich dann der
bedingte Sprung BNE LOOP. BNE springt dann, wenn der
vorige Vergleich Ungleichheit ergeben hat. (Daher auch der
Name BNE = Branch if Not Equal = verzweige, wenn

BLOCKVERSCHIEBUNG
(MAXINAL 255 BYTE)

100
110
120

LOOP

1 ._______________________X UV
140
150
160
170
180
190
200
210
220
230
240

.BA $C000 ;PROGRAMMSTART

.EQ QUELLE=S400;BL0CKSTART

.EQ ZIEL=$400+240

.EQ LAENGE=240 ;BLOCKLAENGE
-; X LAEUFT RUECKWAERTS VON LAENGE BIS 1

LDX #LAENGE
-LOOP LDA QUELLE-l,X

STA ZIEL-l,X
DEX ;X:=X-1
BNE LOOP ;FALLS X<>0, NACH
RTS ;SONST ENDE

READY.

Listing 2. Blockverschiebung

100
110
120
130

-; BLOCKVERSCHIEBUNG
OHNE EINSCHRAENKUNGEN

140 .BA $C000 ;PROGRAMMSTART
150 .EQ V0N=$A09E
160 .EQ BIS=$A327
170 .EQ ZIEL=$400
180 .EQ ZEIGERl=$FB
190 .EQ ZEIGER2=$FD
200
210 LDA #<(VON)
220 STA ZEIGER1
230 LDA #>(VON)
240 STA ZEIGERl+1
250 LDA #<(ZIEL)
260 STA ZEIGER2
270 LDA #>(ZIEL)
280 STA ZEIGER2+1
290 LDY #0
300 -LOOP LDA (ZEIGERl),Y
310 STA (ZEIGER2),Y
320 -; ZEIGER1 MIT "BIS" VERGLEICHEN
330 LDA ZEIGER1
340 CMP #<(BIS)
350 BNE WEITER
360 -; LOW-BYTES STIMMEN UEBEREIN, HIGH-BYTES VERGLEICHEN
370 LDA ZEIGERl+1
380 CMP #>(BIS)
390 BEQ ENDE
400 -; BEIDE ZEIGER INKREMENTIEREN
410 -WEITER INC ZEIGER1
420 BNE WEITER2
430 INC ZEIGERl+1
440 -WEITER2 INC ZEIGER2
450 BNE LOOP
460 INC ZEIGER2+1
470 JMP LOOP
480 -ENDE RTS

READY.

Listing 3. Blockverschiebung ohne Einschränkung

ungleich). Beim nächsten Schleifendurchlauf wird die 1 aus
dem Akku an die Adresse $4012 gespeichert. X wird solange
inkrementiert, bis 240 erreicht ist. In diesem Fall springt BNE
nicht und das Programm endet mit RTS. Bei den 240 Schlei­
fendurchläufen werden nacheinander die Adressen $400
bis $400+239 angesprochen. Programmschleifen wie
diese benützt man oft zum Löschen eines Speicherbereichs.
(Akku mit 0 vorbesetzt.)
3. Blockverschiebung (maximal 255 Byte)

Das Programm (Listing 2) arbeitet mit einer ähnlichen
Schleifewiedasvorige. IndenZeilen 150,160 und 170wer-
den Label explizit definiert. Dies geschieht mit dem Pseudo­
befehl .EQ.

Die explizite Definition eines Labels ist praktisch dasselbe
wie die Zuweisung eines Wertes an eine Variable. Hier wer­
den die Anfangsadressen des ursprünglichen Blocks und
des verschobenen Blocks sowie die Blocklänge definiert. X
läuft hier rückwärts von LAENGE bis 0. Dadurch kann der
CPX-Befehl eingespart werden. DEX setzt nämlich auto­
matisch das Zero-Flag, wenn nach dem Dekrement X den
Wert 0 hat. BNE LOOP springt also nur solange nach LOOP,
solange X größer als 0 ist. Mit den vorliegenden Werten für
QUELLE, ZIEL und LAENGE kopiert das Programm die Bild­
schirmzeilen 1 bis 6 auf die Zeilen 7 bis 12.

Programme zur Blockverschiebung wie dieses oder zur
Blockfüllung wie das vorige sind nurfür Blocklängen bis maxi­
mal 255 Byte geeignet, da das X-Register nur 8 Bit lang ist.
Wenn man größere Speicherbereiche auf diese Weise verar­
beiten will, muß man mehr Aufwand treiben.
4. Blockverschiebung (ohne Einschränkungen)

Das Programm (Listing 3) ist sicher nicht die kürzeste
Lösung des Problems, es demonstriert dafür aber ohne ver­
wirrende Tricks die Adressierungsart »Indirekt Indiziert«.

