Tips und Tricks

C 64

Tips & Tricks
ausfuhrlich
erklart

Die folgenden Programmbeispiele sollen
vor allem dem Anfianger den Einstieg in die
Maschinensprache des C 64 erleichtern.

mit dem Befehissatz der 6510-CPU und mit der Spei-
cherorganisation des C 64 vertraut sein. Die Beispiele
stammen aus den verschiedensten Anwendungsgebieten.
Ihnen allen gemeinsam ist:
- eine uberschaubare Kiirze
- Formulierung als Hypra-Ass-Quelltext
- eine ausfihrliche Beschreibung der Wirkungsweise.

z u ihrem Verstandnis sollte man wenigstens ungefahr

1. Ein allererster Gehversuch mit Hypra-Ass

Zu diesem und zu allen folgenden Programmen benétigen
Sie den Hypra-Ass. Er wird wie ein Basic-Programm geladen
und mit RUN initialisiert. Jedes weitere RUN startet jetzt einen
Assemberlauf, ist aber zunachst noch wirkungslos, da noch
nichts im Textspeicher des Assemblers steht. Geben Sie nun
folgende vier Zeilen ein:

10 - .BA $C000

20 - LDA #1
30 - STA $400
40 - RTS

Dabei durfen die Minus-Zeichen nach den Zeilennummern
nicht vergessen werden (Eigenart von Hypra-Ass). Auch das
Leerzeichen nach den Minus-Zeichenist wichtig. Sie werden
feststellen, daB der Assember die Zeilen nach Driicken der
RETURN-Taste formatiert. Listen Sie die vier Zeilen auch
einmal probeweise mit

LIST (unformatiert) und
/E (formatiert)

Das Programm ist schnell erklart:

Mit .BA $C000 wird dem Assembler die Startadresse
(BAsisadresse) des Programms mitgeteilt. .BA ist ein
Pseudobefehl. Ein solcher Befehl steuert die Arbeitsweise
des Assemblers, bewirkt aber keine Erzeugung eines
Maschinenbefehls.

LDA # 1 ladt den Akkumulator mit 1, dem Bildschirmcode
des Buchstabens A.

STA $400 speichert den Akkumulatorinhalt, also die 1 an
die Speicherstelle $400. $400 ist die Startadresse des
Bildschirm-RAMs und entspricht der linken oberen Bild-
schirmecke. Dort muB also ein »A« erscheinen.

RTS (ReTurn from Subroutine) bedeutet Ricksprung aus
einem Unterprogramm. Mit RTS mussen Programme abge-
schlossen sein, die mit JSR (Jump to SubRoutine) oder SYS
(von Basic aus) aufgerufen werden. Dies durfte fur die
Uberwiegende Mehrheit aller Maschinenprogramme der Fall
sein. Ausnahmen sind:

Programme., die von einem Monitor aus gestartet werden.
Sie soliten mit einem BRK (Break) abgeschlossen sein.

Programme, die durch Interrupts aktiviert werden, werden
normalerweise durch RTI (Relurn from Interrupt) abge-
schlossen.

158

Mit RUN wird der Assembler gestartet. Er erzeugt ein 6
Byte kurzes Maschinenprogrammab $C000 und gibtin einer
AbschluBmeldung den belegten Speicherbereich zusam-
men mit der Assemblierzeit bekannt. Das Maschinenpro-
gramm kann nun mit

SYS $C000 oder SYS 12 * 4096

gestartet werden. (Wenn Hypra-Ass aktiv ist, versteht der C

64 auch Hex-Zahlen). Es muBte ein »A« in der linken oberen

Bildschirmecke erscheinen. Sollte das nicht der Fall sein, so

kann das zwei Ursachen haben:

1. Das »A«wurde nach oben weggescrollt, weil Sie den SYS-
Befehl zu weit unten auf dem Bildschrim eingetippt haben.

2. Sie besitzen eine alte Version des C 64, bei der das Farb-
RAM mit der Hintergrundfarbe vorbesetzt wird.

Im zweiten Fall ergénzen Sie das Programm durch:

35 - STA $D800

Dieser Befehl speichert die immer noch im Akkumulator (im
folgenden nur Akku genannt) stehende 1 an die Startadresse
des Farb-RAMSs. Dadurch erscheint das »A«in weiBer Farbe.

Erganzen Sie lhr kleines Programm einmal durch den
Pseudobefehl

5 - .LI 1,3,0

und assemblieren Sie mit RUN. Der Assembler erzeugt jetzt

ein Listing, dessen Zeilen von links nach rechts wie folgt

aufgebaut sind:

- Speicheradresse des folgenden Maschinenbefehls

- Der Code des Maschinenbefehls. ,Da es Maschinen-
befehle mit ein, zwei oder drei Byte gibt, sind diese
Eintrage unterschiedlich lang.

- Ein Doppelpunkt und die urspriingliche Quelltextzeile. Bei
Pseudobefehlen, die jakeinen Code erzeugen, entfallt der
Teil bis einschlieBlich zum Doppelpunkt.

Das Assemblerlisting ist bei der Fehlersuche mit einem
Monitor nitzlich, da es zu jedem Maschinenbefehl seine
Adresse enthélt. Mit dem Pseudobefehl:

.1i 1,4,0

erhélt man ein Druckerlisting. Angenehm dabei ist, daB es bei

ausgeschaltetem Drucker automatisch auf den Bildschrim

umgeleitet wird.

Die abgedruckten Listings enthalten allerdings keine
Speicheradressen mit zugehorigem Maschinencode. Diese
Information ist zum Studieren der Programme uninteressant
und zum Eintippen der Listings nicht erforderlich. Die Listings
wurden mit dem Editorbefehl /E (formatiertes Listen) ge-
wonnen, nachdem vorher die Ausgabe durch

OPEN 4,4:CMD 4
auf den Drucker umgeleitet wurde.

