Hilfsprogramme

C 64

SMON -
komplett

Die Starken dieses Super-Maschinen-
sprache-Monitors sind hauptsachlich die
machtigen Such- und Trace-Befehle zum
Austesten von Programmen in Maschinen-
sprache. Neben dem kompletten Listing
und der kompletten Anleitung mit einer
Tabelle samtlicher Funktionen und einer
Tabelle wichtiger Einsprungadressen fin-
den Sie zwei Erweiterungen, einen voll-
stindigen Diskmonitor und einen Dis-
assembler, der auch illegale Opcodes
disassembliert. Ein Programm, mit dem
auch Profis gerne arbeiten.

Maschinensprache erinnern. Ausgeristet mit einer Be-

fehisliste fir den 6502 und einemin Basic geschriebenen
»Mini-Monitor« entstanden Programme, die 3 und 5 addieren
und das Ergebnisim Speicher ablegen konnten. Dazu muBten
wir die Befehlcodes aus der Liste heraussuchen und dann in
den Speicher »POKEn«. Jeder Sprung muBte von Hand aus-
gerechnet werden, jeder falsch herausgesuchte Befehl
fuhrte zum Programmabsturz. Der erste Disassembler - ein
Programm zur Anzeige der Maschinenbefehle in Assembler-
sprache - war fur uns die Offenbarung. Von nun an konnten
wir Maschinenprogramme analysieren und daraus lernen.
Zum Verstandnis der Maschinensprache ist es ndmlich noch
weit mehr als bei anderen Sprachen wichtig, vorhandene Pro-
gramme zu verstehen und sich dabei die wichtigsten Tech-
niken anzueignen.

Mit der Zeit wuchsen unsere Anspriche, ein Assembler
muBte her, um die neugewonnenen Erkenntnisse auch aus-
zuprobieren. Das war zuerst wieder ein Basic-Programm,
langsam und wenig komfortabel, aber immerhin. Wir schrie-
ben unsere ersten kleinen Routinen, vor allem, um vorhan-
dene Maschinenprogramme unseren eigenen Winschen
anzupassen. Mit dem AMON fur den VC 20 bekamen wir
dann einen Monitor, der (fast) alle unsere Wiinsche erflite.
Als wir jedoch auf den C 64 umstiegen, muBten wir fest-
stellen, daB es fur diesen Computer nichts gab, das uns
zufriedenstellen konnte. Der einzige Ausweg: selbst pro-
grammieren. So entstand im Laufe eines Jahres SMON.
Urspriinglich hatten wir nur vor, die Funktionen von AMON fur
den C64 zu programmieren, aber dabei blieb es nicht. Immer
neue Befehle und Routinen kamen hinzu, bis wir endlich
zufrieden waren.

Was bietet SMON?

Ich kann mich noch gut an unsere ersten Schritte in

verarbeitet, Befehle zum Verschieben im Speicher mit und
ohne Umrechnen der Adressen und Routinen zum Umrech-
nen von Hex-, Dezimal- und Binarzahlen. Der besondere Clou
von SMON liegt aber zweifellos in seinen leistungsfahigen
Suchroutinen und vor allem im Trace-Modus. Damit lassen
sich Maschinenprogramme Schritt fir Schritt abarbeiten und
kontrollieren.

Der Monitor benétigt fur alle Eingaben die hexadezimale
Schreibweise, das heiBt zu den Zahlen 1 bis 9 kommen noch
die Buchstaben A (fur dez. 10) bis F (fur dez. 15) hinzu.

Bei der Eingabe von Adressen ist folgendes zu beachten:
[ANFADR] bedeutet exakt die Startadresse, [ENDADR]
bedeutet hierbei die erste Adresse hinter dem gewahlten
Bereich. Im Normalfall ist die Eingabe mit und ohne Leerzei-
chen zuléassig. Beim Abweichen von dieser Regel wird darauf
besonders verwiesen. Tippen Sie zuerst das Hauptpro-
gramm (Listing 1) mit dem MSE ab. Befindet sich SMON auf
Ihrer Diskette, kann er mit LOAD "SMON $C000",8,1 geladen
und mit dem Befehl SYS 49152 gestartet werden. Geben Sie
vor dem SYS-Befehl aber NEW ein, um einen spéteren »OUT
OF MEMORY« zu verhindern.

Assemblieren

A [ANFADR]

Assemblierung beginnt bei der angegebenen Adresse
Beispiel:

A 4000 Beginn bei Startadresse $4000

Nach Eingabe von »RETURN« erscheint auf dem Bild-
schirm die gewéhite Adresse mit einem blinkenden Cursor.
Die Befehle werden so eingegeben, wie sie der Disassem-
bler zeigt: LDY #00 oder LDA 400EY und so weiter.
»RETURNC« schlieBt die Eingabe der Zeile ab. Bei fehlerhafter
Eingabe springt der Cursor wieder in die Anfangsposition
zuriick. Ansonsten wird der Befehl disassembliert und nach
Ausgabe der Hex-Bytes gelistet. Zur Korrektur vorhergehen-
der Zeilen gehen Sie mit dem Cursor zur Anfangsposition
(hinter die Adresse) zurick, schreiben den Befehl neu und
gehen nach »RETURN« mit dem Cursor wieder in die letzte
Zeile. Falls lhnen bei Spriingen (Branch-Befehl, JSR und
JMP) die Zieladressen noch nicht bekannt sind, geben Sie
einfach sogenannte »Label« ein.

Ein Label besteht aus dem Buchstaben »M« (fur Marke) und
einer zweistelligen Hex-Zahl von 01 bis 30.

Beispiel: BCC MO1

Wenn Sie die Zieladresse fur diesen Sprung erreicht
haben, dann kennzeichnen Sie diese mit eben dieser
»Markex.

Beispiel: MO1 LDY #00

Einzelne Bytes nimmt der Assembler an, indem Sie diese
mit einem Punkt kennzeichnen: .00 oder .AB. In diesem
Modus werden die Eingaben natdrlich nicht disassembliert.

Nach Beendigung des Assemblierens geben Sie »F« ein.
Danach sehen Sie alle lhre Eingaben noch einmal aufgelistet
und korrigieren dann bei Bedarf wie beim Disassembler (!)
angegeben.

Probieren Sie einmal das folgende Beispiel:

A 4000

Der Assembler meldet sich mit: »4000«und einem blinken-
den Cursor. Geben Sie nun ein (die Adressen erscheinen
automatisch):

Zunachst ist alles enthalten, was zum »Standard« gehort:
Memory-Dump, also die Anzeige des Speicherinhalts in Hex-
Bytes, mit Anderungsméglichkeiten, ein Disassembler mit
Anderungsméglichkeit sowie Routinen zum Laden, Abspei-
chern und Starten von Maschinenprogrammen. Dariiber hin-
aus gibt es einen kleinen Direktassembler, der sogar Labels

122

4000 LDY #00
4002 LDA 400E)Y
4005 JSR FFD2
4008 INY

4009 CPY #12
400B BCC 4002
400D BRK

Die folgenden Bytes werden wie beschrieben mit einem
Punkt eingegeben. Sie werden nicht disassembliert.

i -

Hilfsprogramme

C64
400E .0D 4017 .54
400F .0D 4018 .20
4010 .53 4019 .53
4011 .4D 401A .55
4012 .4F 401B .50
4013 .4E 401C .45
4014 .20 401D .52
4015 .49 401E .0D
4016 .53 401F .0D

Driicken Sie anschlieBend »F«. Ihr Programm wird nochmal
aufgelistet. Starten Sie es nun mit »G 4000«. Es erscheint ein
Text auf dem Bildschirm - lassen Sie sich tberraschen.

Disassemblieren

D [ANFADR,ENDADR]
disassembliert den Bereich von ANFADR bis ENDADR, wobei
ENDADR nicht eingegeben werden muB. Wird keine End-
adresse eingegeben, erscheint zunachst nur eine Zeile:
ADR HEXBYTES BEFEHL
4000 AO 00 LDY #00
- Mit der SPACE-Taste wird der jeweils ndchste Befehlin der
gleichen Art und Weise gezeigt. Wiinschen Sie eine fortlau-
fende Ausgabe, driicken Sie »RETURN«. Die Ausgabe wird
dann so lange fortgesetzt, bis eine weitere Taste gedrickt
wird oder bis ENDADR erreicht ist. Mit > RUN/STOP« springen
Sie jederzeit in den Eingabemodus zuriick.