Beispiel: LDA (ZEIGER),Y
Bei dieser Adressierungsart enthalten zwei aufeinanderfol­
gende Speicherstellen der Zero-Page eine Adresse in der
üblichen Reihenfolge Low-Byte - High-Byte. Im Programm
wird nicht diese Adresse selbst angegeben, sondern die
Adresse der ersten der beiden Zero-Page-Speicherstellen
(hier ZEIGER genannt). Diese Technik nennt man indirekte
Adressierung, was im Assemblertext durch die runden
Klammern um die Zero-Page-Adresse zum Ausdruck kommt.
Zu der aus der Zero-Page stammenden Adresse wird noch
Y addiert, daher »indiziert«. Da man diese zusätzliche
Indizierung oft nicht braucht, setzt man das Y-Register
vorher auf O.

Das Programm verwendet für den Blocktransfer zwei
Zeiger(= Zero-Page-Speicherstellenpaare). Sie werden mit
der Startadresse des Quell- beziehungsweise des Zielblocks
initialisiert und nach jedem Byte-Transfer hochgezählt, bis
der Zeiger in den Quellblock (ZEIGER1) das Ende des
Quellblocks (Adresse BIS) erreicht hat.

Das Inkrementieren eines 16-Bit Wertes verläuft nach dem
Schema:

INC ZEIGER ;Low-Byte inkrementieren
BNE Weiter ;falls ungleich 0, dann fertig
INC ZEIGER+l;Ubertrag ins High-Byte

WEITER (Programmfortsetzung)

Spezifisch für den Hypra-Ass ist, daß man mit
< (Adresse) beziehungsweise > (Adresse)
das Low- bezeihungsweise High-Byte einer Adresse

(beziehungsweise eines Labels) gezielt ansprechen kann.
Von dieser Möglichkeit wird im Programm häufig Gebrauch
gemacht. So bedeutet zum Beispiel:

LDA #< (VON)
Lade den Akkumulator mit dem Low-Byte des Wertes VON.

Mit den im Program definierten Adressen VON, BIS und
ZIEL kopiert das Programm einenTeilbereich aus dem Basic-

'Ä 159

Tips und Tricks C64

Interpreter direkt auf den Bildschrim. Im Groß-/Kleinschrift-
modus (Commodore-Shift drücken) kann man dann Basic-
Schlüsselwörter sowie Texte von Fehlermeldungen lesen.

5. Verwendung von Betriebssystem-Funktionen und
Mechanismen zur Parameterübergabe
Ein Betriebssystem ist unter anderem dazu da,

Standarddienste wie Ein- und Ausgabe zur Verfügung zu
stellen, damit diese nicht jedesmal mühsam und fehleranfällig
neu programmiert werden müssen. Die Standardfunktionen
des Betriebssystems (oft »Kernel« genannt) sind im Pro­
grammierhandbuch von Commodore hinreichend erläutert.
Viele weitere nützliche Routinen findet man beim Studium
eines kommentierten ROM-Listings.

Die Parameterübergabe an Maschinensprache-Unterpro­
gramme gestaltet sich leider nicht so systematisch wie bei
den meisten höheren Programmiersprachen. Es werden
mehrere Möglichkeiten bunt gemischt angewendet.
1 . Man schreibt Parameter in vereinbarte Speicherstellen.

Aus diesen holt sich dann das aufgerufene Programm die
Parameter.

2 .Wenn nur Ein- bis Drei-Byte-Parameter benötigt werden,
kann man diese auch in den Registern A, X und Y über­
geben. Auf diese Weise werden die meisten Kernel-
Funktionen mit Parametern versorgt.
Dieser Mechanismus steht übrigens auch von Basic aus
zur Verfügung: Man schreibt Registerparameter per
POKE an speziell dafür vorgesehene Speicherstellen:

AkkuA 780 ($30C)
IndexX 781($30D)
IndexY 782 ($30E)
Status-Register 783 ($30f)

Das Maschinenprogramm (Listing 4) wird nun mit SYS
aufgerufen. Der Basic-Interpreter besetzt erst die Re­
gister mit den Inhalten dieser Speicherstellen und bringt
dann in das Unterprogramm. Nach der Rückkehr werden
die (neuen) Registerinhaltewiederin denselben Speicher­
stellen abgelegt, wo sie für eine eventuelle Inspektion
durch das Basic-Programm zur Verfügung stehen.

