
Tips und Tricks C64

Wichtige
Makros zum
Assembler
Hypra-Ass
Der beschränkte Befehlssatz des 6502-
Prozessors macht Maschinenprogramme
unübersichtlich und fehleranfällig. Wir zei­
gen Ihnen hier, wie sich mit Hypra-Ass der
Maschinen-Befehlssatz durch Makros er­
weitern läßt. Aber nicht nur das ist mög­
lich, Sie können sich auch Ihre eigene,
ganz persönliche Sprache basteln.

esonders dem Maschinensprache-Anfänger dürfte
das Wort »Makro« gänzlich unbekannt sein. Denn
weder das im C 64 implementierte noch irgendein

anderes Basic kennt die Definition eines Makros. Das ist
wahrscheinlich auch der Grund dafür, warum Makros nur sel­
ten angewendet werden. Sie spielen jedoch gerade beim
6502- beziehungsweise 6510-Prozessor eine wichtige
Rolle. Durch Makros läßt sich nämlich der bescheiden ausge­
fallene Befehlssatz des Prozessors um wichtige Befehle
erweitern. Es werden durch Makros prinzipiell keine neuen
Maschinenbefehle geschaffen, sind aber Makros einmal defi­
niert, lassen sie sich aufrufen wie ganz normale Maschinen­
befehle. Was sind nun eigentlich Makros? Dies soll an einem
kleinen Beispiel erklärt werden.

Angenommen, Sie möchten in einem Maschinenprogramm
20 verschiedene 16-Bit Adressen inkrementieren, dann
müßte Ihr Programm zwangsläufig zwanzigmal folgende
Befehlsfolge enthalten:

INC ADRESSE
BNE LBL
INC ADRESSE+1

LBL
Diese 20 Befehlsfolgen machen aber das Programm un­

übersichtlich und vor allen Dingen fehleranfällig. Genau so gut
ließe sich auch ein Makro mit dem Namen »INCW (adresse)«
für INCWord definieren, das dann anstelle der Befehlsfolgen
20mal im Quelltext erscheint. Das Makro selbst würde wie
folgt aussehen:

10 -.MA INCW (ADRESSE)

20 - INC ADRESSE
30 - BNE LBL
40 - INC ADRESSE+l

50 -LBL
60 -.RT

Aufgerufen wird das Makro im Quelltext nun durch den
neuen Befehl»... INCW (adresse)«.
Gefolgt von dem Makronamen und in Klammern den Über­
gabeparametern, diedurch Kommatagetrenntwerden, leitet
der ».MA«-Pseudo-Opcode die Definition eines Makros ein.
DiesgeschiehtinZeile 10. Der Pseudo-Opcode».RT«inZeile
60 schließt die Definition des Makros ab. Alle im Makro ste­
henden Label sind lokal. Das heißt, daß dem Programm außer­
halb des Makros die internen Label unbekannt sind. Würde

dies nicht so sein, dann würde der Assembler den zweiten
Makroaufruf mit der Fehlermeldung »label twice error« ahn­
den. Was macht der Assembler, wenn er auf einen Makroauf­
ruf stößt? Er assembliert in den Objektcode, wie man das
erzeugte Maschinenprogramm auch nennt, die Befehlsfol­
gen, die im Makro definiert wurden. Das heißt, daß letztend­
lich im erzeugten Maschinenprogramm wieder zwanzigmal,
um bei dem Beispiel zu bleiben, die oben stehenden Befehls­
folgen auftauchen.
Im Listing sind die wichtigsten Makros aufgeführt. Neben den
»Befehlserweiterungen« ist noch eine interessante Gruppe
von Makros definiert worden, die die strukturierte Program­
mierung durch »Repeat...Until«- und »While...Endwhile«-
Schleifen unterstützt. Zu beachten istjedoch, daß die Schlei­
fen nichtverschachteltwerden dürfen. Schleifenkonstruktio­
nen wie

