Tips und Tricks

Tips und
Tricks
zu Hypra-Ass

Hypra-Ass, ein Assembler der Spitzen-
klasse beherrscht alles, was zum Program-
mieren in Maschinensprache erforderlich

st. Hier wollen wir lhnen anhand vieler Bei-
spiele zeigen, was in ihm steckt und was ar
wirklich leistet.

die zur Zeit auf dem Markt sind. Eine seiner hervor-

stechendsten Eigenschaften ist der integrierte Editor
mit einer formatierenden LIST-Routine. Aber gerade durch
diese Eigenschaft weicht die Bedienung vom normalen
Basic-Editor ab. Dadurch traten bei vielen Lesern Schwierig-
keiten auf, die hier im einzelnen behandelt werden.

Im Gegensatz zum Basic-Editor kann unter Hypra-Ass eine
Zeile nicht dadurch geléscht werden, daB nur die Zeilennum-
mer eingegeben und anschlieBend RETURN gedrickt wird.
Bei Hypra-Ass ist unbedingt darauf zu achten, daB hinter der
Zeilennummer ein Minuszeichen eingegeben wird. Driickt
man nun die RETURN-Taste ist die Zeile auch verschwunden.
Da aber dieses Minuszeichen hinter der Zeilennummer mei-
stens vergessen wird, ist es empfehlenswert, nicht nur Zei-
lenbereiche, sondern auch einzelne Zeilen mit dem Editor-
Befehl »/D zeilennummer« zu léschen, bis auf die Zeile »0O«,
die sich mit dem »/D«-Befehl nicht I6schen IaBt. In diesem Fall
geben Sie bitte »0-« <RETURN> ein.

Ein kleiner Fehler tritt beim Sortieren der Symboltabelle auf.
Hypra-Ass stlirzt ab, wenn die Symboltabelle genau 36, 73,
109 (und so weiter) Variablen oder Label enthélt. Der Fehler
liegt in den Speicherzellen $1EB8 bis $1EBB. Hier wurden
zwei Branch-Befehle vertauscht. Es muB richtig lauten:

H ypra-Ass ist einer der leistungsfahigsten Assembler

1EB8 90 DO
1EBA DO 04

BCC 1EA8
BNE 1ECO

Diese Anderung kann unmittelbar mit einem Monitor in die
entsprechenden Speicherzellen geschrieben und anschlie-
Bend gespeichert werden. Sollten Sie keinen Monitor haben,
dann geben Sie bitte den folgenden Quelltext ein:

10 -.BA $C000
;STARTADRESSE = $C000

20 - LDY #0

30 - LBL LDA TABY
;KORREKTUREN VORNEHMEN

40 - STA $1EB8Y

50 - INY

60 - CPY #4

70 - BNE LBL

80 -.EQ SOURCESTART = $1FD8 ;UND DIE KORRIGIERTE

90 -EQ NAMLEN = 12 ;VERSION SPEICHERN
100- LDA #1
110- LDX #8
120- STA $FE
130- STX $FF
140- LDA #8
150- JSR $FFBA
160- LDA #NAMLEN
170- LDX # <(NAME)
180- LDY # >(NAME)

190- JSR $FFBD

200- LDA # $FE

210- LDX # < (SOURCESTART)
220- LDY # >(SOURCESTART)
230- JMP $FFD8

240-;

250-NAME TX "HYPRA-ASSV1”
260-TAB .BY $90,$D0,$D0,$04

Nach dem Assemblieren wird mit SYS 49152 < RETURN >
Hypra-Ass geandert und unter dem neuen Namen »Hypra-
AssV1« auf Diskette gespeichert.

Der »/A«-Befehl zur automatischen Zeilennumerierung rea-
giert auch recht sensibel. Wird mit diesem Befehl gearbeitet,
darf der Cursor mit den entsprechenden Steuertasten auf
keinen Fall auf eine andere Zeile gesetzt und RETURN
gedriickt werden. Sollte das versehentlich doch einmal pas-
sieren, |aBt sich die so entstandene, ewas seltsam ausse-
hende Zeile mit dem »/D«-Befehl problemlos léschen.

Diskettenbefehle kdnnen mit dem Editorbefehl »/ @« zum
Floppy-Laufwerk gesendet werden. Hinter den Editorbefehl
werden dann die Diskettenbefehle unmittelbar angehéngt.
So formatiert der Befehl »’@N:NEWDISK,ND« eine neue
Diskette.