100 ________________

110 -; VERWENDUNG DER BETRIEBSSYSTEM-
120 -; ROUTINEN GETIN UND CHROUT
130 _ ---------- —
140 - .BA *cooo
150 - .EQ GETIN=$FFE4
160 - .EQ CHR0UT=SFFD2
170 - .EQ ZAEHLER=tFE
180 - .EQ MAXLEN=10 ;[ZEILENLAENGE
190 - .EQ PR0MPT=63 ii " ?"
200 - .EQ ESCAPE=88 |;FLUCHTSYMBOL "X"
210 - .EQ SPACE=32
220 - .EQ CR=13 j;CARRIA6E RETURN
230
240 -NEWLINE LDA #MAXLEN I;ZAEHLER INITIALISIEREN
250 - STA ZAEHLER
260 - LDA #CR
270 - JSR CHROUT [ZEILENVORSCHUB
280 - LDA #PROMPT
290 - JSR CHROUT ;;PROMPT-ZEICHEN AUSGEBEN
300 - LDA #SPACE
310 - JSR CHROUT
320 -WAIT JSR GETIN ।[AUF EINGABE WARTEN
330 - CMP #0
340 - BEQ WAIT
350 - CMP #ESCAPE ;[BEI ESCAPE-ZEICHEN PROGRAMMENDE
360 - BEQ ENDE
370 - CMP #CR ;[BEI CR NEUE ZEILE
380 - BEQ NEWLINE
390 - JSR CHROUT ;[EINGABEZEICHEN WIEDER AUSGEBEN
400 - DEC ZAEHLER
410 - BNE WAIT ;[NAECHSTE EINGABE
420 - BEQ NEWLINE ;[ZEILENLAEN6E ERREICHT
430 -ENDE RTS

READY.

Listing 4. Verwendung von Betriebssystemroutinen

3. Man kann Parameter auch über den Stack übergeben.
Diese Methode ist wegen des kleinen Stackbereichs der
6510-CPU (256 Byte) nur bedingt brauchbar und wird
deshalb auch kaum praktiziert.

4. Durch geschickte Verwendung von Unterprogrammen in
Basic-ROM kann man Parameter direkt hinter den SYS-
Befehl schreiben. Diese Methode ist
- komfortabel, weil keine umständlichen POKEs nötig

sind
- schnell, weil der Interpreter weniger zu tun hat
- flexibel, weil als Parameter auch ganze arithmetische

oder Stringausdrücke geschrieben werden können.
Diese Methode wird in den Programm-Listings 5 bis 8
verwendet.
Das folgende Programm (Listing 4) nutzt die Funktionen

GETIN und CHROUT. GETIN liefert den ASCII-Code einer
gedrückten Taste im Akku. Falls keine Taste gedrückt
wurde, wird 0 zurückgegeben. GETIN entspricht damit
genau dem GET-Befehl in Basic.

CHROUT gibt ein Zeichen, dessen ASCII-Code im Akku
stehen muß, auf dem Bildschrim aus. Es entspricht dem
Basic-Befehl (man beachte das Semikolon):

PRINT CHR$(A);

Das Programm gibt einen Prompt aus und erwartet an­
schließend Eingaben. Unter einem Prompt versteht man ein
(beliebig zu vereinbarendes) Zeichen am linken Bildschirm­
rand, das dem Benutzer mitteilt, daß Eingaben von ihm er­
wartet werden. Bei interaktiven Programmen (wie zum
Beispiel Monitore, Editore) sind Prompts sehr nützlich, da
der Benutzer daran eindeutig erkennen kann, in welchem
Programm er gerade ist. Das vorliegende Programm gibt die
Eingabezeichen sofort wieder aus, ohne sie weiter zu
verarbeiten. Nach maximal zehn Zeichen wird automatisch
ein Zeilenvorschub ausgeführt und ein weiterer Prompt
ausgegeben. Das Programm ist eine Endlosschleife, die man
mit der Eingabe von »X« verlassen kann.

6. Verwendung von Interpreter-Routinen zur
Parameterübergabe
Diese Interpreter-Routinen werden in den folgenden Pro­

grammbeispielen eingesetzt:
CHKKOM liest aus dem laufenden Basic-Text ein Komma.
($AEFD) Steht an der aktuellen Stelle kein Komma, wird

das Programm mit SYNTAX ERROR abgebro­
chen. Kommata sind nötig, um Parameter von­
einander abzugrenzen.

FRMNUM wertet einen beliebigen arithmetischen Aus-
($AD8A) druck aus. Das Ergebnis wird im Fließkomma-

Akkumulator 1 (kurz FAC) abgelegt. Der FAC
besteht aus den Speicherstellen $61-$66. Die
Bedeutung der einzelnen Byte ist hier nicht
relevant.

GETADR wandelt den Inhalt des FAC in ein 2-Byte-lnteger-
($B7F7) Format um, sofern diese Zahl im Bereich 0 ...

65535 liegt. Ansonsten wird ein ILLEGAL
QUANTITY ERROR ausgegeben. Die Integer­
zahl steht in den Speicherstellen $14/$15 und
zusätzlich im Registerpaar Y/A. Mit der Kombi­
nation FRMNUM und GETADR kann man also
16-Bit-Größen aus Basic-Programmen über­
nehmen.

XBYTE wertet ebenfalls arithmetische Ausdrücke aus
($B79E) und wandelt das Ergebnis in 8-Bit-lntegerformat,

sofern es im Bereich 0 ... 255 liegt. Das Byte-
Ergebnis wird im X-Register übergeben.