2. Eine einfache Programmschleife

Das folgende kleine Programm (Listing 1) schreibt 240mal
den Buchstaben »A« auf den Bildschirm. Zur Arbeitsweise:
Akku A wird wieder mit dem Bildschirmcode des Buchsta-
bens A geladen. Das X-Register tbernimmt zwei Aufgaben:
Es zahlt Schleifendurchlaufe und liefert Werte zur AdreB-
verschiebung. X wird mit O vorbesetzt. In Zeile 1280 ist

100 ~§=mm=mmmmmmmmmmm e
110 -; PROGRAMMSCHLEIFE

120 -5 240 MAL "A"

130 -; AUF BILDSCHIRM SCHREIBEN

140 -j----m-mmmm e e e

150 - .BA $C000 s PROGRAMM-STARTADRESSE

160 - LDA #1 s BILDSCHIRMCODE VON "A"

170 - LDX #0 s SCHLEIFENZAEHLER

180 -LOOP STA $400,X s ZEICHEN AUF BILDSCHIRM SCHREIBEN
190 - INX 3 X HOCHZAEHLEN

200 - CPX #240 $X MIT 240 VERGLEICHEN

210 -~ BNE LOOP ;FALLS UNGLEICH, GEHE NACH "LOOP"
220 - RTS sFALLS X=240, DANN PROGRAMMENDE
READY.

Listing 1. Programmschleife

C 64

Tips und Tricks

LOORP ein Label (auch SYMBOL oder Sprungmarke). LOOP
steht fur die Adresse des STA-Befehls, die man an anderen
Programmstellen durch den Namen LOOP ansprechen kann,
ohne daB man den Wert dieser Adresse kennt. Den
Assemblerprogrammierer interessieren absolute Adressen
normalerweise auch gar nicht, es sei denn, es handelt sich
um systemspezifische Adressen, wie zum Beispiel die
Adressen der Video-Chip-Register. Eine derartige Zu-
ordnung einer Programmadresse zu einem Label nennt man
implizite Definition.

Die Zieladresse des STA-Befehls in Zeile 180 ergibt sich
durch die Summe aus $400 und X. Da X am Anfang O gesetzt
worden ist, wird also eine 1 an die Stelle $400 gespeichert.
INX erhéht X um Eins. CPX # 240 vergleicht X mit der Zahl
240. Bei Ungleichheit wird das Zero-Flag im Statusregister
auf O gesetzt. Auf dieses Zero-Flag bezieht sich dann der
bedingte Sprung BNE LOOP. BNE springt dann, wenn der
vorige Vergleich Ungleichheit ergeben hat. (Daher auch der
Name BNE = Branch if Not Equal = verzweige, wenn

100 =j===mmmmmmmmmm e
110 -; BLOCKVERSCHIEBUNG

120 -; (MAXIMAL 255 BYTE)

130 mjm=mmmmmmmmmmmmmmm oo

140 - .BA $C000 ; PROGRANMSTART
150 - LEQ QUELLE=$400;BLOCKSTART
160 - LE@ ZIEL=$400+240

170 - .EQ@ LAENGE=240 ;BLOCKLAENGE
180 -; X LAEUFT RUECKWAERTS VON LAENGE BIS 1
190 - LDX #LAENGE

200 -LOOP LDA QUELLE-1,X

210 - STA ZIEL-1,X

220 - DEX s Xi=X-1

230 - BNE LOOP ;FALLS X<>0, NACH LOOP
240 - RTS 3 SONST ENDE
READY.

Listing 2. Blockverschiebung

100 ~j-m=meecmcecccccccecccnccc e —————

110 -; BLOCKVERSCHIEBUNG

120 ~; OHNE EINSCHRAENKUNGEN

130 -3-- e —————— -

140 - .BA $C000 ; PROGRAMMSTART
150 - .EQ VON=$A09E

160 - .EQ@ BIS=$A327

170 - LEQ@ ZIEL=%400

180 - .EQ IEIGER1=$FB

190 - .EQ ZEIGER2=$FD

200 -

210 - LDA #< (VON)

220 - STA ZEIGER!

230 - LDA #>(VON)

240 - STA ZEIGER1+1

250 - LDA #<(ZIEL)

260 - STA ZEIGER2

270 - LDA #>(ZIEL)

280 - STA ZEIGER2+1

290 - LDY #0

300 -LOOP LDA (ZEIGER1),Y

310 - STA (ZEIBER2),Y

320 -; ZEIGER1 MIT "BIS" VERGLEICHEN

330 - LDA ZEIGER1

340 - CMP #<(BIS)

350 - BNE WEITER

360 -; LOW-BYTES STIMMEN UEBEREIN, HIGH-BYTES VERBLEICHEN
370 - LDA ZEIGER1+1

380 - CMP #>(BIS)

390 - BEQ@ ENDE

400 -3 BEIDE ZEIGER INKREMENTIEREN
410 -WEITER INC ZEIGER!

420 - BNE WEITER2

430 - INC ZEIGER1+1

440 -WEITERZ2 INC ZIEIGER2

450 - BNE LOOP

460 - INC ZEIGER2+1

470 - JMP LOOP

480 -ENDE RTS

READY.

Listing 3. Blockverschiebung ohne Einschrinkung

bAET,

ungleich). Beim nachsten Schleifendurchlauf wird die 1 aus
dem Akku an die Adresse $4012 gespeichert. X wird solange
inkrementiert, bis 240 erreicht ist. In diesem Fall springt BNE
nicht und das Programm endet mit RTS. Bei den 240 Schlei-
fendurchlaufen werden nacheinander die Adressen $400
bis $400+239 angesprochen. Programmschleifen wie
diese benltzt man oft zum Léschen eines Speicherbereichs.
(Akku mit O vorbesetzt.)

3. Blockverschiebung (maximal 255 Byte)

Das Programm (Listing 2) arbeitet mit einer &hnlichen
Schleife wie das vorige. In den Zeilen 150, 160 und 170 wer-
den Label explizit definiert. Dies geschieht mit dem Pseudo-
befehl .EQ.

