Tips und Tricks

Cc 64

‘Wichtige
Makros zum
Assembler
Hypra-Ass

Der beschriankte Befehlssatz des 6502-
Prozessors macht Maschinenprogramme
~ uniibersichtlich und fehleranfillig. Wir zei-
~ gen lhnen hier, wie sich mit Hypra-Ass der
. Maschinen-Befehlssatz durch Makros er-

weitern 1aBt. Aber nicht nur das ist mog-
lich, Sie kdnnen sich auch lhre eigene,
ganz persénliche Sprache basteln.

das Wort »Makro« génzlich unbekannt sein. Denn

weder das im C 64 implementierte noch irgendein
anderes Basic kennt die Definition eines Makros. Das ist
wahrscheinlich auch der Grund daflr, warum Makros nur sel-
ten angewendet werden. Sie spielen jedoch gerade beim
6502- beziehungsweise 6510-Prozessor eine wichtige
Rolle. Durch Makros laBt sich namlich der bescheiden ausge-
_ fallene Befehlssatz des Prozessors um wichtige Befehle
erweitern. Es werden durch Makros prinzipiell keine neuen
Maschinenbefehle geschaffen, sind aber Makros einmal defi-
niert, lassen sie sich aufrufen wie ganz normale Maschinen-
befehle. Was sind nun eigentlich Makros? Dies soll an einem

Besonders dem Maschinensprache-Anfanger durfte

kleinen Beispiel erklart werden.

Angenommen, Sie méchten in einem Maschinenprogramm
20 verschiedene 16-Bit Adressen inkrementieren, dann
muBte lhr Programm zwangslaufig zwanzigmal folgende
Befehlsfolge enthalten:

INC ADRESSE

BNE LBL

INC ADRESSE+1
LBL

Diese 20 Befehlsfolgen machen aber das Programm un-
Ubersichtlich und vor allen Dingen fehleranfallig. Genau so gut
_ lieBe sich auch ein Makro mit dem Namen »INCW (adresse)«
~ fur INCWord definieren, das dann anstelle der Befehlsfolgen
20mal im Quelltext erscheint. Das Makro selbst wirde wie

- folgt aussehen:
10 —-.MA INCW (ADRESSE)
20 - INC ADRESSE
30 - BNE LBL
40 - INC ADRESSE+1
50 -LBL
60 -.RT

Aufgerufen wird das Makro im Quelltext nun durch den
neuen Befehl ».. . INCW (adresse)«.
Gefolgt von dem Makronamen und in Klammern den Uber-
gabeparametern, die durch Kommata getrennt werden, leitet
der ».MA«-Pseudo-Opcode die Definition eines Makros ein.
Dies geschiehtin Zeile 10. Der Pseudo-Opcode ».RT«in Zeile
60 schlieBt die Definition des Makros ab. Alle im Makro ste-
henden Label sind lokal. Das heiBt, daB dem Programm auBer-
halb des Makros die internen Label unbekannt sind. Wirde

156

dies nicht so sein, dann wirde der Assembler den zweiten
Makroaufruf mit der Fehlermeldung »label twice error« ahn-
den. Was macht der Assembler, wenn er auf einen Makroauf-
ruf stoBt? Er assembliert in den Objekicode, wie man das
erzeugte Maschinenprogramm auch nennt, die Befehlsfol-
gen, die im Makro definiert wurden. Das heiBt, daB letztend-
lich im erzeugten Maschinenprogramm wieder zwanzigmal,
um bei dem Beispiel zu bleiben, die oben stehenden Befehls-
folgen auftauchen.