USR () ist eine Basic-Funktion, mit der man Werte von
Maschinenprogrammen an Basic zurückgeben
kann. USR wertet einen in Klammern stehenden

C64 Tips und Tricks

Ausdruck aus und übergibt ihn in den FAC. Es
wird ein Maschinenprogramm aufgerufen, des­
sen Startadresse in $311/$312 steht. (USR-
Vektor). Das Maschinenprogramm kann dann im
FAC einen Wert an Basic zurückgeben.

Das folgende Listing (Listing 5) ist der Programmkopf zu
den vier nachfolgenden Beispielen. Diese können mit dem
Kopf zusammen assembliert werden. Der Kopf enthält eine
Sprungliste. Dadurch werden Einsprungstellen ($C000,
$C003, etc.) für die vier aufgeführten Programme fixiert,
unabhängig davon, wo die Programme dann später tatsäch­
lich im Speicher stehen. Diese Technik ist zum Beispiel

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

-•================================
- ; EINIGE ALLGEMEIN NUETZLICHE
-; MASCHINENSPRACHE-UNTERPROGRAMME
- ; FUER DEN AUFRUF DURCH
- ; BASIC-PROGRAMME

- ; EINFACHE PARAMETERUEBERGABE:
- ; SYS STARTADRESSE,PARAMETERLISTE

.BA $C000
- ; EINSPRUNGPUNKTE UND UNTERROUTINEN
- ; DES BASIC-INTERPRETERS

.EQ CHKKOM=$AEFD;PRUEFT AUF KOMMA

.EQ FRMNUM=#AD8A;BERECHNET NUMERISCHEN AUSDRUCK IN FAC

.EQ GETADR=$B7F7;WANDELT FAC IN INTEGERFORMAT ($14/$15)

.EQ XBYTE=#B79E;H0LT B*TE-WERT NACH X

.EQ PLOT=$FFFO ;CURSOR SETZEN

.EQ PRINT=$AAAO;BASIC-PRINT

.EQ SETLFS=$FFBA;FILEPARAMETER SETZEN

.EQ SAVE=$FFD8

- ; SPRUNGLISTE

JMP PRINTAT
JMP DEEK
JMP DOKE
JMP SAV

READY.

Listing 5. Einfache Parameterübergabe aus Basic-
Programmen

sinnvoll, wenn mehrere Leute zusammen an einem größeren
Programm arbeiten. Ein Programmierer kann seinen Kollegen
bereits feste Einsprungstellen für Routinen, an denen er
noch arbeitet oder die noch gar nicht existieren, zur Ver­
fügung stellen.
PRINT AT

Das Programm (Listing 6) ermöglicht eine freie und
schnelle Cursorpositionierung zusammen mit einer Druck­
ausgabe. Mit der Definition

PR=123*4096 :REM Startadresse

kann mit
SYSPR,Zeile,Spalte,Printliste

alles ausgeben werden, was auch mit PRINT ausgegeben

420 -;

380 -;
390 - --

400 -; PRINT AT
410 -; AUFRUF: SYSPR,ZEILE,SPALTE,PRINTLISTE

430 -PRINTAT JSR CHKKOM ;1. KOMMA
440 - JSR XBYTE ;ZEILE NACH X
450 - TXA
460 - PHA ;AUF STACK ZWISCHENSPEICHERN
470 - JSR CHKKOM ;2. KOMMA
480 - JSR XBYTE ;SPALTE NACH X
490 - TXA
500 - TAY ;SPALTE NACH Y
510 - PLA
520 - TAX ;ZEILE NACH X
530 - CLC
540 - JSR PLOT ;CURSORPOSITION SETZEN
550 JSR CHKKOM ;3.K0MMA
560 - JMP PRINT ;WEITER MIT BASIC-PRINT

READY.

Listing 6. PRINTAT-Befehl selbstgemacht

570 -;
580 -;---
590 -; DEEK (16-BIT-PEEK)
600 -; DER USR VEKTOR ($311/$312)
610 -; MUSS AUF DIESES PROGRAMM ZEIGEN
620 -; AUFRUF: USR(ADRESSE)
630
640 -DEEK JSR GETADR ;FAC NACH INTEGER ($14/15)
650 - LDY #0
660 - SEI
670 - LDA ($14) ,Y ;LOW-BYTE
680 - STA $63 ;FAC MANTISSE
690 INY
700 - LDA ($14) ,Y ;HIGH-BYTE
710 - CLI
720 - STA $62 ;FAC MANTISSE
730 LDX #$90 ;FAC EXPONENT
740 SEC ;NICHT INVERTIEREN
750 JMP $BC49 ;FAC KOMPLETT MACHEN

Listing 7. Eigener DEEK-Befehl

werden kann. Man lasse sich einmal von der Geschwindig­
keit des folgenden Programms beeindrucken:

10 FOR 1=1 TO 24:SYSPR, I,I,"A":NEXT
20 FOR 1=1 TO 24:SYSPR,-I,I,"B":NEXT

Das Assemberlisting zu PRINT AT bedarf keiner großen
Erläuterung. PLOT ist eine Kernel-Funktion, mit der man die
Cursorposition auf dem Bildschirm setzen kann. Parameter
sind Zeilen- und Spaltennnummern in den Registern X und Y.
Das Programm PRINT AT ist eigentlich nicht mehr als eine
geschickte Kombination der Routinen PLOT und PRINT.