Das Komma, das vor der Adresse auf dem Bildschirm
erscheint, ist ein »hidden command« (versteckies Kom-
mando). Es braucht nicht eingegeben zu werden, da es auto-
matisch beim Disassemblieren angezeigt wird. So ermdglicht
es ein einfaches Andern des Programms. Fahren Sie mit dem
Cursor auf den zu andernden Befehl und Uberschreiben Sie
ihn mit dem neuen. Wenn Sie jetzt »RETURN« driicken,
erkennt SMON das Komma als Befehl und fuhrt ihn im Spei-
cher aus. Achten Sie aber darauf, daB der neue Befehl die
gleiche Lange (in Byte) hat und fullen Sie gegebenenfalls mit
»NOPs« auf. Zur Kontrolle kénnen Sie den geénderten
Bereich noch einmal disassemblieren.

Lassen Sie als Beispiel einmal das Programm (siehe Befehl
»A«) ab 4000 disassemblieren (»D 4000 4011<). Andern Sie
nun den ersten Befehl auf LDY # 01. Die Anderung zeigt sich
daran, daB die HEX-Bytes automatisch den neuen Wert
annehmen. Starten Sie nun das Programm nochmals mit »G
4000c«. Jetzt erscheint der Text mit nur einer Zeile Abstand
auf dem Bildschirm.

Starten eines Maschinenprogramms (Go)
G [ADRESSE]

startet ein Maschinenprogramm, das bei ADRESSE beginnt.
Das Programm muB mit einem BRK-Befehl abgeschlossen
werden, damit ein Riicksprung in SMON erfolgen kann. Wird
nach »G« keine Adresse eingegeben, benutzt SMON die, die
mit dem letzten BRK erreicht worden ist und bei der Register-
Ausgabe als PC auftaucht. Mit dem »R«-Befehl (siehe unten)
werden die Register vorher auf gewiinschte Werte gesetzt.

Memory-Dump

M [ANFADR ENDADR]
gibt die HEX-Werte des Speichers sowie die zugehdrigen
ASCII-Zeichen aus. Auch hier kann auf die Eingabe einer End-
adresse verzichtet werden. Die Steuerung der Ausgabe ent-
spricht der beim Disassemblieren.

Beispiel:

M 4000 gibt die Inhalte der Speicherstellen $4000 bis
$4007 aus. Weiter geht es wie beim Disassemblieren mit
SPACE oder RETURN. Die Bytes kdnnen ebenfalls durch
Uberschreiben gedndert werden, allerdings nicht die ASCII-
Zeichen. Verantwortlich dafir ist der Doppelpunkt, der am
Anfang jeder Zeile ausgegeben wird, ein weiterer »hidden
command«. Wenn |lhre Anderung nicht durchgefiihrt werden

1 -

kann, weil Sie zum Beispiel versuchen, ins ROM zu schrei-
ben, wird ein »?« als Fehlermeldung ausgegeben.

Registeranzeige

R zeigt den gegenwartigen Stand der wichtigsten 6510-
Register an: Programmzahler (PC), Status-Register (SR),
Akkumulator (AC), X-Register (XR), Y-Register (YR), Stack-
pointer (SP). AuBerdem werden die einzelnen Flags des
Status-Registers mit 1 fur »gesetzt« und O fur »nicht gesetzi«
angezeigt. Durch Uberschreiben werden die Inhalte auf
einen gewlnschten Wert gesetzt. Die Flags kénnen aller-
dings nicht einzeln verandert werden, sondern nur durch
Uberschreiben des Wertes von SR.

Exit

X springt ins Basic zurlck. Alle Basic-Pointer bleiben er-
halten. Sie kénnen also zum Beispiel direkt im Programm
fortfahren, wenn Sie zwischendurch mit SMON einige
Speicherstellen kontrolliert haben.

Probieren Sie alle bisher beschriebenen Befehle in Ruhe
aus und machen Sie sich mit SMON vertraut. Arbeiten Sie
auch parallel den Kurs Uber Assemblerprogrammierung in
dieser Ausgabe durch. Alle Beispiele dort sind auf SMON
abgestimmt.

1/10-SET

10 1 legt die Device-Nummer fur LOAD und SAVE auf 1
(Kassette). Jedes Laden und Abspeichern erfolgt jetzt auf
das angegebene Gerat. Die voreingestellte Device-Nummer
ist 8 (fur die Floppy also: 10 8). Wenn Sie nur mit der Floppy
arbeiten, brauchen Sie diesen Befehl also nicht.

LOAD

L’name” ladt ein Programm vom angegebenen Gerét (wie
oben beschrieben) an die Originaladresse in den Speicher.
Die Basic-Zeiger bleiben bei diesem Ladevorgang unbeein-
fluBt, das heiBt, sie werden nicht verandert.

Beispiel: Unser Monitor soll an seiner Originaladresse
($C000) im Speicher stehen. Also brauchen Sie ihn nur mit
»L”SMON"« zu laden, damit er dort erscheint. Wenn Sie ein-
mal ein Programm an eine andere als die Originaladresse
laden wollen, dann bietet lhnen SMON dazu folgende Még-
lichkeit: »L”’name” ADRESSE« ladt ein Programm an die ange-
gebene Adresse. Nehmen Sie doch bitte noch einmal unser
letztes Test-Programm und geben es mit dem Assembler ab
Adresse $4000 ein. Speichern Sie es mit »S’'SUPERTEST”
4000 4023« ab und laden es dann
1. an die Originaladresse (L'SUPERTEST”) und
2. an eine andere Adresse (mit L'SUPERTEST"5000 zum
Beispiel nach $5000).

Schauen Sie sich danach mit dem Disassembler-Befehl
beide Routinen einmal an. Sie werden feststellen, daB beide
Programme zwar bis auf die BRANCH-Befehle gleich ausse-
hen, daB das Programm in $5000 aber nicht funktionieren
kann, da es eine falsche Adresse verwendet (5002 LDA
400E)Y). Ein anderes Beispiel dazu: Ein Autostart-Programm
beginnt bei $0120, 148t sich aber in diesem Bereich nicht
untersuchen, da dort der Prozessor-STACK (im Bereich von
$0100 bis $01FF) liegt, der vom Prozessor selbsténdig ver-
andert wird. Wenn Sie nun L'name” 4120 eingeben, befindet
sich das Programm anschlieBend bei $4120 (nicht an der
Originaladresse $0120) und Sie kénnen es ohne Einschréan-
kungen - von den falschen Absolut-Adressen abgesehen -
disassemblieren.

SAVE

S”name”, ANFADR ENDADR speichert ein Programm von
ANFADR bis ENDADR-1 unter »name« auf die Floppy ab, da
diese - wie wir ja inzwischen wissen - das voreingestellte
Gerét ist. Wenn Sie auf Kassette abspeichern wollen, setzen
Sie vorher mit »I0 1« die Device-Nummer auf 1.

Beispiel: S"SUPERTEST"’4000 4020 speichert das Pro-
gramm mit dem Namen »SUPERTEST« (es steht im Speicher

123

Hilfsprogramme

C64

von $4000 bis $401F) auf Diskette ab. Bitte beachten Sie
auch bei diesem Befehl, daB die Endadresse auf das niachste
Byte hinter dem Programm gesetzt wird.

Printer-Set

PO 2 setzt die Primaradresse fiir den Drucker auf 2. Vorein-
gestellt ist hier die 4 als Geratenummer (zum Beispiel fur
Commodore-Drucker). Vielleicht haben Sie es ja schon
bemerkt: Bei allen Ausgabe-Befehlen (wie D, M etc.) kdnnen
Sie auch den Drucker ansprechen, wenn Sie das Kommando
geshiftet eingeben. Die Ausgabe erfolgt dann gleichzeitig auf
Bildschirm und Drucker. (Beachten Sie bitte die Anderung fiir
die Druckerausgabe am SchluB des Artikels.)