Die explizite Definition eines Labels ist praktisch dasselbe
wie die Zuweisung eines Wertes an eine Variable. Hier wer-
den die Anfangsadressen des urspringlichen Blocks und
des verschobenen Blocks sowie die Blocklange definiert. X
lauft hier rickwarts von LAENGE bis 0. Dadurch kann der
CPX-Befehl eingespart werden. DEX setzt ndmlich auto-
matisch das Zero-Flag, wenn nach dem Dekrement X den
Wert O hat. BNE LOOP springt also nur solange nach LOOP,
solange X groBer als 0 ist. Mit den vorliegenden Werten fur
QUELLE, ZIEL und LAENGE kopiert das Programm die Bild-
schirmzeilen 1 bis 6 auf die Zeilen 7 bis 12.

Programme zur Blockverschiebung wie dieses oder zur
Blockfullung wie das vorige sind nur fur Blockléngen bis maxi-
mal 255 Byte geeignet, da das X-Register nur 8 Bit lang ist.
Wenn man gréBere Speicherbereiche auf diese Weise verar-
beiten will, muB man mehr Aufwand treiben.

4. Blockverschiebung (ohne Einschrinkungen)

Das Programm (Listing 3) ist sicher nicht die klrzeste
Losung des Problems, es demonstriert daflr aber ohne ver-
wirrende Tricks die Adressierungsart »indirekt Indiziert«.

Beispiel: 1DA (ZEIGER),Y

Bei dieser Adressierungsart enthalten zwei aufeinanderfol-
gende Speicherstellen der Zero-Page eine Adresse in der
tblichen Reihenfolge Low-Byte - High-Byte. Im Programm
wird nicht diese Adresse selbst angegeben, sondern die
Adresse der ersten der beiden Zero-Page-Speicherstellen
(hier ZEIGER genannt). Diese Technik nennt man indirekte
Adressierung, was im Assemblertext durch die runden
Klammern um die Zero-Page-Adresse zum Ausdruck kommt.
Zu der aus der Zero-Page stammenden Adresse wird noch
Y addiert, daher »indiziert«. Da man diese zusétzliche
Indizierung oft nicht braucht, setzt man das Y-Register
vorher auf O.

Das Programm verwendet fur den Blocktransfer zwei
Zeiger (= Zero-Page-Speicherstellenpaare). Sie werden mit
der Startadresse des Quell- beziehungsweise des Zielblocks
initialisiert und nach jedem Byte-Transfer hochgezéhit, bis
der Zeiger in den Quellblock (ZEIGER1) das Ende des
Quellblocks (Adresse BIS) erreicht hat.

Das Inkrementieren eines 16-Bit Wertes verlauft nach dem
Schema:

INC ZEIGER ;Low-Byte inkrementieren

BNE Weiter ;falls ungleich 0, dann fertig

INC ZEIGER+1;Ubertrag ins High-Byte
WEITER (Programmfortsetzung)

Spezifisch fur den Hypra-Ass ist, daB man mit

< (Adresse) beziehungsweise > (Adresse)

das Low- bezeihungsweise High-Byte einer Adresse
(beziehungsweise eines Labels) gezielt ansprechen kann.
Von dieser Méglichkeit wird im Programm héaufig Gebrauch
gemacht. So bedeutet zum Beispiel:

LDA # < (VON)

Lade den Akkumulator mit dem Low-Byte des Wertes VON.

Mit den im Program definierten Adressen VON, BIS und
ZIEL kopiert das Programm einen Teilbereich aus dem Basic-

159

Tips und Tricks

C64

Interpreter direkt auf den Bildschrim. Im GroB-/Kleinschrift-
modus (Commodore-Shift driicken) kann man dann Basic-
Schiusselworter sowie Texte von Fehlermeldungen lesen.

5. Verwendung von Betriebssystem-Funktionen und

Mechanismen zur Parameteriibergabe

Ein Betriebssystem ist unter anderem dazu da,
Standarddienste wie Ein- und Ausgabe zur Verfligung zu
stellen, damit diese nicht jedesmal miihsam und fehleranfallig
neu programmiert werden muissen. Die Standardfunktionen
des Betriebssystems (oft »sKernel« genannt) sind im Pro-
grammierhandbuch von Commodore hinreichend erlautert.
Viele weitere nitzliche Routinen findet man beim Studium
eines kommentierten ROM-Listings.

Die Parameteriibergabe an Maschinensprache-Unterpro-
gramme gestaltet sich leider nicht so systematisch wie bei
den meisten héheren Programmiersprachen. Es werden
mehrere Méglichkeiten bunt gemischt angewendet.
1.Man schreibt Parameter in vereinbarte Speicherstellen.

Aus diesen holt sich dann das aufgerufene Programm die

Parameter.
2.Wenn nur Ein- bis Drei-Byte-Parameter benotigt werden,

kann man diese auch in den Registern A, X und Y (ber-

geben. Auf diese Weise werden die meisten Kernel-

Funktionen mit Parametern versorgt.

Dieser Mechanismus steht tibrigens auch von Basic aus

zur Verfugung: Man schreibt Registerparameter per

POKE an speziell dafiir vorgesehene Speicherstellen:

Akku A 780 ($30C)
Index X 781 ($30D)
Index Y 782 ($30E)
Status-Register 783 ($30f)

Das Maschinenprogramm (Listing 4) wird nun mit SYS
aufgerufen. Der Basic-Interpreter besetzt erst die Re-
gister mit den Inhalten dieser Speicherstellen und bringt
dann in das Unterprogramm. Nach der Riickkehr werden
die (neuen) Registerinhalte wieder in denselben Speicher-
stellen abgelegt, wo sie fur eine eventuelle Inspektion
durch das Basic-Programm zur Verfligung stehen.