Der Editor

Eine feine Sache ist auch das Arbeiten mit dem »/P«-Befehl,
der dazu dient, Arbeitsseiten beziehungsweise Arbeitsberei-
che anzulegen. Durch diesen Befehl, auf den sich die mei-
sten Editor-Befehle beziehen, ist es mdglich, jedem zusam-
menhangenden Quelltextteil (Unterprogramme oder Unter-
programmbldcke) einen Arbeitsbereich zuzuordnen. Méchte
man dann in der Page 3 etwas andern oder nachschauen,
LISTet der Befehl »/3« nur diesen Bereich und nicht das kom-
plette Listing wie bei dem »/E«-Befehl. Legt man nun die ein-
zelnen Arbeitsbereiche gleich von vornherein so an, daB sie
jeweils einen Zeilenbereich von zum Beispiel 5000 Zeilen
Uberdecken, durfte fur die einzelnen Quelltextteile genligend
Platz vorhanden sein, so daB beim Durchnumerieren der ein-
zelnen Arbeitsbereiche keine Uberlappungen auftreten kén-
nen. Die Arbeitsbereiche selbst dirfen sich aber durchaus
iberlappen. So 148t sich zum Beispiel ein Arbeitsbereich von
0 bis 5000, ein zweiter von 10000 bis 15000 und ein dritter
von O bis 15000 anlegen.

Bei dem Assembler selbst sind bisher keine Fehler
bekannt. Deshalb moéchte ich an dieser Stelle auf einige
Dinge eingehen, mit denen viele Leser Schwierigkeiten hat-
ten. Da wire zum Beispiel das unmittelbare Erzeugen des
Objektcodes auf Diskette mit dem ».OB«-Pseudo-Opcode.

Der Pseudo-Opcode »OB ”“filenamePW”« muB am
Anfang des Quelltextes stehen und zwar in der ersten bezie-
hungsweise zweiten Zeile (nach dem ».Ll«-Pseudo zur Aus-
gabe des Assembler-Listings). In dem Zusammenhang sei
auch erwéhnt, daB es unmdoglich ist, den Objektcode und
gleichzeitig das Assembler-Listing mit dem Befehl ».LI
2,8,2, "filename,UW ” « auf Diskette zu erzeugen. Der Grund
ist der, daB zwei Kandle zum Schreiben gedffnet werden
muUBten und das ist nicht méglich. Zu dem ».OB«-Pseudo
gehért unmittelbar ein zweiter Pseudo ».EN«, der das mit »file-
name« gekennzeichnete File schlieBt. Dazu muB dieser
Pseudo am Ende des Quelltextes stehen. Sollten mit dem
» AP« mehrere Quelltexte verkettet werden, muB der ». EN«-
Pseudo am SchluB des letzten Quelltextes auftauchen.

Bei der Anwendung von Makros gab es auch einige
Schwierigkeiten. Wird zum Beispiel von einem Makro (Ord-
nung 1) zweimal ein weiteres Makro (Ordnung 2) aufgerufen,
meldet Hypra-Ass einen »label twice error¢, vorausgesetzt,

C 64

Tips und Tricks

im Makro zweiter Ordnung befindet sich ein Label. Zum Bei-
spiel wirde folgendes Programm zu einer solchen Fehlermel-
dung fahren:

10 -BA $C000

20 -.MA MAK1
;MAKRODEFINITION 1. ORDNUNG
30 - .. MAK2

;MAKROAUFRUF 2. ORDNUNG
40 - .. MAK2

50 -.RT

60 -MA MAK2

70 -LBL NOP

80 -.RT

90 - ... MAK1

Dabeiist Mak1 das Makro 1. Ordnung und Mak2 das Makro
2. Ordnung. Alle Label in Makros zweiter oder dritter Ordnung
sind untereinander global. Das heiBt, daB in Makros zweiter
Ordnung nur einmal das Label mit dem Namen »LBL« definiert
werden durfte.

Im Augenblick wird an einer Erweiterung gearbeitet, die
diesen MiBstand beseitigt. Denn gerade beim intensiven
Arbeiten mit Makros sind Makros zweiter und sogar dritter
Ordnung unabdingbar. Ganz deutlich sieht man dies an dem
Artikel »Wichtige Makros fur Hypra-Ass« in dieser Ausgabe.
Dort wurde ein Makro mit dem Namen »INCW (adresse)«
definiert. Wirde man die dort stehende 16-Bit-Addition er-
setzen durch:

INC ADRESSE

BNE LBL

INC ADRESSE+1
LBL

kénnte dieses Makro von keinem anderen Makro aus zweimal
aufgerufen werden, weil durch das Label »LBL« ein »label
twice error« erscheinen wirde.

Der gleiche Fehler erscheint natirlich auch dann, wenn ein
anderes Makro aufgerufen wird, das »LBL« als Label oder
Variable benutzt. Denn die Ordnungszahl, die den beiden
Labeln »LBL« zugewiesen wird, ist identisch.