Ein biBchen Rechnerei
L

Die folgende Befehlsgruppe enthélt Befehle zur Zahlen-
umrechnung. Sie wissen ja: Der Mensch mit seinen zehn
Fingern neigt eher zur dezimalen Rechenweise, aber der
Computer bevorzugt das Binérsystem, weil er nur zwei Finger
hat (siehe Netzstecker). Ein KompromiB ist das Hexadezimal-
system, denn das versteht keiner von beiden. Um Verstand-
nisschwierigkeiten mit Ihrem Liebling aus dem Weg zu
gehen, haben Sie aber SMON.

Umrechnung Dez—Hex

(Dezimalzahl) rechnet die Dezimalzahl in die entspre-
chende Hexadezimalzahl um. Hierbei kénnen Sie die Eingabe
in beliebiger Weise vornehmen, da SMON Zahlen bis 65535
umrechnet. Beispiel: #12, #144, #3456, #65533 und so
weiter.

Umrechnung Hex—Dez

$ (Hexadezimalzahl) rechnet die Hexadezimalzahl in die
entsprechende Dezimalzahl um. Die Eingabe muB hierbei
zweistellig beziehungsweise vierstellig erfolgen. Ist diese
Zahlkleiner als $100 (=255), wird zusétzlich auch der Binar-
wert ausgegeben. '

Beispiel: $12, $0012, $0D, $FFD2 etc. In den ersten drei
Beispielen erfolgt die Anzeige auch in bindrer Form.

Umrechnung Binidr—Hex,Dez

% (Binarzahl (achtstellig)) rechnet die Binirzahl in die ent-
sprechenden Hexa- und Dezimalzahlen um. Bei diesem
Befehl missen Sie genau acht Bindrzahlen eingeben. Falls
Sie einmal versehentlich mehr eingeben sollten, werden nur
die ersten acht zur Umrechnung herangezogen. Beispiel:
%00011111, %10101011
Add-Sub

? 2340+156D berechnet die Summe der beiden vier (!)-
stelligen Hex-Zahlen. Neben der Addition ist auch Subtrak-
tion moglich.

Programme auf dem Rangierbahnhof
L

Occupy (Besetzen)

O (ANFADR ENDADR HEX-Wert) belegt den angegebenen
Bereich mit dem vorgegebenen HEX-Wert. Beispiel: O 5000
8000 00 fullt den Bereich von $5000 bis $7FFF mit Nullen.

Man kann mit »\OCCUPY« aber nicht nur Speicherbereiche
I6schen, sondern auch mit beliebigen Werten belegen. Hau-
fig hat man das Problem, festzustellen, welcher Speicher-
platz von einem Programm wirklich benutzt wird. Wir ftllen
den in Frage kommenden Bereich dann zuerst zum Beispiel
mit »AA«und laden dann unser Programm. Probieren Sie bitte
das folgende Beispiel: Fullen Sie den Speicherbereich von
$3000 bis $6000 mit $AA und laden Sie dann unser
SUPERTEST-Programm. Beim Disassemblieren kénnen Sie
erkennen, daB unser kleines Programm exakt zwischen vie-
len »AA« eingebettet ist.

124

Write

W (ANFADRalt ENDADRalt ANFADRneu) verschiebt den
Speicherbereich von ANFADRalt bis ENDADRalt nach
ANFADRneu ohne Umrechnung der Adressen! Unser klei-
nes Testprogramm mdge noch einmal als Beispiel dienen:
W 4000 4020 6000 verschiebt das oben angesprochene
Programm von $4000 nach $6000.

Hierbei werden weder die absoluten Adressen umgerech-
net noch die Tabellen geadndert. Letzteres ist sicherlich
erwinscht, aber denken Sie daran, daB das verschobene
Programm nun nicht mehr lauffahig ist, da die absoluten
Adressen nicht mehr stimmen (zum Beispiel bei dem Befehl
LDA 400E)Y). Falls Sie jetzt \G6000« eingeben, um das Pro-
gramm zu starten, werden Sie sich sicherlich wundern, daB
es dennoch lauft. Doch l16schen Sie einmal das Programm in
$4000 (mit » 04000 4100 AA«) und starten das Programm
in $6000 noch einmal! Seltsam, nicht? Abhilfe schafft der
nachste Befehl.

Variation

V (ANFADRalt ENDADRalt ANFADRneu ANFADR ENDADR)
rechnet alle absoluten Adressen im Bereich von ANFADR bis
ENDADR, die sich auf ANFADRalt bis ENDADRalt beziehen,
auf ANFADRneu um. Kompliziert? Nicht, wenn Sie sich klar-
machen, daB die ersten drei Adressen exakt den Eingaben
beim »W«-Befehl entsprechen. Neu hinzu kommen nur die
beiden Adressen fiir den Bereich, in dem die Anderung tat-
séchlich erfolgt.

Um unser mit »W« schon verschobenes Programm auch
wieder lauffdhig zu machen, geben Sie folgendes ein:
V4000 4020 6000 6000 600E. Damit werden alle Absolut-
adressen, die im Bereich von $6000 bis $600E - dahinter
steht die Tabelle - liegen und sich bisher auf $4000 bis
$4020 bezogen haben, auf den neuen Bereich umgerech-
net. Probieren geht wie immer iber kapieren.

Eine Zusammenfassung dieser beiden Befehle erméglicht:

Convertieren
(Verschieben eines Programmes mit AdreBumrechnung.)

C (ANFADRalt ENDADRalt ANFADRneu ANFADRges END-
ADRges) verschiebt das Programm von ANFADRalt bis END-
ADRalt zur ANFADRneu und zwar mit Umrechnung der
Adressen zwischen ANFADRges und ENDADRges

An unserem kleinen Testprogramm 4Bt sich wieder einmal
demonstrieren, wie der Befehl eingesetzt wird. Laden Sie es
also mit »L"'SUPERTEST”« und schauen es mit »D 4000« an.
Jetzt wollen wir an der Adresse $4008 einen 3-Byte-Befehl
einfligen: C 4008 4020 400B 4000 4011 verschiebt das
Programm von $4008 bis $4020 zur neuen Anfangsadresse
$400B. Dabei werden im Bereich von $4000 bis $4011
(neue Endadresse des »aktiven« Programmes!) die Sprung-
adressen umgerechnet. Nun kénnen Sie ab Adresse $4008
einen 3-Byte-Befehl einflgen, zum Beispiel STY 0286. Dazu
geben Sie bitte ein:

A 4008
4008 STY 0286

F Uberzeugen Sie sich davon, daB SMON die Befehle korrekt
umgerechnet hat, indem Sie unser Beispiel disassemblieren
(D 4000) und anschlieBend mit G 4000 starten. Besitzer
eines Farbmonitors werden in helle Begeisterung aus-
brechen. Vorsicht ist geboten, wenn Tabellen oder Text vor-
handen sind. SMON wird versuchen, diese als Befehle zu
disassemblieren und gegebenenfalls umzurechnen. Dabei
kdénnen unvorhersehbare Verfalschungen auftreten. Aus die-
sem Grunde istim Beispiel die Endadresse des zu &ndernden
Bereiches auf $4011 und nicht etwa auf $4023 gelegt
worden. Wenn Sie groBere Programme zu verschieben
haben, sollten Sie die Kommandos W und V anwenden bezie-
hungsweise einen Assembler einsetzen (zum Beispiel
Hypra-Ass), der es Ihnen gestattet, beliebige Einfligungen,

BAE

C 64

Hilfsprogramme

Verschiebungen und sonstige Anderungen vorzunehmen.
Das C-Kommando eignet sich in erster Linie fur kleinere
Anderungen innerhalb eines Programms.

BASIC-DATA

B (Anfadr Endadr)

wandelt das Maschinenprogramm von ANFADR bis
ENDADR-1 in Basic-DATA-Zeilen um.

B 4000 4020

Unser Testprogramm wird in DATA-Werte umgerechnet und
dann mit Zeilennummer 32000 beginnend im Basic-
Speicher abgelegt. Ein im Speicher befindliches Basic-
Programm (zum Beispiel ein Basic-Lader) mit kleineren Zei-
lennummern kann dann diese DATA-Zeilen benutzen.