DEEK (Doppelbyte-PEEK)
Dieses Programm (Listing 7) ist eine Abänderung der

PEEK-Routine. DEEK liefert einen 16-Bit-Speicherinhalt an
Basic zurück. DEEK wird durch

X=USR(Adresse)
aufgerufen. Mit Adresse ist die Adresse des Low-Bytes
gemeint. Da USR einen Wert zurückgibt, darf es nicht isoliert
dastehen, sondern muß als rechte Seite einer Zuweisung
oder als Funktionsargument eingesetzt werden. Vor dem
ersten Aufruf muß der USR-Vektor auf die Startadresse des
Programms gestellt werden:

POKE 785,3 :REM LOW-BYTE $03
POKE 786,192 :REM HIGH-BYTE $C0

lm Assemblerlisting steckt eine Besonderheit: Die Zugriffe
auf die beiden zu lesenden Bytes (LDA ($14),Y) sind durch
ein SEI/CLI-Paar eingerahmt. SEI sperrt die CPU für Inter­
ruptanforderungen. Dadurch wird garantiert, daß die beiden
Lesezugriffe nicht durch ein Interruptprogramm, welches
eines oder beide Bytes ändern könnte, unterbrochen
werden können. CLI löst die Interruptsperre wieder.

DOKE (Doppelbyte-POKE)
Um in Basic-Programmen 16-Bit-Größen (zum Beispiel

Adressen, Vektoren) in den Speicherzu schreiben, muß man
sie vorher erst umständlich in High- und Low-Byte zerlegen,
um dann beide Byte POKEn zu könen. Dazu wird meistens
die Sequenz:

HI=INT(X/256)
L0=X-256*HI
POKE AD,L0
POKE AD+l,HI

verwendet.
Wenn man bedenkt, daß jeder Befehl interpretiert werden

muß und daß jede Rechenoperation (auch »+1«) in voller
Fließkomma-Genauigkeit durchgeführt wird, versteht man,
daß dazu viel Rechenzeit nötig ist. Das kleine Maschinen­
programm (Listing 8), das keiner Erläuterung mehr bedarf
(FRMNUM, GETADR und CHKKOM sind bekannt) zeigt, wie
es einfacher geht:

SYSD0,AD,Y

161

Tips und Tricks C64

760 -;
/ / V ।
780 -; DOKE (16-BIT-P0KE)
790 -; AUFRUF: SY5D0,ADRESSE,WERT

;---
810 -DOKE JSR CHKKOM ;1. KOMMA
820 - JSR FRMNUM ;ADRESSE NACH FAC
830 - JSR ßETADR ;FAC NACH INTEGER ($14/15)
840 - LDA $14
850 - STA $9E ;ADRESSE NACH $9E/9F
860 - 'LDA $15
870 - STA $9F
880 - JSR CHKKOM ;2.K0MMA
890 - JSR FRMNUM jWERT NACH FAC
900 - JSR 6ETADR ;FAC NACH INTEGER ($14/15)
910 - LDY #0
920 - SEI
930 - LDA $14 ;WERT LOW-BYTE
940 - STA ($9E),Y
950 - INY
960 - LDA $15 ;WERT HIGH-BYTE
970 - STA ($9E),Y
980 - CLI
990 - RTS

READY.

Listing 8. Eigener DEEK-Befehl

Aufgerufen wird es durch:
SYSSAV,Date iname,gn,s a,ea

Dabei kann bei »Dateinamen« ein Name oder ein String­
ausdruck in Anführungszeichen stehen.
»gn« ist die Gerätenummer (8 oder 9)
»sa« und »ea« sind Start- und Endadresse des
abzuspeichernden Bereiches. Zum Programm selbst:

Die Routine bei $E257 beschafft sich den Filenamen aus
dem Basic-Text und stellt ihn der später folgenden SAVE-
Routine zur Verfügung. Mit SETLFS kann man dem
Betriebssystem eine logische Filenummer (im Akku), eine
Gerätenummer (in X) und eine Sekundäradresse (in Y)
bekanntgeben. Die Parametrisierung der Kernel-SAVE-
Routine ist etwas komplizierter:
X Endadresse Low-Byte
Y Endadresse High-Byte
A Zeiger auf das untere Byte eines Zero-Page-Byte-

paares, welches die Startadresse enthält.
Die SAVE-Routione kehrt mit gesetztem Carry-Flag

zurück, falls beim Speichern ein Fehler aufgetreten ist. Das
Programm bei $E0F9 sorgt dann für eine ordentliche
Fehlermeldung.