Im Listing sind die wichtigsten Makros aufgefiihrt. Neben den
»Befehlserweiterungenc ist noch eine interessante Gruppe
von Makros definiert worden, die die strukturierte Program-
mierung durch »Repeat. .. Until<- und »While. .. Endwhile«-
Schleifen unterstttzt. Zu beachtenistjedoch, daB die Schlei-
fen nicht verschachtelt werden duirfen. Schleifenkonstruktio-
nen wie

REPEAT

REPEAT

UNTIL

UNTIL
sind veboten. Die einzelnen Makros haben folgende Wirkung:
TXY: Das Y-Register wird mit dem Inhalt des X-Registers ge-
laden.
TYX: Das X-Register wird mit dem Inhalt des Y-Registers ge-
laden.
PHX: Das X-Register wird auf dem Stack abgelegt.
PHY: Das Y-Register wird auf dem Stack abgelegt.
PLX: Das X-Register wird vom Stack geholt.
PLY: Das Y-Register wird vom Stack geholt.
Die folgenden vier Makros definieren einen Userstack, der an
eine beliebige Stelle gelegt werden kann. Dazu muB3 im Haupt-
programm eine globale Variable mit dem Namen »USER« in
der Zeropage angelegt werden. AnschlieBend muB in die
Adresse, die die Variable reprasentiert, die Startadresse des
Stacks geschrieben werden. Das kdnnte so aussehen:

10 -.GL USER = 3

20 - IDA #0 ;LO-BYTE
STARTADRESSE USERSTACK

30 - STA USER

40 - LDA #$CO ;HI-BYTE
STARTADRESSE USERSTACK

50 - STA USER+1

Hier wurde ein Userstack angelegt, der bei Adresse $C000
beginnt. Der Stackpointer, also der Zeiger, der auf die aktuelle
Stackadresse zeigt, steht in der Zeropage in den Speicher-
zellen 3 und 4.

PUSHA: Der Inhalt des Akkumulators wird auf dem Userstack
abgelegt.

PUSHAY: Der Inhalt des Akkumulators und der Inhalt des
Y-Registers werden auf dem Userstack abgelegt.

PULLA: Der Akkumulator wird vom Userstack geholt.
PULLAY: Der Akkumulator und das Y-Register werden vom
Userstack geholt.

ADW (adresse): 16-Bit Addition. Der Inhalt einer beliebigen
Adresse wird zum Inhalt des Akkumulators (Low-Byte) und
zum Inhalt des Y-Registers (High-Byte) addiert. Das Ergebnis
steht anschlieBend im Akkumulator (Low-Byte) und im Y-
Register (High-Byte).

ADMW (adr1,adr2,summe): 16-Bit Addition. Der Inhalt von
adr1 und adri+1 wird zum Inhalt der Adresse adr2 und
adr2+ 1 addiert und das Ergebnis in der Adresse summe und
summe+1 abgelegt.

SBCW (adresse): 16-Bit Subtraktion. Der Inhalt von adresse
undadresse+1 wird vom Inhalt des Akkumulators (Low-Byte)
und vom Inhalt des Y-Registers (High-Byte) abgezogen. Das

C64

Tips und Tricks

Ergebnis steht anschlieBend im Akkumulator (Low-Byte) und
im Y-Register (High-Byte).

SBCMW (adr1,adr2,diff): 16-Bit Subtraktion. Vom Inhalt adr1
undadr1+1 wird der Inhaltvon adr2 und adr2 + 1 abgezogen.
Das Ergebnis wird in der Adresse diff und diff+1 abgelegt.
INCW (adresse): Der Inhalt von adresse und adresse+1 wird
inkrementiert. Das Ergebnis stehtin adresse und adresse +1.
DECW (adresse): Der Inhalt von adresse und adresse+1
wird dekrementiert. Das Ergebnis steht in adresse und
adresse+1.

LDAY (adresse): Der Akkumulator wird mit dem Inhalt von
adresse und das Y-Register mit dem Inhalt von adresse+1
geladen.

STAY (adresse): Der Inhalt des Akkumulators wird nach
adresse und der Inhalt des Y-Registers nach adresse+1
geschrieben.

LDAYI (wert). Der Akkumulator und das Y-Register wird mit
»wert« unmittelbar geladen. Dabei steht das Low-Byte im
Akkumulator und das High-Byte im Y-Register.