Wenn Sie das Testprogramm wie oben beschrieben umge-
wandelt haben, Gberzeugen Sie sich mit »LIST« von der Aus-
fuhrung. Dann kénnen Sie folgendes eingeben:

10 FOR 1=16384 TO 16415 : READ D :POKE I,D : NEXT

In Verbindung mit den oben erzeugten DATA-Zeilen (und
RUN!) hatten Sie wieder das urspringliche Maschinen-
programm im Speicher. Falls Sie dieses Beispiel durchfihren
wollen, denken Sie bitte daran, daB Sie nach Erstellung der
DATAs das Originalprogramm zum Beispiel mit OCCUPY
(O 4000 4020 AA) Uberschreiben, damit Sie die richtige
Ausfuhrung Uberprtfen kénnen. Der BRK-Befehl am Ende
des Testprogramms bewirkt einen Sprung zum SMON
zuriick. Wollen Sie ein Maschinenprogramm von Basic aus
starten und auch wieder dorthin zurlickgelangen, muB der
letzte Befehl ein RTS sein. Probieren Sie es aus, indem Sie
das Basic-Programm um 20 SYS 16384 erweitern.

KONTROLLE

K (Anfadr Endadr)

listet die ASCII-Zeichen im gewinschten Bereich. Es wer-
den jeweils 32 Zeichen pro Zeile ausgegeben, so daB man
sich einen schnellen Uberblick Gber Texte oder Tabellen ver-
schaffen kann.

Beispiel: K 4000 listet die ersten 32 Zeichen unseres Pro-
gramms. Die weitere Ausgabe ist genau wie beim Disassem-
blieren durch Druck auf SPACE oder RETURN méglich. Auch
hier kénnen Sie wie bei den anderen Bildschirm-Ausgabe-
befehlen Anderungen durch einfaches Uberschreiben vor-
nehmen (naturlich nichtim ROM und nur mit ASCII-Zeichen!).

Als Beispiel wollen wir einmal im Basic »herumpfuschenx.
Das geht natirlich nicht so ohne weiteres, weil das Basic im
ROM steht und damit nicht verandert werden kann. Tippen
Sie bitte folgendes ein:

W A000 CO00 A000

Auf den ersten Blick eine unsinnige Anweisung; der Spei-
cher soll von AOOO bis CO00 nach AOQO verschoben wer-
den. Dieser Befehl entspricht exakt der Basic-Schleife
FOR | = 40960 TO 49152 : POKE |, PEEK (l) : NEXT

Nunist es aber so, daB beim PEEK das ROM gelesen, beim
POKE aber ins darunterliegende RAM geschrieben wird. Wir
erreichen also, daB das Basic ins RAM kopiert wird. Jetzt
missen wir dafir sorgen, daB das Betriebssystem sein Basic
aus dem RAM und nicht aus dem ROM holt. Zusténdig daftr
ist die Speicherstelle 0001. Geben Sie bitte »M 0001« ein
und Uberschreiben Sie die »37« mit »36«.

Es passiert gar nichts. Jetzt tritt unser K-Kommando in
Aktion. Geben Sie ein: K A100 A360

Was Sie sehen, sind die Basic-Befehlsworter und -Mel-
dungen. Schalten Sie mit SHIFT/CBM auf Kleinschrift, dann
erkennen Sie, daB der jeweils letzte Buchstabe eines
Befehlswortes groB geschrieben ist (Endekennung). Jetzt

BAEr,

R

andern Sie durch Uberschreiben das »LIST« (A100) in »LUST«
und >ERROR« (A360) in »FAELER«. (Bei »FAELER« miissen
Sie ein Zeichen vor \ERROR« beginnen, sonst paBt es nicht.)
Verlassen Sie jetzt SMON mit »X« und geben Sie danach ein:
POKE 1,54

SMON schaltet namlich beim »X«-Befehl immer auf das
Basic-ROM zurlick, daher mussen wir wieder auf unser
geandertes Basic umschalten. Schreiben Sie nun einen
Basic-Dreizeiler und versuchen Sie, diesen zu LISTen. Er-
gebnis? Versuchen Sie es jetzt einmal mit »LUST«. Ihrer wei-
teren Phantasie sind keine Grenzen mehr gesetzt. ..

Wie oben angesprochen stellt SMON eine Reihe verschie-
dener Suchroutinen zur Verfigung, die im folgenden an vie-
len Beispielen beschrieben werden. Alle diese Befehle
bestehen aus zwei Zeichen und beginnen mit dem Buchsta-
ben »F«.

FIND
e |
F (HEX-WERT(e), Anfadr Endadr)

sucht nach einzelnen HEX-Werten innerhalb eines
bestimmten Bereichs. Das zweite Zeichen (hinter F) ist hier
ein Leerzeichen und darf nicht weggelassen werden! Die
Bereichsangabe kann wie bei allen folgenden Befehlen ent-
fallen, dann wird der gesamte Speicher durchsucht.

Beispiel: Wir suchen alle Befehle LDY # 01, also die Werte
AO 01 im Bereich von $2000 bis $6000.

F A0 01,2000 6000 (die Leerzeichen zwischen den Hex-
Bytes durfen nicht weggelassen werden!). Es erscheinen
alle Speicherstellen, die die gesuchten Bytes enthalten, also
zum Beispiel 4000.

FA (Adresse, Anfadr Endadr)

suchtalle Befehle, die eine bestimmte Adresse als Operan-
den haben (absolut). Die Adresse braucht nicht vollsténdig
angegeben zu werden, es kann das Jokerzeichen »*«
benutzt werden.

1. Beispiel: Wir suchen alle JSR FFD2-Befehle im Bereich
$2000 bis $6000.
FAFFD2,2000 6000

Es erscheinen alle Befehle disassembliert, die FFD2 im
Operanden enthalten (also auch LDA FFD2 oder STA
FFD2)Y...).

2. Beispiel: Wir suchen alle Befehle, die auf den Grafikbe-
reich ($D000 bis $DFFF) zugreifen.
FAD* * *,2000 6000

Der Joker kann aber auch zum Beispiel zur Suche im
Bereich $D000 bis $DOFF dienen: FADO* *,2000 6000

FR (Adresse, Anfadr Endadr)

sucht nach relativen Sprungzielen. Anders als bei absolu-
ten Sprungen (JMP, JSR) benutzen die Branch-Befehle eine
relative Adressierung, also zum Beispiel »Verzweige 10 vor«
oder »37 zuriick«. Solche Spriinge lassen sich mit dem FA-
Kommando nicht finden. Hier wird »FR« eingesetzt.

Beispiel: Gesucht werden alle Branch-Befehle, die die
Adresse $4002 anspringen.
FR4002,2000 6000

Naturlich kénnen solche Befehle nur héchstens 128 Byte
vom Sprungziel entfernt sein. Die Bereichsangabe ist hier
also viel zu groB gewahlt (SMON stért dies allerdings nicht).
Der Einsatz des Jokers ist hier ebenfalls wie oben beschrie-
ben mdglich. :

FT (Anfadr Endadr)

sucht Tabellenim angegebenen Bereich. SMON behandelt
dabei alles, was sich nicht disassembilieren 148t, als Tabelle.
Beispiel: Wir suchen Tabellen oder Text im Bereich $2000
bis $6000.
FT 2000 6000

125

Hilfsprogramme

C 64

FZ (Adr, Anfadr Endadr)

sucht alle Befehle, die Zeropage-Adressen haben.

1. Beispiel: FZC5,2000 6000 findet alle Befehle, die C5
adressieren, also zum Beispiel BIT $C5, LDA (C5), Y etc.

2. Beispiel: FZF*,2000 6000 findet alle Befehle, die den
Bereich zwischen $FO und $FF adressieren.

3. Beispiel: FZ* *,2000 6000 findet samtliche Befehle mit
Zeropage-Adressierung.

Fl (Operand, Anfadr Endadr)

sucht alle Befehle mit unmittelbarer Adressierung
(immediate).

Beispiel: Gesucht werden Befehle, die zum Beispiel das Y-
Register mit 01 laden. FI01,2000 6000 findet LDY #01 in
Adresse $4000.