100 ~3--=- -- --

110 ~-; VERWENDUNG DER BETRIEBSSYSTEM-
120 ~-; ROUTINEN GETIN UND CHROUT

130 =j=mmm=mmmmmmmmmo e -
140 .BA $C000

150
160
170
180
190
200
210
220
230 -;
240 -NEWLINE LDA #MAXLEN
250 - STA ZAEHLER
260 - LDA #CR

270 - ISR CHROUT
280 - LDA #PROMPT

.EQ GETIN=$FFE4
.EQ CHROUT=$FFD2
.EQ ZAEHLER=$FE
EQ MAXLEN=10
.EQ PROMPT=63
.EQ ESCAPE=88
.EQ SPACE=32
.E@ CR=13

3 ZEILENLAENGE

jon

;FLUCHTSYMBOL “X"

;CARRIAGE RETURN

s ZAEHLER INITIALISIEREN

s ZEILENVORSCHUB

290 JSR CHROUT
300 LDA #SPACE
310 JSR CHROUT
320 -WAIT JSR BETIN
330 CMP #0

340 BEQ WAIT
350 CMP #ESCAPE
360 BE@ ENDE
370 CMP #CR

380 BEQ NEWLINE
390 JSR CHROUT
400 DEC ZAEHLER
410 BNE WAIT
420 BEQ NEWLINE
430 RTS

;PROMPT-ZEICHEN AUSGEBEN

;AUF EINGABE WARTEN

sBEl ESCAPE-ZEICHEN PROGRAMMENDE
sBEI CR NEUE ZEILE
sEINGABEZEICHEN WIEDER AUSGEBEN

s NRECHSTE EINGABE
s ZEILENLAENGE ERREICHT

[TR T N N Y T B B |

1
m
z
=
m

READY.

Listing 4. Verwendung von Betriebssystemroutinen

160

3.Man kann Parameter auch Uber den Stack Ubergeben.
Diese Methode ist wegen des kleinen Stackbereichs der
6510-CPU (256 Byte) nur bedingt brauchbar und wird
deshalb auch kaum praktiziert.

4. Durch geschickte Verwendung von Unterprogrammen in
Basic-ROM kann man Parameter direkt hinter den SYS-
Befehl schreiben. Diese Methode ist
- komfortabel, weil keine umstandlichen POKEs notig

sind

- schnell, weil der Interpreter weniger zu tun hat

- flexibel, weil als Parameter auch ganze arithmetische

oder Stringausdriicke geschrieben werden kénnen.

Diese Methode wird in den Programm-Listings 5 bis 8

verwendet.

Das folgende Programm (Listing 4) nutzt die Funktionen
GETIN und CHROUT. GETIN liefert den ASCIl-Code einer
gedriickten Taste im Akku. Falls keine Taste gedrickt
wurde, wird O zuriickgegeben. GETIN entspricht damit
genau dem GET-Befehl in Basic.

CHROUT gibt ein Zeichen, dessen ASCII-Code im Akku
stehen muB, auf dem Bildschrim aus. Es entspricht dem
Basic-Befehl (man beachte das Semikolon):

PRINT CHR$(A);

Das Programm gibt einen Prompt aus und erwartet an-
schlieBend Eingaben. Unter einem Prompt versteht man ein
(beliebig zu vereinbarendes) Zeichen am linken Bildschirm-
rand, das dem Benutzer mitteilt, daB Eingaben von ihm er-
wartet werden. Bei interaktiven Programmen (wie zum
Beispiel Monitore, Editore) sind Prompts sehr nitzlich, da
der Benutzer daran eindeutig erkennen kann, in welchem
Programm er gerade ist. Das vorliegende Programm gibt die
Eingabezeichen sofort wieder aus, ohne sie weiter zu
verarbeiten. Nach maximal zehn Zeichen wird automatisch
ein Zeilenvorschub ausgefiihrt und ein weiterer Prompt
ausgegeben. Das Programm ist eine Endlosschleife, die man
mit der Eingabe von »X« verlassen kann.

6. Verwendung von Interpreter-Routinen zur
Parameteriibergabe
Diese Interpreter-Routinen werden in den folgenden Pro-
grammbeispielen eingesetzt:
CHKKOM liest aus dem laufenden Basic-Text ein Komma.
(BAEFD) Steht an der aktuellen Stelle kein Komma, wird
das Programm mit SYNTAX ERROR abgebro-
chen. Kommata sind nétig, um Parameter von-
einander abzugrenzen.
FRMNUM . wertet einen beliebigen arithmetischen Aus-
($AD8A) druck aus. Das Ergebnis wird im FlieBkomma-
Akkumulator 1 (kurz FAC) abgelegt. Der FAC
besteht aus den Speicherstellen $61-$66. Die
Bedeutung der einzelnen Byte ist hier nicht
relevant.
wandelt den Inhalt des FAC in ein 2-Byte-Integer-
Format um, sofern diese Zahl im Bereich O ...
65535 liegt. Ansonsten wird ein ILLEGAL
QUANTITY ERROR ausgegeben. Die Integer-
zahl steht in den Speicherstellen $14/$15 und
zusétzlich im Registerpaar Y/A. Mit der Kombi-
nation FRMNUM und GETADR kann man also
16-Bit-Gré6Ben aus Basic-Programmen (ber-
nehmen.
wertet ebenfalls arithmetische Ausdriicke aus
und wandelt das Ergebnis in 8-Bit-Integerformat,
sofern es im Bereich O ... 255 liegt. Das Byte-
Ergebnis wird im X-Register Gbergeben.
ist eine Basic-Funktion, mit der man Werte von
Maschinenprogrammen an Basic zurtickgeben
kann. USR wertet einen in Klammern stehenden

GETADR
($B7F7)

XBYTE
($B79E)

USR ()

Cc64

Tips und Tricks

Ausdruck aus und Ubergibt ihn in den FAC. Es
wird ein Maschinenprogramm aufgerufen, des-
sen Startadresse in $311/$312 steht. (USR-
Vektor). Das Maschinenprogramm kann dann im
FAC einen Wert an Basic zuriickgeben.

