
Tips und Tricks C64

Tips und
Tricks
zu Hypra-Ass
Hypra-Ass, ein Assembler der Spitzen­
klasse beherrscht alles, was zum Program­
mieren in Maschinensprache erforderlich
ist. Hier wollen wir Ihnen anhand vieler Bei­
spiele zeigen, was in ihm steckt und was er
wirklich leistet.

Hypra-Ass ist einer der leistungsfähigsten Assembler
die zur Zeit auf dem Markt sind. Eine seiner hervor­
stechendsten Eigenschaften ist der integrierte Editor

mit einer formatierenden LIST-Routine. Aber gerade durch
diese Eigenschaft weicht die Bedienung vom normalen
Basic-Editor ab. Dadurch traten bei vielen Lesern Schwierig­
keiten auf, die hier im einzelnen behandelt werden.

Im Gegensatz zum Basic-Editor kann unter Hypra-Ass eine
Zeile nicht dadurch gelöscht werden, daß nur die Zeilennum­
mer eingegeben und anschließend RETURN gedrückt wird.
Bei Hypra-Ass ist unbedingt darauf zu achten, daß hinter der
Zeilennummer ein Minuszeichen eingegeben wird. Drückt
man nun die RETURN-Taste ist die Zeile auch verschwunden.
Da aber dieses Minuszeichen hinter der Zeilennummer mei­
stens vergessen wird, ist es empfehlenswert, nicht nur Zei­
lenbereiche, sondern auch einzelne Zeilen mit dem Editor-
Befehl »/D zeilennummer« zu löschen, bis auf die Zeile »0«,
die sich mit dem »/D«-Befehl nicht löschen läßt. In diesem Fall
geben Sie bitte »0-« < RETURN > ein.

Ein kleiner Fehler tritt beim Sortieren der Symboltabelle auf.
Hypra-Ass stürzt ab, wenn die Symboltabelle genau 36, 73,
109 (und so weiter) Variablen oder Label enthält. Der Fehler
liegt in den Speicherzellen $1EB8 bis $1EBB. Hier wurden
zwei Branch-Befehle vertauscht. Es muß richtig lauten:

1EB8 90D0 BCC1EA8
1EBAD0 04 BNE1EC0

Diese Änderung kann unmittelbar mit einem Monitor in die
entsprechenden Speicherzellen geschrieben und anschlie­
ßend gespeichert werden. Sollten Sie keinen Monitor haben,
dann geben Sie bitte den folgenden Quelltext ein:

10 -.BA $cooo
;STARTADRESSE = $C000
20 - LDY #0
30 - LBL LDA TAB,Y

;KORREKTUREN VORNEHMEN
40- STA$1EB8,Y
50 - INY
60 - CPY #4
70 - BNE LBL
80 -.EQ SOURCESTART = $1FD8 ;UND DIE KORRIGIERTE
90 -.EQ NAMLEN = 12 ;VERSION SPEICHERN

100- LDA #1
110- LDX#8
120- STA$FE
130- STX $FF
140- LDA #8
150- JSR $FFBA
160- LDA#NAMLEN
170- LDX#<(NAME)
180- LDY#>(NAME)

190-
200-
210-
220-
230-
240-;
250-NAME
260-TAB

JSR $FFBD
LDA #$FE
LDX #<(SOURCESTART)
LDY # >(SOURCESTART)
JMP $FFD8

.TX "HYPRA-ASS.V1 "

.BY $90,$D0,$D0,$04

Nach dem Assemblieren wird mit SYS 49152 < RETURN >
Hypra-Ass geändert und unter dem neuen Namen »Hypra-
Ass.VI« auf Diskette gespeichert.

Der »/A«-Befehl zur automatischen Zeilennumerierung rea­
giert auch recht sensibel. Wird mit diesem Befehl gearbeitet,
darf der Cursor mit den entsprechenden Steuertasten auf
keinen Fall auf eine andere Zeile gesetzt und RETURN
gedrückt werden. Sollte das versehentlich doch einmal pas­
sieren, läßt sich die so entstandene, ewas seltsam ausse­
hende Zeile mit dem »/D«-Befehl problemlos löschen.

Diskettenbefehle können mit dem Editorbefehl »/@« zum
Floppy-Laufwerk gesendet werden. Hinter den Editorbefehl
werden dann die Diskettenbefehle unmittelbar angehängt.
So formatiert der Befehl »/@N:NEWDISK,ND« eine neue
Diskette.