Sie sehen, SMON bietet eine Fiille von verschiedensten
FIND-Routinen, mit denen alles gesucht und auch gefunden
(!) werden kann.
= 4000 6000
vergleicht den Speicherinhalt ab $4000 mit dem ab $6000.
Das erste nicht tibereinstimmende Byte wird angezeigt und
der Vergleich wird abgebrochen.
. Wenn Sie also ein Maschinenprogramm geschrieben und
~ Uberarbeitet haben und Sie wissen nicht mehr genau, worin
~ eigentlich der Unterschied zwischen der 76. und der 77.
_ Version besteht, gehen Sie so vor: Laden Sie zuerst Version
76 und verschieben Sie diese mit dem »W«-Befehl in einen
_freien Speicherbereich. Laden Sie dann Version 77 und fiih-
ren Sie den »=«-Befehl durch. Sofort finden Sie den Unter-
schied und kénnen mit der Arbeit an Version 78 beginnen. ..
~ Wirwollen uns bei der Beschreibung der Trace-Befehle auf
~ Anwendungsbeispiele konzentrieren. Zum Aufbau der Rou-
~ tine sei nur so viel gesagt: Gesteuert wird sie mit Hilfe des
- Prozessor-Interrupts, weil nur damit ein Eingriff ins laufende
Maschinenprogramm moéglich ist. Wahrend des Trace-
Ablaufs wird deswegen der Bildschirm kurzfristig aus- und
eingeschaltet, weil alle anderen Interruptanforderungen wie
- zum Beispiel durch den Video-Chip, verhindert werden mis-
sen. Da die Befehle eines Programms nicht nur angezeigt,

sondern auch wirklich ausgefiihrt werden, ist der »SEl«-
. Befehl mit groBer Vorsicht zu verwenden. Doch dazu spéater
mehr. Wir wollen ein neues, besser geeignetes Beispiel ver-
wenden als bisher. Tippen Sie also das folgende Mini-
programm mit dem Assembler ein (A 4000):

4000 LDA #30 lade den Akku mit (ASCII-) O
4002 JSR FFD2 gib Akku auf dem Bildschirm aus
4005 CLC

4006 ADC #01 erhéhe Akku um 1

4008 CMP #39 vergleiche Akku mit (ASCII-) 9
400A BCC 4002 springe, wenn Akku kleiner, zuriick
400C BRK springe in SMON zuriick

Starten Sie das Programm mit »G 4000«. Es muB die Zahlen

von O bis 8 auf den Bildschirm schreiben.

& Trace-Stop

TS (Startadresse Stoppadresse)

Starten Sie nun unser Programm mit TS 4000 4009. Die
ersten Befehle werden ausgefihrt (die Null ausgegeben, der
Akku erhdht etc.), dann stoppt das Programm bei Adresse
$4009 und springt in die Registeranzeige.

Genau genommen ist TS« gar kein Trace-Befehl, das Pro-
gramm lauft ndmlich bis zur gewéhlten Stoppadresse in Echt-
zeit durch. Dort angekommen, kdnnen Sie die Register pri-
fen und gegebenenfalls durch Uberschreiben éndern. Mit
»G¢, »TW« oder »TB« (wird spéter erklart) ohne weitere
Adresseneingaben koénnen Sie dann im Programmlauf fort-
fahren. SMON merkt sich namlich, wo er stehengeblieben ist
und arbeitet ab dieser Adresse weiter, wenn Sie nicht eine
neue angeben.

126

Sinnvoll ist dieser Befehlimmer dann, wenn in einem linge-
ren Programm nur bestimmte Teile »getraced« werden sollen,
der Anfang aber durchlaufen werden muB, um Variable zu set-
zen oder Benutzereingaben zu erfragen. Auch wenn man
nicht ganz sicher ist, ob eine bestimmte Passage liberhaupt
jemals durchlaufen wird, kann man das mit »TS« iberprifen.

Zwei Einschrankungen gibt es allerdings wegen der
Arbeitsweise dieses Befehls: SMON setzt im Programm an
die Stoppadresse einen BRK-Befehl und merkt sich, welcher
Befehl dort stand, um ihn wieder zuriickzuschreiben. Des-
halb funktioniert »TS« nur im RAM, nicht aber zum Beispiel im
Basic oder im Betriebssystem. Auch darf die Speicherstelle,
in der sich SMON den ausgetauschten Befehl merkt
($02BC) vom Programm nicht verandert werden, sonst ist
eine korrekte Reparatur nicht mehr méglich. .

Der wohl am héaufigsten und vielseitigsten eingesetzte
Trace-Befehl ist sicherlich »TW«.

& Trace Walk
TW (Startadresse)
Starten Sie unser Beispiel jetzt mit TW 4000

Der erste Befehl (LDA # 30 in Adresse $4000) wird aus-
gefihrt, SMON stoppt und zeigt dann die Inhalte aller Regi-
ster in der gleichen Reihenfolge wie beim »R«-Kommando
sowie den néchsten Befehl an. Im Akku steht jetzt 30, der
Programmzahler zeigt auf $4002. Jetzt driicken Sie eine
Taste. Der nachste Befehl (JSR FFD2) wird ausgefiihrt, der
Programmzéhler zeigt auf $FFD2. Achten Sie auf den Stack-
pointer: Sein Inhalt hat sich um 2 vermindert, weil der Prozes-
sor auf dem Stack die Adresse abgelegt hat, an die er nach
Beendigung der Subroutine zuriickspringen soll. Der nich-
ste angezeigte Befehl ist ein indirekter Sprung Uber $0326.
Mit dem néachsten Tastendruck wird er durchgefiihrt.

Und so geht es munter weiter. Verzweifeln Sie nicht, wenn
Sie auch nach den nachsten zehn Tastendriicken immer
noch irgendwo im Betriebssystem »herumtracen« und von
unserem Beispielprogramm weit und breit nichts mehr zu
sehen ist. Ausnahmsweise ist unser Liebling einmal nicht im
»Land der Trdume« verschwunden, sondern tut, was er soll:
Er arbeitet brav einen Befehl nach dem anderen ab, was zur
Routine $FFD2 gehért, und das ist reichlich viel. Also bewe-
gen Sie lhre Finger, Sie haben’s ja nicht anders gewollt.
Irgendwann einmal, nach mehreren hundert gedriickten
Tasten, befinden Sie sich plétzlich wieder in der Registeran-
zeige von SMON. Das Programm ist beendet. Nun werden
Sie enttauscht fragen, was man wohl mit einem Trace-Modus
anfangen soll, der schon bei kleinsten Beispielprogrammen
ein vollig undurchschaubares Chaos erzeugt? Nur Geduid,
die Rettung naht in Gestalt der Taste »J«.

Falls ihre Hand noch nicht in Gips liegt, starten Sie das
Ganze nochmal von vorn mit sTW 4000«. Diesmal driicken
Sie aber jedesmal, wenn als' nichster Befehl »JSR FFD2«
angezeigt wird, auf »J«. Der Effekt ist, daB die gesamte
Subroutine auf einen Schlag abgearbeitet wird und Sie sofort
wieder auf dem néchsten Befehl unseres Beispiels landen.
DaB wir nicht gemogelt und die Befehle von »JSR FFD2« ein-
fach unterschlagen haben, sehen Sie daran, daB der Akku
tatséchlich auf dem Bildschirm ausgegeben worden ist
(rechts neben FFD2). Jetzt kbnnen Sie unser Beispiel in aller
Ruhe bis zum Ende durchgehen und verfolgen, wie der Akku
erhéht wird, wie der Vergleich das Statusregister beeinfluBt
und wie entsprechend der Ricksprungin die Schleife erfolgt.

Sie durfen die »J«Taste auch dann benutzen, wenn Sie
schon mittenin der Subroutine sind. Aber hierbeiist duBerste
Vorsicht geboten: Die Ricksprungadresse muB unbedingt
oben auf dem Stack liegen, wenn Sie »J« driicken. Hat nam-
lich der Prozessor Werte auf dem Stack abgelegt (mit PHA
oder PHP), dann erfoigt der Sprung irgendwo hin, nur nicht
zuriick ins Programm. Achten Sie deshalb genau auf die
Anzeige des Stackpointers. Wenn dessen Wert genau so

(=i

e

C 64

Hilfsprogramme

groB ist wie bei Beginn der Subroutine, kann nichts passie-
ren. Sonst hilft nur noch der Reset-Taster, den Sie ja in-
zwischen hoffentlich eingebaut haben, oder eine ruhige
Hand, die die Buroklammer an Pin 1 und 3 des User-Ports halt
(Kostenpunkt der Reparatur bei Abrutschen liegt bei zirka
100 Mark ...).