Das folgende Listing (Listing 5) ist der Programmkopf zu
den vier nachfolgenden Beispielen. Diese kénnen mit dem
Kopf zusammen assembliert werden. Der Kopf enthélt eine
Sprungliste. Dadurch werden Einsprungstellen ($C000,
$CO003, etc) fur die vier aufgefihrten Programme fixiert,
unabhéangig davon, wo die Programme dann spéter tatséch-
lich im Speicher stehen. Diese Technik ist zum Beispiel

100 -
110 -
120 -
130 -~
140 -
150 -

EINIGE ALLBEMEIN NUETZLICHE
MASCHINENSPRACHE-UNTERPROGRAMME
3 FUER DEN AUFRUF DURCH

3 BASIC-PROGRAMME

160 =-; EINFACHE PARAMETERUEBERGABE:
170 SYS STARTADRESSE,PARAMETERLISTE
180
190 -
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

.BA $C000
EINSPRUNGPUNKTE UND UNTERROUTINEN
; DES BASIC-INTERPRETERS
.EQ CHKKOM=$AEFD;PRUEFT AUF KOMMA
.EQ FRMNUM=$ADBA; BERECHNET NUMERISCHEN AUSDRUCK IN FAC
.EQ GETADR=$B7F7;WANDELT FAC IN INTEGERFORMAT ($14/$15)
.EQ@ XBYTE=$B79E;HOLT BYTE-WERT NACH X
.EQ PLOT=$FFF0 ;CURSOR SETZEN
.EQ PRINT=$AAA0; BASIC-PRINT
.EQ SETLFS=$FFBA;FILEPARAMETER SETZEN
.EQ SAVE=$FFDB

L T R I B T R R A I |

SPRUNGLISTE

JMP PRINTAT
JMP DEEK
JMP DOKE
JMP SAV

READY.

Listing 5. Einfache Parameteriibergabe aus Basic-
Programmen

sinnvoll, wenn mehrere Leute zusammen an einem gréBeren
Programm arbeiten. Ein Programmierer kann seinen Kollegen
bereits feste Einsprungstellen fir Routinen, an denen er
noch arbeitet oder die noch gar nicht existieren, zur Ver-
fagung stellen.
PRINT AT
Das Programm (Listing 6) ermdéglicht eine freie und

schnelle Cursorpositionierung zusammen mit einer Druck-
ausgabe. Mit der Definition

PR=123%4096 :REM Startadresse
kann mit

SYSPR,Zeile,Spalte,Printliste
alles ausgeben werden, was auch mit PRINT ausgegeben

380 -;

390 -jemmmmmmmmmmmmmmmme oo

400 -; PRINT AT

410 ~-; AUFRUF: SYSPR,ZEILE,SPALTE,PRINTLISTE

420 ~j-----------sm--se—e—seom—o—o————

430 -PRINTAT JSR CHKKOM ;1. KOMMA

440 - JSR XBYTE s ZEILE NACH X

450 - TXA

450 - PHA ;AUF STACK IWISCHENSPEICHERN
470 - JSR CHKKOM ;2. KOMMA

480 - JSR XBYTE ;SPALTE NACH X

490 - TXA

500 - TAY §SPALTE NACH Y

510 - PLA

520 - TAX $IEILE NACH X

530 - cLe

540 - JSR PLOT ;CURSORPOSITION SETIEN
550 - JSR CHKKOM ;3.KOMMA

560 - JMP PRINT ;WEITER MIT BASIC-PRINT
READY.

Listing 6. PRINT AT-Befehl selbstgemacht

570 -3

980 ~—j-------eosmssssmcccccccsem—————————

590 -3 DEEK (16-BIT-PEEK)

600 ~; DER USR VEKTOR ($311/$312)

610 =-; MUSS AUF DIESES PROGRAMM ZEIGEN

620 -3 AUFRUF: USR(ADRESSE)

630 -j------mm--msssseceemse—e——m———e—

640 -DEEK JSR BGETADR sFAC NACH INTEGER ($14/15)
650 - LDY #0

660 - SEI

670 - LDA ($14),Y s LOW-BYTE

680 - STA $63 sFAC MANTISSE

690 - INY

700 - LDA ($14),Y sHIGH-BYTE

710 - CLI

720 - STA $62 ;FAC MANTISSE

730 - LDX #$90 s FAC EXPONENT

740 - SEC sNICHT INVERTIEREN
750 - JMP $BCA49 s FAC KOMPLETT MACHEN

Listing 7. Eigener DEEK-Befehl

werden kann. Man lasse sich einmal von der Geschwindig-
keit des folgenden Programms beeindrucken:

10 FOR I=1 TO 24:SYSPR, I,I,”A”:NEXT

20 FOR I=1 TO 24:SYSPR,-I,I,”B”:NEXT

Das Assemberlisting zu PRINT AT bedarf keiner groBen

Erlauterung. PLOT ist eine Kernel-Funktion, mit der man die
Cursorposition auf dem Bildschirm setzen kann. Parameter
sind Zeilen- und Spaltennnummern in den Registern Xund Y.
Das Programm PRINT AT ist eigentlich nicht mehr als eine
geschickte Kombination der Routinen PLOT und PRINT.

DEEK (Doppelbyte-PEEK)

Dieses Programm (Listing 7) ist eine Ab&anderung der
PEEK-Routine. DEEK liefert einen 16-Bit-Speicherinhalt an
Basic zuriick. DEEK wird durch

X=USR(Adresse)
aufgerufen. Mit Adresse ist die Adresse des Low-Bytes
gemeint. Da USR einen Wert zuriickgibt, darf es nicht isoliert
dastehen, sondern muB als rechte Seite einer Zuweisung
oder als Funktionsargument eingesetzt werden. Vor dem
ersten Aufruf muB der USR-Vektor auf die Startadresse des
Programms gestellt werden:

POKE 785,3 :REM LOW-BYTE $03

POKE 786,192 :REM HIGH-BYTE $CO

Im Assemblerlisting steckt eine Besonderheit: Die Zugriffe
auf die beiden zu lesenden Bytes (LDA ($14),Y) sind durch
ein SEI/CLI-Paar eingerahmt. SEI sperrt die CPU fur Inter-
ruptanforderungen. Dadurch wird garantiert, da die beiden
Lesezugriffe nicht durch ein Interruptprogramm, welches
eines oder beide Bytes andern konnte, unterbrochen
werden konnen. CLI I6st die Interruptsperre wieder.