Der Editor

Eine feine Sache ist auch das Arbeiten mit dem »/P«-Befehl,
der dazu dient, Arbeitsseiten beziehungsweise Arbeitsberei­
che anzulegen. Durch diesen Befehl, auf den sich die mei­
sten Editor-Befehle beziehen, ist es möglich, jedem zusam­
menhängenden Quelltextteil (Unterprogramme oder Unter­
programmblöcke) einen Arbeitsbereich zuzuordnen. Möchte
man dann in der Page 3 etwas ändern oder nachschauen,
LISTet der Befehl »/3« nur diesen Bereich und nicht das kom­
plette Listing wie bei dem »/E«-Befehl. Legt man nun die ein­
zelnen Arbeitsbereiche gleich von vornherein so an, daß sie
jeweils einen Zeilenbereich von zum Beispiel 5000 Zeilen
überdecken, dürfte für die einzelnen Quelltextteile genügend
Platz vorhanden sein, so daß beim Durchnumerieren der ein­
zelnen Arbeitsbereiche keine Überlappungen auftreten kön­
nen. Die Arbeitsbereiche selbst dürfen sich aber durchaus
überlappen. So läßt sich zum Beispiel ein Arbeitsbereich von
0 bis 5000, ein zweitervon 10000 bis 15000 und ein dritter
von 0 bis 15000 anlegen.

Bei dem Assembler selbst sind bisher keine Fehler
bekannt. Deshalb möchte ich an dieser Stelle auf einige
Dinge eingehen, mit denen viele Leser Schwierigkeiten hat­
ten. Da wäre zum Beispiel das unmittelbare Erzeugen des
Objektcodes auf Diskette mit dem ».OB«-Pseudo-Opcode.

Der Pseudo-Opcode ».OB "filename,P,W"« muß am
Anfang des Quelltextes stehen und zwar in der ersten bezie­
hungsweise zweiten Zeile (nach dem ».Ll«-Pseudo zur Aus­
gabe des Assembler-Listings). In dem Zusammenhang sei
auch erwähnt, daß es unmöglich ist, den Objektcode und
gleichzeitig das Assembler-Listing mit dem Befehl ».LI
2,8,2, "filename,U,W"«auf Diskette zu erzeugen. Der Grund
ist der, daß zwei Kanäle zum Schreiben geöffnet werden
müßten und das ist nicht möglich. Zu dem ».OB«-Pseudo
gehört unmittelbar ein zweiter Pseudo ».EN«, der das mit »file-
name« gekennzeichnete File schließt. Dazu muß dieser
Pseudo am Ende des Quelltextes stehen. Sollten mit dem
».AP« mehrere Quelltexte verkettet werden, muß der ».EN«-
Pseudo am Schluß des letzten Quelltextes auftauchen.

Bei der Anwendung von Makros gab es auch einige
Schwierigkeiten. Wird zum Beispiel von einem Makro (Ord­
nung 1) zweimal ein weiteres Makro (Ordnung 2) aufgerufen,
meldet Hypra-Ass einen »label twice error«, vorausgesetzt,

154

C64 Tips und Tricks

im Makro zweiter Ordnung befindet sich ein Label. Zum Bei­
spiel würde folgendes Programm zu einer solchen Fehlermel­
dung führen:

i o -.BA $cooo
20 -.MA MAK1
;MAKRODEFINITION 1. ORDNUNG
30 - ... MAK2
;MAKROAUFRUF 2. ORDNUNG
40 - ... MAK2
50 -.RT
60-.MA MAK2
7O-LBL NOP
80 -.RT
90 - ... MAK1

Dabei ist Mak1 das Makro 1. Ordnung und Mak2 das Makro
2. Ordnung. Alle Label in Makros zweiter oder dritter Ordnung
sind untereinander global. Das heißt, daß in Makros zweiter
Ordnung nur einmal das Label mit dem Namen »LBL« definiert
werden dürfte.

Im Augenblick wird an einer Erweiterung gearbeitet, die
diesen Mißstand beseitigt. Denn gerade beim intensiven
Arbeiten mit Makros sind Makros zweiter und sogar dritter
Ordnung unabdingbar. Ganz deutlich sieht man dies an dem
Artikel »Wichtige Makros für Hypra-Ass« in dieser Ausgabe.
Dort wurde ein Makro mit dem Namen »INCW (adresse)«
definiert. Würde man die dort stehende 16-Bit-Addition er­
setzen durch:

INC ADRESSE
BNE LBL
INC ADRESSE+1

LBL

könnte dieses Makro von keinem anderen Makro aus zweimal
aufgerufen werden, weil durch das Label »LBL« ein »label
twice error« erscheinen würde.

Der gleiche Fehler erscheint natürlich auch dann, wenn ein
anderes Makro aufgerufen wird, das »LBL« als Label oder
Variable benutzt. Denn die Ordnungszahl, die den beiden
Labeln »LBL« zugewiesen wird, ist identisch.