»I' W« bricht automatisch mit der Registeranzeige ab, wenn
im Programm ein »BRK«-Befehl auftaucht. Wenn lhnen das zu
lange dauert oder Sie zwischendurch ein Register &ndern
moéchten, kénnen Sie den Trace-Modus jederzeit mit der
Stopp-Taste verlassen. AnschlieBend kdnnen Sie wie bei »TS«
beschrieben fortfahren.

Im Gegensatz zu sTS« kdnnen Sie mit »sTW« auch im ROM
herumstobern; Sie haben es ja bei der Subroutine $FFD2
bereits getan. Einzige Einschrankung beim sTW«-Befehl: lhr
Programm darf keinen »SEl« enthalten, da dieser den Inter-
rupt und damit auch den Trace-Modus lahmlegt. Verlassen
Sie in diesem Falle sSTW« mit STOP und starten erneut hinter
dem »SEl-Befehl. Allerdings missen Sie in Kauf nehmen,
daB das Programm normalerweise nicht mehr korrekt
arbeitet.

Das nachste Programm soll als weiteres Beispiel fir den
TW-Modus dienen. Geben Sie es folgendermaBen ein:

5000 LDA #00 ladt den Akku mit »O«

5002 TAX Ubertragt den Akku ins X-Register
5003 .0C ein mysteridses Byte

5004 LDA #04 ladt den Akku mit »4«

5006 TAY Ubertragt den Akku ins Y-Register
5007 BRK springt in SMON

Wenn wir dieses kleine Programm abarbeiten, miBte das
X-Register auf »0« stehen, wahrend Akku und Y-Register mit
»4« geladen sind. Starten wir also das Programm mit »G
5000« und schauen uns die Register an.

Seltsamerweise enthalten alle Register eine »0«. Vorsich-
tig, wie wir sind, Gberschreiben wir die drei Register mit »FF«,
um die Verdnderung deutlich kontrollieren zu kénnen.

Dann starten wir mit »G 5000« ein zweites Mal. Gegen alle
Gesetze der Vernunft erscheint wieder das »falsche« Ergeb-
nis - alle drei Register sind »0«. Hier soll uns jetzt der TW-
Modus weiterhelfen, indem er uns zeigt, was in Wirklichkeit
passiert.

Geben wir sTW 5000« ein. Der erste Befehl (LDA # 00) ist
durchgefuhrt, im Akku erscheint die Null. Jetzt steht der Pro-
grammzéahler auf dem folgenden Befehl »5002 TAX«. Nach
Driicken einer Taste wird dieser Befehl ausgefthrt und es
erscheint die Nullim X-Register. Beim folgenden Befehl mus-
sen wir feststellen, daB der Disassembler nichtin der Lage ist,
ihn zuinterpretieren - er gibt drei Sternchen aus. Hierbei han-
delt es sich um unser Byte »0C«.

Wieder ein Tastendruck; und dann erkennen wir, daB etwas
Merkwiirdiges passiert ist. Der Prozessor hat augenschein-
lich den nachsten Befehl (LDA #04) Gbersprungen und
steht schon auf dem folgenden »TAY«. So also wird unser Pro-
gramm abgearbeitet. Damit ist auch das »falsche« Ergebnis
erklart. Bleibt nur noch die Frage nach dem Grund flr dieses
seltsame Verhalten. Und der ist sicherlich in dem mysteri6-
sen Byte »OC« zu suchen. Hierbei handelt es sich um einen
der »inoffiziellen« Opcodes, die aufgrund der Prozessorarchi-
tektur vorhanden sind und in manchen Programmen ihr
Unwesen treiben - wie wir zu unserem Leidwesen erfahren
muBten. Das Byte »OC« wirkt wie ein sNOP«, der eine Linge
von 3 Byte hat. Deshalb wird der folgende 2-Byte-Befehl
(LDA # 04) verschluckt.

Es gibt noch einiges zu entdecken am 6502 und 6510 -
TW macht's méglich.

Haufig ist es nicht sinnvoll, ein Programm von Anfang anim
TW-Modus laufenzulassen. Zum anderen sind gerade Schiei-
fen, die per Hand mit sTW« durchlaufen werden missen, eine

i -

ermidende Angelegenheit. Hier bietet SMON neben dem
bereits beschriebenen »TS« eine weitere Trace-Mdglichkeit
an:

€ Trace Break

TB (Adresse Anzahl der Durchléufe)

€ Trace Quick

TQ (Adresse)

Geben Sie als Beispiel folgendes Programm ein:

6000 LDY #00 Y als Zahler auf »O«

6002 LDA 600EY Werte von $600E ff. sollen geladen
werden

6005 JSR FFD2 Ausgabe der Zeichen auf dem
Bildschirm

6008 INY der Zahler wird erhdht

6009 CPY #OE Zahler schon »14«?

600B BCC 6000 wenn nein, dann nachsten Wert holen

601D BRK

Bei $600E soll nun ein Text stehen, den das Programm
ausgibt. Die einfachste Art, mit SMON Texte in den Speicher
zu schreiben, besteht im »K«-Befehl. Geben Sie
K 600E
ein (danach nattrlich Return) und driicken Sie die STOP-
Taste. Fahren Sie mit dem Cursor an das erste ausgegebene
Zeichen (vermutlich ein Punkt) und schreiben Sie - ohne
Anflhrungszeichen:

»FEHLER BEHOBEN«

Dricken Sie dann Return, um die Zeile an den Rechner zu
Ubergeben. Wenn Sie das Programm starten, werden Sie
wieder einmal Gelegenheit haben, sich in Ruhe etwas zu
trinken zu holen (Prost!), denn das Programm enthélt einen
dummen Fehler und beschaftigt den Computer fir eine lange,
lange Zeit. Genauer gesagt, bis Sie ihn mit Reset (zum Bei-
spiel durch RUN/STOP-RESTORE) erlésen.

Nun soll SMON helfen, diesen Fehler zu lokalisieren. Set-
zen Sie zuerst einmal einen Breakpoint bei $6002 und
begrenzen die Durchliufe auf die maximale Anzahl:

TB 6002 OE

und starten mit

TQ 6000

den Quicktrace bei $6000. Das Programm lauft so lange, bis
zum 14. Mal die Adresse $6002 erreicht wird und springt
dann in den TW-Modus. Wenn Sie sich jetzt die Registerin-
halte genau anschauen, miiBte ihnen der Fehler geradezu ins
Auge springen. Wie groB sollte denn das Y-Register sein?
Welchen Wert sollte der Akku haben? NA?!

Das »Gedachtnis« von SMON

Wenn Sie Programme mit SMON untersuchen oder veran-
dern wollen, miissen Sie noch wissen, welche Speicherstel-
len SMON verwendet. Es soll ja Monitorprogramme geben,
die die Basic-Zeiger als Arbeitsspeicher benutzen, so daB ein
Basic-Programm nach dem Rucksprung aus dem Monitor
geldschtist. SMON tut so etwas nicht. Aber nattrlich braucht
er auch Speicherstellen, um sich Werte merken zu kénnen.
Damit Sie Konflikten von Anfang an aus dem Wege gehen
kénnen, sind die wichtigsten hier dargestelit.

In der Zeropage belegt SMON den Bereich von $00A4 bis
$00B6. Dort stehen Systemvariable fur die Kassettenspei-
cherung und die RS232-Schnittstelle. Diese werden nur
wéhrend des Betriebs der Kassette oder von RS232
gebraucht, sind ansonsten aber frei. AuBerdem werden die
Speicherstellen $00FB bis $00FF benutzt, die sowieso zur
freien Verfligung des Anwenders vorgesehen sind. Alle
anderen Zeiger in der Zeropage, also insbesondere die Spei-
cherverwaltung fur Basic, bleiben unbeeinfluBt.

127

Hilfsprogramme

Als weiteren Arbeitsspeicher benutzt SMON den Bereich
von $02A8 bis $02C0. Auch dieser Bereich wird vom
Betriebssystem nicht benutzt, so daB keine Konflikte entste-
hen durften. Beim Assemblieren wird zusétzlich noch der
Kassettenpuffer als Speicher fur die Label benétigt. Dieser
bleibt ansonsten aber auch unverandert; das ist wichtig,
wenn Maschinenroutinen dort abgelegt werden sollen.