(Natürlich muß man DO einmal vorher definieren:
DO=12*4096+6). Auch bei DOKE werden die beiden
kritischen STA-Befehle durch ein SEI/CLI-Paar untrennbar
gemacht. Mit DOKE kann man daher sogar den Interrupt-
Vektor ändern. Versucht man dies dagegen mit Hilfe zweier
POKEs, kann es passieren, daß ein Interrupt gerade dann
auftritt, nachdem das Low-Byte aber noch nicht das High-
Byte geändert worden ist. Der Interrupt führt dann auf eine
unbestimmte Adresse, was meistens einen Programmab­
sturz nach sich zieht.

DEEK und DOKE können natürlich auch verschachtelt ein-
gesetz werden. So kann man mit

SYSD0,A2,USR(Al)
einen 16-Bit-Wert von der Stelle A1 nach A2 kopieren.
Speichern beliebiger Speicherbereiche auf Diskette

Das Programm (Listing 9) realisiert das Gegenstück zum
Basic-Befehl:

LOAD "Name",8,l

100
110
120
130
140
150
100
170

MULTIPLIKATION 8 MAL 8 BIT

MD
MR

MULTIPLIKAND <BLEIBT ERHALTEN)
MULTIPLIKATOR (WIRD UEBERSCHRIEBEN)

16-BIT-PR0DUKT STEHT IN
(HIGH-BYTE> UND

DAS
MR

180 1 OA -5 A (LOW-BYTE)
l7V

200 .BA $C000
210 .EQ MD=$FD
220 .EQ MR=$FE
230 -MUL LDA #0 ;VORBESETZUNG DES PRODUKTS
240 LDX #8 ;ZAEHLER (8 DURCHLAEUFE)
250 -MULLOOP ASL ;PRODUKT IN A UEBER
260 ROL MR ;MR NACH LINKS SCHIEBEN
270 BCC MULNEXT ;HOECHSTES BIT IN MR=0
280 CLC ;FALLS HOECHSTES BIT IN MR=1,
290 ADC MD ;MD ZUM TEILPRODUKT ADDIEREN
300 BCC MULNEXT ;KEIN UEBERTRA6
310 INC MR ;UEBERTRA6 NACH MR BERUECKSICHTIGEN
320 -MULNEXT DEX
330 - BNE MULLOOP ;WEITER, FALLS ZAEHLER NOCH NICHT 0
340 - RTS

READY. Listing 10. Mulitplikation 8 mal 8 Bit

1000 -;
1010 -;------------- —
1020 -; SAV
1030 -: SPEICHERE BELIEBISEN BEREICH AUF DISK
1040 -; AUFRUF: SYSSAV,DATEINAME,GERAETENUMMER,STARTADRESSE,ENDADRESSE
1050 -;------------- —
1060 -SAV JSR CHKKOM ';1. KOMMA
1070 - JSR $E257 ;FILENAMEN HOLEN UND SETZEN
1080 - JSR CHKKOM ;2. KOMMA
1090 - JSR XBYTE ;GERAETENUMMER NACH X
1100 - LDY #0 ;SEKUNDAERADRESSE
1110 - JSR SETLFS ;FILEPARAMETER SETZEN
1120 - JSR CHKKOM ;3. KOMMA
1130 - JSR FRMNUM ;STARTADRESSE
1140 - JSR GETADR ;NACH $14/15 UND Y/A
1150 - PHA ;HIGH-BYTE
1160 - TYA
1170 - PHA ;LOW-BYTE
1180 - JSR CHKKOM ;4. KOMMA
1190 - JSR FRMNUM ;ENDADRESSE
1200 - JSR GETADR ;NACH $14/15 UND Y/A
1210 - PHA
1220 - TYA
1230 - TAX
1240 - PLA
1250 - TAY ;ENDADRESSE LOW IN X, HIGH IN Y
1260 - PLA ;STARTADRESSE LOW-BYTE
1270 - STA $14
1280 - PLA ;STARTADRESSE HIGH-BYTE
1290 - STA $15 ;STARTADRESSE IN $14/15
1300 - LDA #$14 ;ADRESSE DER STARTADRESSE
1310 - JSR SAVE
1320 - BCC SAVENDE ;KEIN FEHLER
1330 - JMP $E0F9 ;FEHLERAUSGANG
1340 -SAVENDE RTS

READY.