REPEAT

REPEAT

UNTIL
UNTIL

sind veboten. Die einzelnen Makros haben folgende Wirkung:
TXY: Das Y-Register wird mit dem Inhalt des X-Registers ge­
laden.
TYX: Das X-Register wird mit dem Inhalt des Y-Registers ge­
laden.
PHX: Das X-Register wird auf dem Stack abgelegt
PHY: Das Y-Register wird auf dem Stack abgelegt
PLX: Das X-Register wird vom Stack geholt.
PLY: Das Y-Register wird vom Stack geholt.
Die folgenden vier Makros definieren einen Userstack, der an
eine beliebige Stelle gelegt werden kann. Dazu muß im Haupt­
programm eine globale Variable mit dem Namen »USER« in
der Zeropage angelegt werden. Anschließend muß in die
Adresse, die die Variable repräsentiert, die Startadresse des
Stacks geschrieben werden. Das könnte so aussehen:

10 -.GL USER = 3
20 - LDA #0 ;L0-BYTE
STARTADRESSE USERSTACK
30 - STA USER
40 - LDA #$C0 ;HI-BYTE

STARTADRESSE USERSTACK
50 - STA USER+1

Hier wurde ein Userstack angelegt, der bei Adresse $C000
beginnt. DerStackpointer, alsoderZeiger, deraufdieaktuelle
Stackadresse zeigt, steht in der Zeropage in den Speicher­
zellen 3 und 4.
PUSHA: Der Inhalt des Akkumulators wird auf dem Userstack
abgelegt.
PUSHAY: Der Inhalt des Akkumulators und der Inhalt des
Y-Registers werden auf dem Userstack abgelegt.
PULLA: Der Akkumulator wird vom Userstack geholt.
PULLAY: Der Akkumulator und das Y-Register werden vom
Userstack geholt.
ADW (adresse): 16-Bit Addition. Der Inhalt einer beliebigen
Adresse wird zum Inhalt des Akkumulators (Low-Byte) und
zum Inhalt des Y-Registers (High-Byte) addiert. Das Ergebnis
steht anschließend im Akkumulator (Low-Byte) und im Y-
Register (High-Byte).
ADMW (adr1,adr2,summe): 16-Bit Addition. Der Inhalt von
adr1 und adr1 + 1 wird zum Inhalt der Adresse adr2 und
adr2 +1 addiert und das Ergebnis in der Adresse summe und
summe+1 abgelegt.
SBCW (adresse): 16-Bit Subtraktion. Der Inhalt von adresse
und adresse+1 wird vom Inhalt des Akkumulators (Low-Byte)
und vom Inhalt des Y-Registers (High-Byte) abgezogen. Das

C64 Tips und Tricks

Ergebnis stehtanschließend im Akkumulator (Low-Byte) und
im Y-Register (High-Byte).
SBCMW(adr1,adr2,diff): 16-BitSubtraktion. Vom lnhaltadr1
undadr1 + 1 wirdderlnhaltvonadr2 undadr2 + 1 abgezogen.
Das Ergebnis wird in der Adresse diff und diff+1 abgelegt.
INCW(adresse): Derlnhaltvonadresseundadresse+1 wird
inkrementiert. Das Ergebnis steht in adresse und adresse+1.
DECW (adresse): Der Inhalt von adresse und adresse+1
wird dekrementiert. Das Ergebnis steht in adresse und
adresse+1.
LDAY (adresse): Der Akkumulator wird mit dem Inhalt von
adresse und das Y-Register mit dem Inhalt von adresse+1
geladen.
STAY (adresse): Der Inhalt des Akkumulators wird nach
adresse und der Inhalt des Y-Registers nach adresse+1
geschrieben.
LDAYI (wert): Der Akkumulator und das Y-Register wird mit
»wert« unmittelbar geladen. Dabei steht das Low-Byte im
Akkumulator und das High-Byte im Y-Register.
Die folgenden Makros unterstützen die strukturierte Pro­
grammierung.