Alles in allem ist SMON also recht vertraglich.

SMON verschieben? - Mit SMON!

Eine Reihe von Anfragen hat uns erreicht, ob man SMON
nicht mit Hilfe des »W«-, »V«- oder »C«-Kommandos verschie-
ben kénne. Alle Versuche in dieser Richtung seien fehlge-
schlagen. Einige Leser meinten auch, in der V-Routine miisse
ein Fehler stecken. Diesmal sind wir jedoch véllig schuldios;
es gibt ndmlich einige Befehle in SMON, die keine Sprung-
adressen sind und sich trotzdem auf den Bereich ($C000-)
beziehen, in dem SMON steht.

Dazu gehdren in erster Linie die oben erwéhnten Ein-
sprungadressen, deren High-Byte natirlich geandert wer-
den muB, wenn SMON in einem anderen Speicherbereich
laufen soll. Es gibt aber auch Befehle, die eine Adresse im
Programm in einem Vektor ablegen missen. Disassemblie-
ren Sie einmal den Anfang von SMON mit »D CO00 COOBk«.
Sie erhalten

LDA #14 Low-Byte der BREAK-Routine von SMON
STA 0316 im Break-Vektor speichern

LDA #C2 High-Byte (!) siehe oben

STA 0317 siehe oben

BRK

Damit wird der Break-Vektor des Betriebssystems auf den
SMON gesetzt und mit dem anschlieBenden — und jedem wei-
teren BRK-Befehl — springt das Programm in SMONs BREAK-
Routine. Wenn SMON in einem anderen Bereich als $C000
laufen soll, dann missen diese Befehle gedndert werden.

Heraussuchen kann man sie mit »FIC*,CO00 DOOO«. Sie
wissen doch noch, was diese Anweisung bedeutet: Suche mir
alle Befehle, die ein Register unmittelbar mit einem Wert laden,
der mit $C beginnt. Aber Vorsicht! Nicht alles, was da ange-
zeigt wird, muB auch geéndert werden! Um lhnen weitere
Stunden sinnlosen Herumbritens zu ersparen, wollen wir als
Beispiel zeigen, wie man SMON in den Bereich $9000 bis
$A000 verlegen kann. Naturlich geht das im Prinzip fir jeden
anderen Bereich genauso; wir selbst haben insgesamt funf
SMON-Versionen flr funf verschiedene Speicherbereiche,
von denen eine immer paBt.

1. Wir verschieben zuerst das ganze Programm ohne
Umrechnen in den neuen Bereich:

W CO00 CFFA 9000

2. Nun lassen wir alle absoluten (3-Byte-)Befehle umrech-
nen. Die Tabellen am Anfang von SMON bleiben verschont:
V CO00 CFFA 9000 920B 9FD2

3. Als nachstes andern wir die High-Bytes der Befehls-
adresse. Geben Sie

»M 902B 906B«

ein und &ndern Sie in jedem zweiten Byte das »C« durch
Uberschreiben in »9«. Vergessen Sie nicht, am Ende jeder
_ Zeile RETURN« zu driicken, damit lhre Anderung auch tiber-

. nommen wird.

4. Nun sind die Befehle mit Inmediate-Adressierung an der
Reihe. Sie missen so gedndert werden, daB sie sich auf den
neuen Bereich $9... beziehen. Suchen Sie sie mit
FIC*,9000 9FFA

heraus. Sie erhalten

9005 LDA #C2 andern

128

c64
9124 CPX #CO nicht andern
9386 LDY #CO andern
9441 CMP #CO nicht andern
987F LDX #C3 nicht andern
988D LDX #C1 nicht andern
9992 LDA #C1 nicht andern
9C2C LDA #CC andern
9C5B LDA #C2 andern
9CF4 LDA #CC andern
9DA1 LDX #CC andern
9E03 LDA #CC andern
9E6C CMP #CO0O nicht andern
9F71 LDY #CF andern

Sie sehen, es gibt keine Regel, welche Befehle zu dndern
sind und welche nicht. Aus diesem Grunde missen Sie diese
Anderungen »von Hand« vornehmen.

5. Die Adressen im Diskmonitor missen ebenfalls umgestellt
werden. Dazu geben Sie bitte ein:

M 9FD8 9FE4 _

und andern Sie jedes zweite Byte wie unter Punkt 3
beschrieben.

Vergessen Sie bitte auf keinen Fall, Ihre neue(n) Ver-
sion(en) unter neuem Namen zu speichern. Sie lassen sich
dann mit LOAD “Name ”,8,1 von Diskette laden und mit dem
entsprechenden SYS (zum Beispiel 36864 bei SMON
$9000) starten. Denken Sie auch daran, nach dem Laden
und vor dem SYS ein NEW einzugeben, sonstbeschwert sich
der B-Befehl mit einem OUT OF MEMORY ERROR.

Probieren Sie nun alle Befehle durch. Sie miissen genauso
arbeiten wie bisher. Vor allem kénnen Sie jetzt auch Pro-
gramme wie »DOS 5.1« oder »sTurbo Tape«untersuchen, die im
$C000-Bereich stehen. Achten Sie aber, wenn Sie »>SMON
$9000« von Basic aus benutzen, darauf, daB das Basic ihn
nicht Uberschreibt. String-Variable werden namlich von
$A000 nach unten hin aufgebaut und bis $9E09 ist nicht viel
Platz. Schitzen Sie im Zweifelsfalle den Bereich, indem Sie
nach dem Laden des SMON $9000 eingeben:

NEW : POKE 56,144 : POKE 55,0

Damit ist SMON vor Uberschreiben geschiitzt. Das ist
naturlich bei dem SMON $CO000 nicht nétig, weil Basic in die-
sen Bereich nicht hineinkommt.

Die Befehle des Disk-Monitors

Da das Arbeiten mit dem Disk-Monitor besondere Aufmerk-
samkeit verlangt (nach Murphys Gesetzen fihren Fehleinga-
ben in der Regel zu unlesbaren Disketten), wird er mit einem
eigenen Kommando eingeschaltet. Leider waren alle halb-
wegs sinnvollen Buchstaben (»D« wie Diskette oder »F« wie
Floppy) schon vergeben, deshalb haben wir uns fir ein
schlichtes »Z« wie Zuversicht entschieden.

-Z schaltet den Disk-Monitor ein

Die Rahmenfarbe andert sich auf Gelb, der gewohnte ».«am
Anfang einer Zeile andert sich in »*« Dies alles hat den
Zweck, lhnen deutlich zu machen, daB es jetzt ernst wird.
Intern wird jetzt das Basic abgeschaltet, weil der Disk-
Monitor einen 256 Byte groBen Puffer benétigt. Dieser liegt
von $BFO00 bis $C000 im RAM unter dem Basic, weil er dort
am wenigsten stéren kann.

READ: R (Track Sektor)

Liest einen Block von der Diskette in den Computer. Track
und Sektor mussen als Hexzahlen eingegeben werden. Die
erste Zeile des Blocks wird ausgegeben. Da wir dazu normale
SMON-Routinen verwenden, steht als Speicheradresse
$BFO00. Das »BF« kénnen Sie vorerst ignorieren. Die weitere
Ausgabe des Hexdump erfolgt anders als gewohnt mit der
Taste »SHIFT«. STOP bricht die Ausgabe ab. Sie kénnen die
Hex-Bytes Uberschreiben und damit &ndern. Eine dauerhafte

BaET,

C 64

Hilfsprogramme

Anderung erfolgt aber erst beim Zuriickschreiben auf die Dis-
kette (siehe Befehl »W«). Geben Sie nur »R« ohne Track und
Sektor ein, wird der logisch (!) nachste Block eingelesen.

MEMORY-DUMP: M

Zeigt den gerade im Puffer befindlichen Block nochmals
auf dem Bildschirm an.

Genau wie beim R-Befehl kénnen Sie die Ausgabe mit
»SHIFT« und »STOP« steuern und Anderungen vornehmen.

WRITE: W (Track Sektor)

Schreibt einen Block aus dem Puffer auf die Diskette
zurtick. Ahnlich wie bei »R« kann die Angabe von Track und
Sektor entfallen. Es wird dann der Track und Sektor des letz-
ten R-Befehls benutzt. Das ist in fast allen Fallen auch der
richtige.