Listing 9. Speichern von beliebigen Speicher­
bereichen

Multiplikation
Das Programm (Listing 10) multipliziert zwei Byte-Werte

miteinander und liefert ein 16-Bit-Produkt. Es ist aber trotz
seiner Kürze nicht ganz einfach zu verstehen. Die beiden zu
multiplizierenden Faktoren seien mit

Multiplikator MR und Mulitplikand MD
bezeichnet. Für das Resultat ist es natürlich gleichgültig,
welcher Faktor als MR und welcher als MD an das Programm
übergeben wird. MR kann man sich, wiejede binäre Größe,
folgendermaßen vorstellen:
MR=MR(7)*128+MR(6)*64+...+MR(1)*2+MR(0)*1

Dabei bezeichnet zum Beispiel MR(6) das Bit Nummer 6
von MR in der üblichen Zählweise von 0 bis 7 und von rechts
nach links. Das Produkt MR*MD kann man nun so berech­
nen:

Addiere folgende Teilprodukte:
MD*128, falls MR(7)=1, sonst 0
MD*64, falls MR(6)=1, sonst 0
MD*2, falls MR(1)=1, sonst 0
MD, falls MR(0)=l, sonst 0

Die Teilprodukte erhält man einfach durch Links­
verschieben von MD:

MD*128 durch 7-maligen Links-Shift
MD*64 durch 6-maligen Links-Shift

Zu addieren ist nur dann etwas, wenn das entsprechende
Bit in MR= 1 ist. Wenn man MR mit dem ROL-Befehl achtmal

162

C64 Tips und Tricks

nach links schiebt, so durchwandern alle 8 Bit nacheinander
das Carry-Flag und letzteres kann leicht abgefragt werden.
Der Trick des Programms besteht nun darin, daß das
Berechnen von Teilproduktsummen mit dem Linksschieben
von MR kombiniert wird. Zunächst wird die Zwischensumme
in A mit 0 vorbesetzt. MR wird nach links geschoben. Das
höchstwertige Bit von MR steht jetzt im Carry-Flag. Ist es 1,
so wird MDzum Akku addiert. Eigentlich müßtejetzt der Akku
um sieben Positionen nach links geschoben werden, da zum
ersten Teilprodukt der Faktor 128 gehört. Diese
Verschiebung ergibt sich aber automatisch im Verlauf der
nächsten sieben Schleifendurchläufe.

Sowie MR nach links geschoben wird, werden rechts in MR
Bits frei, die dann von den von rechts kommenden höherwer­
tigen Bits der Zwischensumme belegt werden. Nach 8
Schleifendurchläufen ist schließlich MR nach links verdrängt
worden. An seiner Stelle steht nun das High-Byte des Pro­
dukts. Das Low-Byte des Produkts steht im Akku, während
MD unverändert geblieben ist.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

SCHIEBEREGISTER-FOLGEN
ALS PSEUDO-ZUFALLSZAHLEN

BA
EQ
EQ
EQ

JMP

JC000
SR=*FD SCHIEBEREGISTER (2 BYTE)
ZAEHLER=*FB;(2 BYTE)
DELAY=*FA ;PAUSENLAENGE

MAIN ZUM HAUPTPROSRAMM

NAECHSTE ZUFALLSZAHL

(2)
(3)

CARRY SR(6) EOR SR(9)
SR NACH LINKS SCHIEBEN
SR(O) := CARRY

-SHIFT LDA
AND
ASL
ASL
ASL
ASL
ASL
EOR
ASL
ASL
ROL
ROL
RTS

SR+1
#2

SR

SR
SR+1

VERZ0E6ERUNGSSCHLEIFE

-PAUSE
-PAUSE1

LDX DELAY
DEX
BNE PAUSE1
RTS

SR(9) ISOLIEREN

IN BITPOSITION 6
BRINGEN

LIEFERT SR(6) EOR SR(9)

RESULTAT INS CARRY-FLAG (SCHRITT (1))
SCHRITT j(2) UND (3)

BILDSCHIRMZEICHEN IN DER REIHENFOLGE DIESER ZUFALLSZAHLEN

; HAUPTPROGRAMM
; SCHIEBEREGISTER-FOLGE DER LAENGE 1023 ERZEUGEN

500 -: INVERTIEREN (D.H. BIT 7 INVERTIEREN)
510
520 -; SR MIT ZUFAELLIGEM STARTWERT VORBESETZEN
530 -MAIN LDA ♦ DC04 ;CIA41 TIMER A, LOW-BYTE
540 - ORA «1 ;DARF NICHT 0 SEIN
550 - STA SR
560 - LDA 4*FF
570 - STA ZAEHLER
580 - LDA 4*03
590 - STA ZAEHLER+1 ;ZAEHLER=*3FF=1023
600 -LOOP JSR SHIFT ;NAECHSTE ZUFALLSZAHL
610 - LDA SR+1
620 - PHA ;MERKEN
630 - AND #3 ;HIGH-BYTE AUF 2 BIT BEGRENZEN
640 - ORA 44 ;SR=SR+*400
650 - STA SR + 1
660 - LDY 40
670 - LDA (SR),Y ;ZEICHEN VOM BILDSCHIRM
680 - EOR 4*80 ;BIT 7 INVERTIEREN
690 - STA (SR),Y ;ZURUECK ZUM BILDSCHIRM
700 - PLA ;SR+1
710 - STA SR+1 ;WIEDERHERSTELLEN
720 - JSR PAUSE
730 - DEC ZAEHLER
740 - BNE LOOP
750 - DEC ZAEHLER+1
760 - BPL LOOP
770 - LDA *400 ;ERSTES BILDSCHIRMZEICHEN
780 - EOR 4*80 ;INVERTIEREN
790 - STA *400
800 - RTS