DOKE (Doppelbyte-POKE)

Um in Basic-Programmen 16-Bit-GréBen (zum Beispiel
Adressen, Vektoren) in den Speicher zu schreiben, mu man
sie vorher erst umstandlich in High- und Low-Byte zerlegen,
um dann beide Byte POKEnN zu kénen. Dazu wird meistens

die Sequenz:

HI=INT(X/256)
L0=X-256%HI
POKE AD,LO
POKE AD+1,HI
verwendet.

Wenn man bedenkt, daB jeder Befehl interpretiert werden
muB und daB jede Rechenoperation (auch »+1«) in voller
FlieBkomma-Genauigkeit durchgefuhrt wird, versteht man,
daB dazu viel Rechenzeit nétig ist. Das kleine Maschinen-
programm (Listing 8), das keiner Erlduterung mehr bedarf
(FRMNUM, GETADR und CHKKOM sind bekannt) zeigt, wie
es einfacher geht:

SYSDO, AD,Y

C 64

760 -3 Aufgerufen wird es durch:
770 —jemmmmmmmmmmm e SYSSAV,Dateiname,gn,sa,ea
780 -; DOKE (16-BIT-POKE) -Dabei kann bei »Dateinamen« ein Name oder ein String-
A8 ~i AUFRUF: SYSDO,ADRESSE,WERT ausdruck in Anfithrungszeichen stehen.
810 -DOKE JSR CHKKOM 41, KOMMA »gn« ist die Gerdtenummer (8 oder 9)
820 - JSR FRMNUM s ADRESSE NACH FAC »sa« und »ea« sind Start- und Endadresse des
830 - JSR GETADR ;FAC NACH INTEGER ($14/15) abzuspeichernden Bereiches. Zum Programm selbst:
e STh sae ADRESSE NACH $9E/9F Die Routine bei $E257 beschafft sich den Filenamen aus
860 - “LDA $15 dem Basic-Text und stellt ihn der spater folgenden SAVE-
870 - STA $9F Routine zur Verfigung. Mit SETLFS kann man dem
ggg i :g: :}:5:3: ?Sé';i?"::cu Fac Betriebssystem eine logische Filenummer (im Akku), eine
900 - JSR GETADR Erac NACH INTEGER ($14/15) Geratenummer (in X) und eine Sekundaradresse (in Y)
910 - LDY #0 bekanntgeben. Die Parametrisierung der Kernel-SAVE-
920 - SEI Routine ist etwas komplizierter:
e LOR ag) y MERT LOWBVTE X Endadresse Low-Byte
950 - INY ! Y Endadresse High-Byte
960 - LDA $15 ;WERT HIGH-BYTE A Zeiger auf das untere Byte eines Zero-Page-Byte-
970 - STA ($9E),Y paares, welches die Startadresse enthélt.
Ao e Die SAVE-Routione kehrt mit gesetztem Carry-Flag
zuriick, falls beim Speichern ein Fehler aufgetreten ist. Das
READY. Programm bei $EOF9 sorgt dann fir eine ordentliche
Listing 8. Eigener DEEK-Befehl Fehlermeldung.
(Nattrlich muB man DO einmal vorher definieren: 100 -5
DO=12*4096+6). Auch bei DOKE werden die beiden | ;o _i "‘TIFLIKATION 8 MAC @ BIT
kritischen STA-Befehle durch ein SEI/CLI-Paar untrennbar 130 -3 MD MULTIPLIKAND (BLEIBT ERHALTEN)
gemacht. Mit DOKE kann man daher sogar den Interrupt- {9 -} MR MULTIPLIKATOR (WIRD UEBERSCHRIEBEN
Vektor andern. Versucht man dies dagegen mit Hilfe zweier 160 -5 DAS 16-BIT-PRODUKT STEHT IN:
POKEs, kann es passieren, daB ein Interrupt gerade dann oy AL
auftritt, nachdem das Low-Byte aber noch nicht das High- 190 -5 .
Byte geandert worden ist. Der Interrupt fihrt dann auf eine i‘:?, R 23 ;3222,,
unbestimmte Adresse, was meistens einen Programmab- 220 - -EQ MR=$FE
sturz nach sich zieht. 20 0 o ee }ZAEHLER (8 DURCHLAEUFE)
DEEK und DOKE koénnen nattirlich auch verschachtelt ein- 250 -MULLOOP ASL jPRODUKT IN A UEBER
gesetz werden. So kann man mit 20 - BCC WULNEXT JWOECHSTES BIT IN MReo
SYSDO,A2,USR(A1) 280 - cLe ;FALLS HOECHSTES BIT IN MR=1,
einen 16-Bit-Wert von der Stelle A1 nach A2 kopieren. 20 - DCC MULNERT IKEIN UEBERTRAG
Speichern beliebiger Speicherbereiche auf Diskette e st o jUEBERTRAG NACH MR BERUECKSICHTIGEN
Das Programm (Listing 9) realisiert das Gegenstick zum 330 - BNE MULLOOP ;WEITER, FALLS ZAEHLER NOCH NICHT 0
Basic-Befehl: 40 - RTS
LOAD “Name”,8,1 reapy. Listing 10. Mulitplikation 8 mal 8 Bit
1ot0 - Multiplikation
}ggg A MERE BELIEBIGEN BEREICH AUF DISK Das Programm (Listing 10) multipliziert zwei Byte-Werte
1040 -; AUFRUF: SYSSAV,DATEINAME,GERAETENUMMER,STARTADRESSE ,ENDADRESSE miteinander und liefert ein 16-Bit-Produkt. Es ist aber trotz
T T T en rkon 1 xomma seiner Kirze nicht ganz einfach zu verstehen. Die beiden zu
to70 - .;:: $e257 ;;uig::iu HOLEN UND SETZEN multiplizierenden Faktoren seien mit
1090 - ISR XBYTE {GERAETENUNNER NACH X Multiplikator MR und Mulitplikand MD
100 - LDV b0 o SEKUNDAERADRESSE bezeichnet. Fir das Resultat ist es naturlich gleichguiltig,
1120 - ISR CHKKOM 3. KOMMA welcher Faktor als MR und welcher als MD an das Programm
nw: IR R ;:;gmggfgﬁuw a Uibergeben wird. MR kann man sich, wie jede bindre GréBe,
1150 - PHA iHIGH-BYTE folgendermaBen vorstellen:
e e LOW-BYTE MR=MR(7)*128+MR(6)*64+...+MR(1)*2+MR(0)* 1
1180 - JSR CHKKOM 14. KOMMA Dabei bezeichnet zum Beispiel MR(6) das Bit Nummer 6
1200 - ek ETRDR cn siaris UND v/ von MRin der tiblichen Zahlweise von O bis 7 und von rechts
1210 - pA nach links. Das Produkt MR* MD kann man nun so berech-
1230 - TAX nen:
:;;g : ?Ac sENDADRESSE LOW IN X, HIGH IN Y Addlere f0|gende TellprOdUKte:
1260 - PLA ;STARTADRESSE LOW-BYTE MD*128, falls MR(7)=1, sonst O
1280 e iSTARTADRESSE HIGH-BYTE MD*64, falls MR(6)=1, sonst O
1290 - STA $15 ;STARTADRESSE IN $14/15 MD*2, falls MR(1)=1, sonst O
gtig - 522 2:‘1’2 ;ADRESSE DER STARTADRESSE MD, falls MR(0)=1, sonst O
1320 - BCC SAVENDE ;KEIN FEHLER Die Teilprodukte erhdlt man einfach durch Links-
:;zg :SAVENDE ;?; $EOF9 s FEHLERAUSGANG VerSChieben von MD
READY. MD*éiS durch Z-maligen Links-Shift
. MD* durch 6-maligen Links-Shift
tL)Lsrt:ilcghg.nSpelchern von beliebigen Speicher- Zu addieren ist nur dann etwas, wenn das entsprechende |
Bitin MR=1 ist. Wenn man MR mit dem ROL-Befehl achtmal