Bedingte Assemblierung

Auch mit der bedingten Assemblierung wissen nur die wenig­
sten etwas anzufangen, obwohl sie gerade im Zusammen­
hang mit Makros eine große Rolle spielt. Dies soll an einem
kleinen Beispiel demonstriert werden:

10 -.MA ADW (ADR1,ADR2,SUMME,RETTEN)
20 -.IF RETTEN ! = ! 1 ;NUR WENN RETTEN

= 1, WIRD
30 - PHA ;PHA IN DAS MASCHI­

NENPROGRAMM
40 -.EI
50 - CLC

;ASSEMBLIERT

60 - LDA ADR1
70 - ADC ADR2
80 - STA SUMME
90 - LDA ADR1 + 1
100- ADC ADR2 + 1
110- STASUMME+1
120 -.IF RETTEN ! = ! 1 ;NUR WENN RETTEN

= 1, WIRD
130- PLA ;PLA IN DAS

MASCHINENPROGRAMM
140 -.EI ;
150 -.RT

ASSEMBLIERT

Dieses Makro addiert (ADR1,ADR1+1)+(ADR2,ADR2 +1)
und speichert das Ergebnis in den Speicherzellen
(SUMME,SUMME+1). ADR1, ADR2 und SUMME können
beliebige Speicherzellen oder Variablen sein. Soll der Inhalt

des Akkumulators erhalten bleiben, wird für RETTEN eine 1,
ansonsten eine beliebige andere Zahl eingegeben. Anhand
des Übergabeparameters RETTEN erkennt der Assembler,
ob das erzeugte Maschinenprogramm den Maschinenbefehl
»PHA« beziehungsweise »PLA« enthalten soll oder nicht. Die
Befehle zur bedingten Assemblierung zeigen also einzig und
allein eine Wirkung beim Assemblieren. Durch sie wird
bestimmt, welche Teile des Quelltextes im erzeugten Maschi­
nenprogramm stehen und welche unter bestimmten Bedin­
gungen übersprungen werden sollen. Schauen Sie sich nun
noch einmal die Zeilen 20 und 120 an. Sie finden dort in der
bedingten »,IF«-Abfrage den Operator »=«, der wie alle ande­
ren Operatoren auch in Ausrufezeichen einzufassen ist.
Durch dieses Ausrufezeichen erkennt Hypra-Ass, daß es
sich bei dem Operator »=« um eine Rechenvorschrift aus
dem Quelltext heraus handelt. Alle Operatoren können außer
bei der bedingten Assemblierung zum Beispiel auch bei der
unmittelbaren Adressierungangewendetwerden. Ein kleines
Beispiel soll die Wirkung dieser Operatoren bei der unmittel­
baren Adressierung verdeutlichen:

20 -.EQ VARIABLE1 = 10
30 -.EQ VARIABLE2 = 20
40 - LDA#(VARIABLE1!0!VARIABLE2)

Der Akkumulator wird mit einer Zahl geladen, die mit der
Variablen »VARIABLE1« und »VARIABLE2« wie im Basic
geORt wird. Das Ergebnis ist folglich 30.

Viele Maschinensprache-Anfänger verwechseln die
Befehle zur bedingten Assemblierung mit normalen Basic-
Befehlen. Deshalb möchte ich an einem kleinen Beispiel zei­
gen, was nicht mit der bedingten Assemblierung funktioniert:

10 -.BA $cooo
20 - INC $D020
30 -.GO 20

Was nicht funktioniert

Das Programm sollte die Bildschirmrahmenfarbe laufend
um 1 incrementieren. Wird der Assembler jedoch gestartet,
ersetzt er den Befehl ».GO 20« nicht durch den Befehl
»JMP adresse«. Vielmehr versucht er den gesamten Spei­
cher von $C000 bis unendlich mit dem Befehl »INC $D020«
zu füllen, denn es fehlt jegliche Abbruchbedingung. Nur mit
einer Abbruchbedingung ist der ».GO«-Befehl sinnvoll. Sollte
das Maschinenprogramm zehnmal hintereinander den Befehl
»INC $D020« enthalten, könnte das so aussehen:

10 -.LI1,3
20 -.BA $C000
30 -.EQ A = 0
40 -.EQ A = A + 1
50 - INC $D020
60 -.IFA!<!11
70 -.GO 40
80 -.EI
90 - JMP $C000

Der Assembler überprüft in Zeile 60, ob die Variable »A«
kleiner 11 ist. Trifft das zu, wird in Zeile 70 durch den ».GO«-
Befehl zur Zeile 40 verzweigt und der Befehl »INC $D020«
ein weiteres Mal assembliert. Sobald »A« gleich 10 ist, ver­
zweigt der Assembler in die Zeile 90, übersezt den Befehl
»JMP $C000« und beendet den Assembliervorgang.

Sollte Ihnen der Umgang mit Makros und der bedingten
Assemblierung noch nicht klar sein, empfehle ich Ihnen den
Artikel »Assemblerbedienung leicht gemacht (2)« in der 64’er
Ausgabe 1/85. In diesem Artikel wird ausführlich auf den
Gebrauch von Makros und eben der bedingten Assemblie­
rung eingegangen.

(ah)

155