REPEAT, EXITREPEAT, UNTIL (übergabe.bedingung): Die
Schleife wird so lange fortgesetzt, bis die Speicherzelle
»übergabe« den Wert »bedingung« enthält. Beispiel:

io - LDX #255
20 - REPEAT
30 - DEX
40 - STX $FB
50 - ... UNTIL ($FB,0)

Das X-Register wird solange dekrementiert, bis es den Wert
»0« enthält.
WHILE (übergabe,bedingung), EXITWHILE, ENDWHILE:
Die Schleife wird solange fortgesetzt, bis der Inhalt der Spei­
cherzelle »übergabe« gleich »bedingung« ist. Beispiel:

10 - LDX #255
20 - ... WHILE ($FB,0)

30 - DEX
40 - STX $FB
50 - ... ENDWHILE

Solange der Inhalt der Speicherzelle $FB ungleich Null ist,
wird das X-Register dekrementiert.

(ah)

READY.

10 —;********************************
20 -;* WEITERE VERSCHIEBEBEFEHLE *
30 —;********************************
40 -;
50 -; X -> Y
60 -.MA TXY
70 - PHA
80 - TXA
90 - TAY
100 - PLA
110 -.RT
120 -;
130 -; Y -> X
140 -.MA TYX
150 - PHA
160 - TYA
170 - TAX
180 - PLA
190 -.RT
200 -;
210 -; X-REGISTER AUF DEN STACK
220 -.MA PHX
230 -.EQ RETTEN = $FC
240 - STA RETTEN
250 ' - TXA
260 - PHA
270 - LDA RETTEN
280 -.RT
290 -;
300 -; Y-REGISTER AUF DEN STACK
310 -.MA PHY
320 -.EQ RETTEN = $FC
330 - STA RETTEN
340 - TYA
350 - PHA
360 - LDA RETTEN
370 -.RT
380 -;
390 -; X-REGISTER VOM STACK HOLEN
400 -.MA PLX
410 -.EQ RETTEN = $FC
420 - STA RETTEN
430 - PLA
440 - TAX
450 - LDA RETTEN
460 -.RT
470 -;
480 -; Y-REGISTER VOM STACK HOLEN
490 -.MA PLY
500 -.EQ RETTEN = $FC
510 - STA RETTEN
520 - PLA
530 - TAY
540 - LDA RETTEN
550 -.RT
560 -;
570 -; DEN AKKU AUF USERSTACK
580 -.MA PUSHA
590 - ... PHY
600 - LDY #0
610 - STA (USER),Y
620 - ... DECW(USER)
630 - ... PLY
640 -.RT
650 -;
660 -;AKKU UND Y-REGISTER AUF USERSTACK
670 -.MA PUSHAY
680 - PHA
690 - TYA
700 - . . . PUSHA
710 - PLA
720 - ... PUSHA
730 -.RT
740 -;
750 —; AKKU VON USERSTACK
760 -.MA PULLA
770 - ___ INCW(USER)
780 - ... PHY