162

C64

Tips und Tricks

nach links schiebt, so durchwandern alle 8 Bit nacheinander
das Carry-Flag und letzteres kann leicht abgefragt werden.
Der Trick des Programms besteht nun darin, daB das
Berechnen von Teilproduktsummen mit dem Linksschieben
von MR kombiniert wird. Zunachst wird die Zwischensumme
in A mit O vorbesetzt. MR wird nach links geschoben. Das
hochstwertige Bit von MR steht jetzt im Carry-Flag. Istes 1,
so wird MD zum Akku addiert. Eigentlich miBte jetzt der Akku
um sieben Positionen nach links geschoben werden, da zum
ersten Teilprodukt der Faktor 128 gehért. Diese
Verschiebung ergibt sich aber automatisch im Verlauf der
nachsten sieben Schieifendurchlaufe.

Sowie MR nach links geschoben wird, werden rechtsin MR
Bits frei, die dann von den von rechts kommenden héherwer-
tigen Bits der Zwischensumme belegt werden. Nach 8
Schieifendurchlaufen ist schlieBlich MR nach links verdrangt
worden. An seiner Stelle steht nun das High-Byte des Pro-
dukts. Das Low-Byte des Produkts steht im Akku, wahrend
MD unverandert geblieben ist.

100 =j====ommo oo mmmmmmmmmme oo

110 -; SCHIEBEREGISTER-FOLGEN

120 -; ALS PSEUDD-ZUFALLSZAHLEN

130 -3

140 - .BA $C000

150 - .EQ SR=$FD 3 SCHIEBEREGISTER (2 BYTE)
160 - .EQ ZAEHLER=$FB; (2 BYTE)

170 - .EQ DELAY=$FA ;PAUSENLAENGE

180 -3

190 - JMP MAIN 5 ZUM HAUPTPROGRAMM

200 -3

210 -; NAECHSTE ZUFALLSZAHL

220 -; (1) CARRY := SR(4) EOR SR(9)

230 ~-; (2) SR NACH LINKS SCHIEBEN

240 -; (3) SR(0) := CARRY

250 -3

260 -SHIFT LDA SR+1

270 - AND #2 $SR(9) ISOLIEREN

280 - ASL

290 - ASL

300 - ASL s IN BITPOSITION &

310 - ASL $ BRINGEN

320 - ASL

330 - EOR SR sLIEFERT SR(6) EOR SR(9)
340 - ASL

350 -~ ASL sRESULTAT INS CARRY-FLABG (SCHRITT (1))
360 - ROL SR sSCHRITT (2) UND (3)
370 - ROL SR+1

380 - RTS

390 -3

400 -; VERIODEGERUNGSSCHLEIFE

410 -3

420 -PAUSE LDX DELAY

430 -PAUSE!L DEX

440 - BNE PAUSEL

450 - RTS

460 -3

470 -; HAUPTPROGRAMM

480 ~-; SCHIEBEREGISTER-FOLGE DER LAENGE 1023 ERZEUGEN
490 ~-; BILDSCHIRMZEICHEN IN DER REIHENFOLGE DIESER ZUFALLSZAHLEN
500 ~-; INVERTIEREN (D.H. BIT 7 INVERTIEREN)

510 -3 .