Die folgenden Makros unterstitzen die strukturierte Pro-

REPEAT, EXITREPEAT, UNTIL (iibergabe,bedingung): Die
Schleife wird so lange fortgesetzt, bis die Speicherzelle
»Ubergabe« den Wert »bedingung« enthalt. Beispiel:

10 - IDX #255

20 - ... REPEAT

30 - DEX

40 - STX $FB

50 - ... UNTIL ($FB,0)

Das X-Register wird solange dekrementiert, bis es den Wert
»0« enthalt.

WHILE (iibergabe,bedingung) , EXITWHILE, ENDWHILE:
Die Schleife wird solange fortgesetzt, bis der Inhalt der Spei-
cherzelle »libergabe« gleich »bedingung« ist. Beispiel:

10 - LDX #255

20 - ... WHILE ($FB,0)
30 - DEX

40 - STX $FB

50 - ... ENDWHILE

Solange der Inhalt der Speicherzelle $FB ungleich Null ist,
wird das X-Register dekrementiert.

grammierung. (ah)
READY. 798 - LDY #0 1590 - LDA ADRESSE
sem - LDA (USER),Y 1600 - SEC
1 - 8180 - we. PLY 1610 - SBC #1
280 —;* WEITERE VERSCHIEBEBEFEHLE * 828 -.RT 1628 - STA ADRESSE
@ - ase -; 1630 - LDA ADRESSE+1
@ - 848 -;AKKU UND Y-REGISTER VON USERSTACK 1648 - SBC #@
58 -; X -> Y 850 -.MA PULLAY 1650 - STA ADRESSE+1
68 -.MA TXY 868 - ... PULLA 1660 - PLA
70 - PHA a7e - TAY 1678 -.RT
s - A 880 - ... PULLA 1680 -;
90 - TAY 898 -.RT 169@ -; ADRESSE —> A/Y AKKU=LO
100 - PLA e -; 17@@ -.MA LDAY (ADRESSE)
11@ —.RT 918 -; 1718 - LDY ADRESSE+1
2 928 —;% 16-BIT BEFEHLE * 1720 - LDA ADRESSE
- x 938 -3 1738 -.RT
TYX P40 -3 1740 -;
150 - PHA 958 -; A/Y + ADRESSE = A/Y AKKU=LO 1758 -; A/Y —> ADRESSE AKKU=LO
160 - TvA 968 -.MA ADW (ADRESSE) 1768 -.MA STAY (ADRESSE)
170 - TAX 970 - cLc 1770 - STA ADRESSE
180 - PLA 98 - ADC ADRESSE 1780 - STY ADRESSE+1
19@ —.RT 990 - PHA 1798 -.RT
200 -; 1000 - TvA 1800 —;
218 -; X-REGISTER AUF DEN STACK 1010 - ADC ADRESSE+1 1818 -; WERT=1&BIT —-> A/Y
228 -.MA PHX 1020 - TAY 18280 -.MA LDAYI (WERT)
238 -.EQ RETTEN = $FC 1030 - PLA 1830 - LDA #< (WERT)
248 - STA RETTEN 1048 -.RT 1840 - LDY #>(WERT)
250 " - A 1050 —; 1850 —.RT
260 - PHA 1860 -; ADIERE ADR1 + ADRZ = SUMME 1860 —;
270 - LDA RETTEN 18780 -.MA ADMW (ADR1,ADRZ,SUMME) 1870 ;% BEFEHLE ZUR STRUKTURIERTEN »
280 -.RT 1880 - PHA 1880 —;% PROGRAMMIERUNG *
298 -3 1090 - cLc 1898 -;
30@ -; Y-REGISTER AUF DEN STACK 1120 - LDA ADR1 1908 -
310 -.MA PHY 1110 — ADC ADRZ2 1918 —.MA REPEAT