Listing 11. Schieberegister-Folgen als Pseudo-
Zufallszahlen

Erwähnenswert sind hier noch die Befehle ASL und ROL:
Beide schieben nach links und bei beiden wird Bit 7 ins Carry-
Flag geschoben. Der Unterschied:

ASL besetzt Bit O mit O
ROL besetzt Bit O mit dem alten Inhalt des Carry-Flags.
Mit ASL (ohne Adreßteil) wird also der Akku arithmetisch

verdoppelt, während mit ROL MR zusätzlich der Übertrag aus
dieser Verdoppelung in Bit O von MR gelangt.
Schieberegister-Folgen als Pseudo-Zufallszahlen

Das Programm (Listing 11) zeigt eine interessante Anwen­
dung von Schieberegistern. Wenn man ein Schieberegister
(SR) an den »richtigen« Bitpositionen »anzapft« und das
Exklusiv-Oder-Produkt dieser Bits an den SR-Eingang zu­
rückführt, erhält man eine Folge von Bits, die vollkommen
zufällig zu sein scheint. Die Folgen sind zwar periodisch, sie
wiederholen sich also nach einer gewissen Zeit, die Perio­
denlänge kann aber beliebig lang gemacht werden. Macht
man eine so erzeugte 0-1-Folge mit einem Lautsprecher hör­
bar, so klingt diese wie weißes Rauschen.

Die folgende Tabelle enthält geeignete Anzapfstellen für
Schieberegister unterschiedlicher Länge.

»+« steht hier für »EOR«

Registerlänge Rückkopplung Periodenlänge

2 O + 1 3
3 1+2 7
4 2 + 3 15
5 2 + 4 31
6 4+5 63
7 5 + 6 127
8 1+2+3+7 255
9 4 + 8 511

10 6 + 9 1023
11 8+10 2047
12 1+9 + 10+11 4095
13 0 + 10+11 + 12 8191
14 1+11 + 12 + 13 16383
15 13+14 32767
16 10 + 12 + 13+15 65535

Die angegebenen Periodenlängen sind die bei der jewei­
ligen Registerlänge maximal möglichen. Die Schieberegister­
folgen haben die angenehme Eigenschaft, daß die Register­
werte alle Zahlen von 1 bis zur Periodenlänge in quasi­
zufälliger Reihenfolge durchlaufen. Man darf ein solches
Schieberegister allerdings nicht mit lauter Nullen vorbe­
setzen, da es dann seinen Zustand nicht mehr ändert
(O EOR 0 =O).

Der Kern des folgenden Programms ist die kleine Routine
SHIFT. Die beiden Zero-Page-Speicherstellen SR und SR+1
bilden ein 16-Bit-Schieberegister. Rückgekoppelt wird es an
den Positionen 6 und 9. Es werden quasi nur 10 Bit von den
16 vorhandenen ausgenutzt. SHIFT erzeugt bei wieder­
holtem Aufruf eine Folge mit der Periode 1023.

Das Hauptprogramm wendet nun diese Folge in grafisch
reizvoller Weise an. Zunächst wird das Low-Byte des
Schieberegisters mit einem zufälligen Wert (ungleich 0) vor­
besetzt. Dieser Wert stammt aus dem ständig laufenden
Timer A in CIA Nummer 1. SHIFT wird nun 1023 mal aufgeru­
fen und erzeugtdadurch alle Zahlen von 1 bis 1023 in quasi­
zufälliger Reihenfolge. Diese Zahlen werden als Adressen
relativ zum Bildschirm-RAM verwendet. Bei den adressierten
Bytes wirdjeweils Bit 7 invertiert, was eine Reversdarstellung
der Bildschirmzeichen bewirkt. Das Programm MAIN bewirkt
also nichts anderes als eine Invertierung des gesamten Text­
bildschirms. Da dies aber in zufälliger Abfolge geschieht, ist
der Effekt sehr auffallend. Über die Variable DELAY

($FA)=250) kann man das
Tempo der Invertierung be­
einflussen. Das anschlie­
ßende Basic-Programm
(Listing 12) erzeugt einen
Flimmereffekt, indem es eine
einfache Zufallsgrafik mit
dem Programm MAIN inver­
tiert. (Thomas Krätzig/aw)

10 POKE 250,1
20 PRINT CHR*(147)
30 FOR 1=1024 T0 2024$
40 POKE I,127+INT(RND(O)*2)*128
50 NEXT I
60 SYS 12*4096
70 GET M: IF A* = "" THEN 60
READY.

Listing 12. Basic-Hilfs-
programm zu Listing 11.

163