790 - LDY #0 1590 - LDA ADRESSE
800 - LDA (USER),Y 1600 - SEC
810 - ... PLY 1610 - SBC #1
820 -.RT 1620 - STA ADRESSE
830 -; 1630 - LDA ADRESSE+1
840 -;AKKU UND Y-REGISTER VON USERSTACK 1640 - SBC #0
850 -.MA PULLAY 1650 - STA ADRESSE+1
860 - ___PULLA 1660 - PLA
870 - TAY 1670 -.RT
880 - ... PULLA 1680 -;
890 -.RT 1690 -; ADRESSE -> A/Y AKKU=LO
900 -; 1700 -.MA LDAY (ADRESSE)
910 -;******************************** 1710 - LDY ADRESSE+1
920 -;* 16-BIT BEFEHLE * 1720 - LDA ADRESSE
930 -;******************************** 1730 -.RT
940 -; 1740 -;
950 -; A/Y + ADRESSE * A/Y AKKU=LO 1750 -; A/Y -> ADRESSE AKKU=LO
960 -.MA ADW (ADRESSE) 1760 -.MA STAY (ADRESSE)
970 - CLC 1770 - STA ADRESSE
980 - ADC ADRESSE 1780 - STY ADRESSE+1
990 - PHA 1790 -.RT
1000 - TYA 1800 —;
1010 - ADC ADRESSE+1 1810 -; WERT=16BIT -> A/Y
1020 - TAY 1820 -.MA LDAYI (WERT)
1030 - PLA 1830 - LDA #<(WERT)
1040 -.RT 1840 - LDY #>(WERT)
1050 —$ 1850 -.RT
1060 -; ADIERE ADR1 + ADR2 = SUMME 1860 -;********************************
1070 -.MA ADMW (ADRl,ADR2,SUMME) 1870^;* BEFEHLE ZUR STRUKTURIERTEN *
1080 - PHA 1880 -;* PROGRAMMIERUNG *
1090 - CLC 1890 -;********************************
1100 - LDA ADR1 1900 -;
1110 - ADC ADR2 1910 -.MA REPEAT
1120 - STA SUMME 1920 -ACE1 .GL ACE0=ACE1
1130 - LDA ADRl+1 1930 -.RT
1140 - ADC ADR2+1 1940 -;
1150 - STA SUMME+1 1950 -.MA EXITREPEAT
1160 - PLA 1960 - JMP BCE0
1170 -.RT 1970 -.RT
1180 -; 1980 -;
1190 -; A/Y - ADRESSE = A/Y AKKU*LO 1990 -.MA UNTIL (UEBERGABE,BEDINGUNG)
1200 -.MA SBCW (ADRESS) 2000 - PHA
1210 - SEC 2010 - LDA UEBERGABE
1220 - SBC ADRESSE 2020 - CMP #BEDINGUNG
1230 - PHA 2030 - BEQ LBL1
1240 - TYA 2040 - PLA
1250 - SBC ADRESSE+1 2050 - JMP ACE0
1260 - TAY 2060 -LBL1 PLA
1270 - PLA 2070 -.GL BCE0=LBL1
1280 -.RT 2080 -.RT
1290 -; 2090 -;
1300 —; ADR1 - ADR2 = DIFFERENZ 2100 -.MA WHILE (UEBERGABE,BEDINGUNG)
1310 -.MA SBCMW (ADRl,ADR2,DIFF) 2110 -CCE0 .GL CCE0=CCE0
1320 - PHA 2120 - PHA
1330 - SEC 2130 - LDA UEBERGABE
1340 - LDA ADR1 2140 - CMP #BEDINGUNG
1350 - SBC ADR2 2150 - BNE LBL1
1360 - STA DIFF 2160 - JMP CCE1
1370 - LDA ADRl+1 2170 -LBL1 PLA
1380 - SBC ADR2+1 2180 -.RT
1390 - STA DIFF+1 2190 —;
1400 - PLA 2200 -.MA EXITWHILE
1410 -.RT 2210 - PHA
1420 -; 2220 - JMP CCE1
1430 —; ADRESSE - ADRESSE + 1 2230 -.RT
1440 -.MA INCW (ADRESSE) 2240 -;
1450 - PHA 2250 -.MA ENDWHILE
1460 - LDA ADRESSE 2260 - JMP CCE0
1470 - CLC 2270 -CCE1 .GL CCE1=CCE1
1480 - ADC #1 2280 - PLA
1490 - STA ADRESSE 2290 -.RT
1500 - LDA ADRESSE+1
1510 - ADC #0
1520 - STA ADRESSE+1
1530 - PLA
1540 -.RT

i560 -; ADREssE - ADREssE - i Listing. Die wichtigsten Makros zum Assembler
Ü™ ?MA Z 1̂ »Hypra-Ass«

157