Bedingte Assemblierung

Auch mit der bedingten Assemblierung wissen nur die wenig-
sten etwas anzufangen, obwohl sie gerade im Zusammen-
hang mit Makros eine groBe Rolle spielt. Dies soll an einem
kleinen Beispiel demonstriert werden:

10 -MA ADW (ADR1,ADR2,SUMME,RETTEN)

20 -IFRETTEN!=!1 ;NUR WENN RETTEN
= 1, WIRD

30 - PHA ;PHA IN DAS MASCHI-
NENPROGRAMM

40 -El ;ASSEMBLIERT

50 - CLC

60 - LDA ADR1

70 - ADC ADR2

80 - STA SUMME

90 - LDA ADR1+1

100 - ADC ADR2+1

110 - STA SUMME +1

120 -IF RETTEN !=11 ;NUR WENN RETTEN
= 1, WIRD

130 - PLA ;PLA IN DAS
MASCHINENPROGRAMM

140 -El; ASSEMBLIERT

1560 -RT

Dieses Makro addiert (ADR1,ADR1+1)+(ADR2,ADR2+1)
und speichert das Ergebnis in den Speicherzellen
(SUMME,SUMME+1). ADR1, ADR2 und SUMME kénnen
beliebige Speicherzellen oder Variablen sein. Soll der Inhalt

ba-Ery

des Akkumulators erhalten bleiben, wird fir RETTEN eine 1,
ansonsten eine beliebige andere Zahl eingegeben. Anhand
des Ubergabeparameters RETTEN erkennt der Assembiler,
ob das erzeugte Maschinenprogramm den Maschinenbefehl
»PHA« beziehungsweise »PLA« enthalten soll oder nicht. Die
Befehle zur bedingten Assemblierung zeigen also einzig und
allein eine Wirkung beim Assemblieren. Durch sie wird
bestimmt, welche Teile des Quelltextes im erzeugten Maschi-
nenprogramm stehen und welche unter bestimmten Bedin-
gungen Ubersprungen werden sollen. Schauen Sie sich nun
noch einmal die Zeilen 20 und 120 an. Sie finden dort in der
bedingten ».IF«-Abfrage den Operator »=«, der wie alle ande-
ren Operatoren auch in Ausrufezeichen einzufassen ist.
Durch dieses Ausrufezeichen erkennt Hypra-Ass, daB es
sich bei dem Operator »=« um eine Rechenvorschrift aus
dem Quelltext heraus handelt. Alle Operatoren kdnnen auBer
bei der bedingten Assemblierung zum Beispiel auch bei der
unmittelbaren Adressierung angewendet werden. Ein kleines
Beispiel soll die Wirkung dieser Operatoren bei der unmittel-
baren Adressierung verdeutlichen:

20 -EQ VARIABLE1 = 10
30 -EQ VARIABLE2 = 20
40 - LDA #(VARIABLE1 !'0! VARIABLE2)

Der Akkumulator wird mit einer Zahl geladen, die mit der
Variablen »VARIABLE1« und »VARIABLE2« wie im Basic
geORt wird. Das Ergebnis ist folglich 30.

Viele Maschinensprache-Anfanger verwechseln die
Befehle zur bedingten Assemblierung mit normalen Basic-
Befehlen. Deshalb mdchte ich an einem kleinen Beispiel zei-
gen, was nicht mit der bedingten Assemblierung funktioniert:

10 -BA $C000
20 - INC $D020
30 -GO 20

Was nicht funktioniert

Das Programm solite die Bildschirmrahmenfarbe laufend
um 1 incrementieren. Wird der Assembler jedoch gestartet,
ersetzt er den Befehl »GO 20« nicht durch den Befehl
»JMP adresse«. Vielmehr versucht er den gesamten Spei-
cher von $C000 bis unendlich mit dem Befehl »INC $D020«
zu fillen, denn es fehlt jegliche Abbruchbedingung. Nur mit
einer Abbruchbedingung ist der ».GO«-Befehl sinnvoll. Sollte
das Maschinenprogramm zehnmal hintereinander den Befehl
»INC $D020« enthalten, konnte das so aussehen:

10 -LI1,3

20 -BA $C000

30 -EQA=0

40 -EQA=A+1

50 - INC $D020
60 -IFA!<!11

70 -GO 40

80 -ElI

90 - JMP $C000

Der Assembler Uberpriift in Zeile 60, ob die Variable »A«
kleiner 11 ist. Trifft das zu, wird in Zeile 70 durch den »GO«-
Befehl zur Zeile 40 verzweigt und der Befehl »INC $D020«
ein weiteres Mal assembliert. Sobald »A« gleich 10 ist, ver-
zweigt der Assembler in die Zeile 90, Ubersezt den Befehl
»JMP $C000« und beendet den Assembliervorgang.

Sollte Ihnen der Umgang mit Makros und der bedingten
Assemblierung noch nicht klar sein, empfehle ich Ihnen den
Artikel »Assemblerbedienung leicht gemacht (2)«in der 64’er
Ausgabe 1/85. In diesem Artikel wird ausfuhrlich auf den
Gebrauch von Makros und eben der bedingten Assemblie-
rung eingegangen.

(ah)

155