520 " -; SR MIT ZUFAELLIGEM STARTWERT VORBESETIEN

530 -MAIN LDA $DCO4 ;CIA%1 TIMER A, LOW-BYTE
540 - ORA #1 sDARF NICHT 0 SEIN

550 - STA SR

560 - LDA #$FF

570 - STA ZAEHLER

580 - LDA #$03

590 - STA ZAEHLER+1 ;ZAEHLER=$3FF=1023

600 -LOOP JSR SHIFT sNAECHSTE ZUFALLSZAHL
610 - LDA SR+1

620 - PHA s MERKEN

630 - AND #3 sHIGH-BYTE AUF 2 BIT BEGRENZEN
640 - ORA #4 ;SR=SR+$400

650 - STA SR+1

660 - LDY #0

670 - LDA (SR),Y s ZEICHEN VOM BILDSCHIRM
680 -~ EOR #$80 sBIT 7 INVERTIEREN

690 - STA (5R),Y 3 ZURUECK ZUM BILDSCHIRM
700 - PLA ;SR+1

710 - STA SR+1 sWIEDERHERSTELLEN

720 - JSR PAUSE

730 - DEC ZAEHLER

740 - BNE LOOP

750 - DEC ZAEHLER+1

760 - BPL LOOP

770 - LDA $400 sERSTES BILDSCHIRMZEICHEN
780 - EOR #$80 ; INVERTIEREN

790 - STA $400

800 - RTS

Listing 11. Schieberegister-Folgen als Pseudo-
Zufallszahlen

Erwéhnenswert sind hier noch die Befehle ASL und ROL:
Beide schieben nach links und bei beiden wird Bit 7 ins Carry-
Flag geschoben. Der Unterschied:

ASL besetzt Bit O mit O

ROL besetzt Bit O mit dem alten Inhalt des Carry-Flags.

Mit ASL (ohne AdreBteil) wird also der Akku arithmetisch
verdoppelt, wahrend mit ROL MR zusétzlich der Ubertrag aus
dieser Verdoppelung in Bit O von MR gelangt.
Schieberegister-Folgen als Pseudo-Zufallszahlen

Das Programm (Listing 11) zeigt eine interessante Anwen-
dung von Schieberegistern. Wenn man ein Schieberegister
(SR) an den »richtigen« Bitpositionen »anzapft« und das
Exklusiv-Oder-Produkt dieser Bits an den SR-Eingang zu-
rickfihrt, erhédlt man eine Folge von Bits, die vollkommen
zufillig zu sein scheint. Die Folgen sind zwar periodisch, sie
wiederholen sich also nach einer gewissen Zeit, die Perio-
denlange kann aber beliebig lang gemacht werden. Macht
man eine so erzeugte 0-1-Folge mit einem Lautsprecher hor-
bar, so klingt diese wie weiBes Rauschen.

Die folgende Tabelle enthélt geeignete Anzapfstellen fir
Schieberegister unterschiedlicher Lange.

Registerléange Ruckkopplung Periodenlidnge

2 O+1 3

142 7
4 243 15
5 2+4 31
6 4+5 63
7 5+6 127
8 1+2+3+7 255
9 4+8 511
10 6+9 1023
1" 8+10 2047
12 1+9+10+11 4095
13 0+10+11+12 8191
14 1+11+12+13 16383
15 13+14 32767
16 10+12+13+15 65535

»+« steht hier fur »\EOR«

Die angegebenen Periodenléngen sind die bei der jewei-
ligen Registerldnge maximal méglichen. Die Schieberegister-
folgen haben die angenehme Eigenschaft, daB die Register-
werte alle Zahlen von 1 bis zur Periodenldnge in quasi-
zufélliger Reihenfolge durchlaufen. Man darf ein solches
Schieberegister allerdings nicht mit lauter Nullen vorbe-
setzen, da es dann seinen Zustand nicht mehr &ndert
(0 EOR 0 =0).

Der Kern des folgenden Programms ist die kleine Routine
SHIFT. Die beiden Zero-Page-Speicherstellen SR und SR+1
bilden ein 16-Bit-Schieberegister. Rlickgekoppelt wird es an
den Positionen 6 und 9. Es werden quasi nur 10 Bit von den
16 vorhandenen ausgenutzt. SHIFT erzeugt bei wieder-
holtem Aufruf eine Folge mit der Periode 1023.

Das Hauptprogramm wendet nun diese Folge in grafisch
reizvoller Weise an. Zunichst wird das Low-Byte des
Schieberegisters mit einem zufélligen Wert (ungleich O) vor-
besetzt. Dieser Wert stammt aus dem sténdig laufenden
Timer A in CIA Nummer 1. SHIFT wird nun 1023 mal aufgeru-
fen und erzeugt dadurch alle Zahlen von 1 bis 1023 in quasi-
zufélliger Reihenfolge. Diese Zahlen werden als Adressen
relativ zum Bildschirm-RAM verwendet. Bei den adressierten
Bytes wird jeweils Bit 7 invertiert, was eine Reversdarstellung
der Bildschirmzeichen bewirkt. Das Programm MAIN bewirkt
also nichts anderes als eine Invertierung des gesamten Text-
bildschirms. Da dies aber in zufélliger Abfolge geschieht, ist
der Effekt sehr auffallend. Uber die Variable DELAY
($FA)=250) kann man das
Tempo der Invertierung be-

10 POKE 250,1

20 PRINT CHR$(147) : H
0 FOR 1=102¢ T0 202 einflussen. Das anschlie-
40 POKE 1,127+INT(RND(0)#2) %128 Bende Basic-Programm

S0 NEXT I

60 5YS 12#4096

70 GET A$:IF As$="" THEN 60
READY.

Listing 12. Basic-Hilfs-

(Listing 12) erzeugt einen
Flimmereffekt, indem es eine
einfache Zufallsgrafik mit
dem Programm MAIN inver-

programm zu Listing 11.

-

tiert. (Thomas Kratzig/aw)

163