320 -.E@ RETTEN = $FC 1120 - STA SUMME 1928 -ACE1 .BL ACE@=ACE1
330 - STA RETTEN 1138 - LDA ADR1+1 1938 -.RT
340 - TvA 1140 - ADC ADR2+1 1942 —;
350 - PHA 1150 - STA SUMME+1 1958 -.MA EXITREPEAT
360 - LDA RETTEN 1160 - PLA 1968 - JMP BCE®
37@ -.RT 1170 -.RT 1978 -.RT
380 -3 1188 -; 1980 —;
398 -; X-REGISTER VOM STACK HOLEN 1198 -; A/Y — ADRESSE = A/Y AKKU=LO 199@ -.MA UNTIL (UEBERGABE,BEDINGUNG)
228 -.MA PLX 1200 -.MA SBCW (ADRESS) 2000 - PHA
418 -.EQ RETTEN = $FC 1218 - SEC 2010 - LDA UEBERGABE
a20 - STA RETTEN 1220 - SBC ADRESSE 2020 - CMP #BEDINGUNG
430 - PLA 1230 - PHA 2030 - BE@ LBL1
430 - TAX 1240 - YA 2040 - PLA
a5 - LDA RETTEN 1258 - SBC ADRESSE+1 2050 - JMP ACE®
468 -.RT 1260 - TAY 2060 -LBL1 PLA
470 —; 1270 - PLA 2078 -.GL BCE@=LBL1
488 -; Y-REGISTER VOM STACK HOLEN 1280 -.RT 2082 -.RT
490 -.MA PLY 1298 —; 2090 -5
508 -.EQ RETTEN = $FC 1380 —; ADR1 — ADR2 = DIFFERENZ 2100 —.MA WHILE (UEBERGABE ,BEDINGUNG)
510 - STA RETTEN 1318 -.MA SBCMW (ADR1,ADRZ2,DIFF) 2110 -CCE® .GL CCE@=CCE®
520 - PLA 1320 - PHA 2120 - PHA
530 - Tay 1330 - SEC 2130 - LDA UEBERGABE
540 - LDA RETTEN 1340 - LDA ADR1 2140 - CMP #BEDINGUNG
550 -.RT 1350 - SBC ADR2 2150 - BNE LBL1
568 -3 1368 — STA DIFF 2160 - JMP CCE1
578 -3 DEN AKKU AUF USERSTACK 1370 - LDA ADR1+1 2170 -LBL1 PLA
580 -.MA PUSHA 1380 - SBC ADR2+1 2180 -.RT
s9@ - ... PHY 1390 - STA DIFF+1 219@ —;
co0 - LDY #0 1400 - PLA 2200 —.MA EXITWHILE
610 - STA (USER),Y 1410 -.RT 2218 - PHA
20 - ... DECW(USER) 1420 —; 2220 - JMP CCE1
630 - ee. PLY 1438 -; ADRESSE = ADRESSE + 1 2238 -.RT
640 -.RT 1448 -.MA INCW (ADRESSE) 2240 —;
6508 -3 1450 - PHA 2250 -.MA ENDWHILE
668 —;AKKU UND Y-REGISTER AUF USERSTACK 1460 - LDA ADRESSE 2260 - JMP CCE@
67@ -.MA PUSHAY 1470 - oL 227@ -CCE1 .6L CCE1=CCE1
&80 - PHA 1480 - ADC #1 2280 - PLA
98 - TvA 1490 - STA ADRESSE 229@ -.RT
700 - ... PUSHA 1508 — LDA ADRESSE+1
718 - PLA 1510 - ADC #@
720 - ... PUSHA 15208 - STA ADRESSE+1
730 —.RT 1538 - PLA
748 - 1540 —.RT
75@ -3 AKKU VON USERSTACK 1558 —; . . . pas
768 —.MA PULLA 1560 -; apresse = apresse - 1 Listing. Die wichtigsten Makros zum Assembler
770 - ... INCW(USER) 1578 -.MA DECW (ADRESSE)
780 - e. PHY 1588 - PHA »Hypra-Ass«

b4 BTy

157