ERROR: @ :

Liest den Fehlerkanal aus, gibt ihn aber nur aus, wenn wirk-
lich ein Fehler vorhanden war. (»00, OK, 00, 00« wird unter-
drickt.)

EXIT: X

VerlaBt den Disk-Monitor und springtin den SMON zurick.
Dabei wird die Rahmenfarbe auf Blau zuriickgeschaltet und
es erscheint wieder der ».« am Anfang der Zeile. Das Basic
wird wieder eingeschaltet. Wollen Sie nun mit SMON-
Kommandos auf den Puffer zugreifen, missen Sie Basic wie-
der abschalten ($36 in Speicherstelle $0001).

Die folgenden Beispiele sollien Ihnen die Arbeit mit dem
Disk-Monitor verdeutlichen. .

Achtung! Benutzen Sie unbedingt zum Uben eine Diskette,
die Sie nicht mehr brauchen!

Weder wir noch der Verlag haften dafir, wenn thr Lieblings-
programm oder die mihsam erstellte AdreBdatei unwieder-
bringlich dahin sind. DaB das sehr sehr schnell gehen kann,
wissen wir aus eigener Erfahrung ...

Am besten machen Sie von einer Ihrer Diskette eine Kopie,
die Sie zum Uben benutzen kénnen.

Reparatur eines geloschten Files

Sicher ist lhnen das auch schon passiert: Sie wollen Ihr
Programm mit Namen »Schrott« I6schen, geben als Abkdr-
zung »S:S*« ein und merken in dem Moment, in dem Sie
»RETURN«driicken, daB auf der Diskette auch alle Versionen
von »SMON« waren, auBerdem auch noch »Springvogelg,
»Soccer« etc. Verzweifeln missen Sie nur, wenn auch diese
letzte SMON-Version mit dem Disk-Monitor dabei war.
Ansonsten behalten Sie die Ruhe und verfahren Sie wie im
folgenden beschrieben.)

Laden Sie also jetzt SMON, legen Sie lhre »Ubungsdis-
kette« (!) ins Laufwerk und I6schen Sie eins der ersten Pro-
gramme mit dem Ublichen Scratch-Kommando. Nun starten
Sie SMON und drticken »Z«. Der Bildschirm andert seine
Farbe wie beschrieben und am Anfang der Zeile erscheint
der »*«. Jetzt geben Sie ein:

R 12 00

Auf dem Bildschirm erscheint die erste Zeile der BAM, die
bei jeder Diskette auf Track 18, Sektor O abgelegt ist. Die
ersten beiden Bytes enthalten »12 01« und geben damit den
logisch nachsten Block an. In diesem Falle wére das der erste
Block des Directory. Wenn Sie mit »SHIF T« die Bildschirmaus-
gabe fortsetzen, erkennen Sie etwa in der Mitte den Dis-
kettennamen. Lassen Sie die Ausgabe durchlaufen, bis
wieder der »*« erscheint. Nun geben Sie »R« ohne weitere
Angaben ein. Damit erhalten Sie den Koppel-Block, also
Track 18, Sektor 1, den ersten Directory-Block. (Naturlich
hétten Sie auch gleich »R 12 O1« eintippen kdénnen, aber wir
wollen ja zeigen, wie die Befehle funktionieren.)

In diesem Block stehen die ersten acht Programme lhrer
Ubungsdiskette, auch der Name des geléschten ist dabei.

Trotzdem ist dieses Programm tatsachlich geléscht und
erscheint nicht mehr, wenn Sie sich das Directory anzeigen

(3K

lassen. Vergleichen Sie den Eintrag des geléschten Pro-
gramms mit den anderen, féllt auf, daB 3 Byte vor Beginn des
Namens bei allen anderen »82« steht (sofern es sich um Pro-
grammfiles handelt), bei dem geléschten aber »00«. Die
Reparatur ist nun denkbar einfach: Sie brauchen lediglich die
»00« mit »82« zu Uberschreiben. Einen Haken hat die Sache
allerdings noch. Beim SCRATCHEN sind die vom Programm
belegten Blocke in der BAM als frei gekennzeichnet worden
und jeder neue Eintrag wirde das als geldscht gekennzeich-
nete File endgliltig Uberschreiben. Um das zu verhindern,
mussen Sie nach erfolgter Reparatur die Diskette validieren
(von Basic aus mit Kommando: OPEN 1, 8, 15, "V”). Dabei
wird die BAM neu erzeugt und korrigiert.
Schiitzen eines Files

Da wir gerade dabei sind, wollen wir unser repariertes
geldschtes File gleich ein fur allemal gegen Léschen schut-
zen. Diese Moglichkeit des Diskettenoperationssystems
(DOS) ist zwar nicht im Handbuch beschrieben, funktioniert
aber trotzdem ausgezeichnet. Laden Sie dazu nochmals die
erste Seite des Directory mit
R 12 01
und andern Sie die »82« vor dem Fileeintrag in »C2«. Geben
Sie »W« ein, um die Anderung auf Diskette zu schreiben.
Verlassen Sie nun SMON mit »X« und lassen Sie sich ein
Directory anzeigen. Das geschitzte File ist mit einem »>«
gekennzeichnet. Versuchen Sie nun, dieses Programm mit
dem Scratch-Kommando zu l6schen. Es geht nicht! Zum
»Entriegeln« brauchen Sie nur das »C2« wieder in »82« zu
andern. Der »> « im Directory verschwindet und das File ist
nicht mehr geschitzt.

Schiitzen einer Diskette

Wollen Sie eine ganze Diskette vor versehentlichem
Léschen oder Formatieren schiitzen, gibt es die Mdglichkeit,
die Loschschutzkerbe abzukleben. Es geht jedoch auch
anders.

Achtung! Die im folgenden beschriebene Prozedur laBt
sich nicht ohne weiteres riickgangig machen, auch nicht
mit dem Disk-Monitor!

Nehmen Sie also eine Diskette, die Sie anschlieBend »hart
formatieren« kénnen (also mit Eingabe einer ID). Starten Sie
nun den Disk-Monitor und lesen Sie die BAM mit »R 12 00«
ein. Das dritte Byte enthélt »41«. Diese »41« ist ein Kennzei-
chen fiir das DOS der 1541- oder 4040-Floppy. Andern Sie
diese Byte durch Uberschreiben in »45« und speichern Sie
die Anderung mit »W« auf die Diskette zuruck. Verlassen Sie
nun SMON und versuchen Sie, etwas zu l6schen. Ergebnis
siehe oben. Versuchen Sie auch, die Diskette »weichg, also
zum Beispiel mit OPEN 1,8,15,"NTEST” zu formatieren.

Auch das ist jetzt nicht mehr méglich. Aber es kommt noch
besser: Starten Sie noch einmal den Disk-Monitor und versu-
chen Sie, die Anderung durch Zurlickschreiben der »41« an
Stelle der »45« riickgéngig zu machen. Auch das ist nicht
mehr méglich, wir hatten Sie bereits gewarnt! Es bleibt ledig-
lich die Mdoglichkeit, die Diskette »hart«, zum Beispiel mit
OPEN 1,8,15,"NTEST,TE” zu formatieren. Sollten Sie nun ent-
gegen allen Warnungen doch Ihre Master-Diskette gegen
Schreibzugriffe gesichert haben, verraten wir lhnen aus-
nahmsweise, wie Sie den Eingriff trotzdem riickgangig ma-
chen koénnen. Dazu Uberlisten wir das DOS des 1541-Lauf-
werkes, indem wir ihm vorgaukeln, es hétte eine Diskette im
Normalformat vor sich. Wir verwenden den Memory-Write-
Befehl, mit dem wir in die Speicherstelle 0101 (Zero-Page
Adresse) des 1541-RAM einfach ein »A« schreiben. Der
CHR$-Code des »A« ist 65, oder in hexadezimaler Schreib-
weise 41. Erinnern Sie sich? Dieser Wert stand urspriinglich
im dritten Byte des Tracks 18, Sektor 0. Mit folgendem klei-
nen Programm umgehen wir einfach die DOS-Kennzeich-
nung und wir kénnen die Diskette wieder normal beschrei-
ben. Am sinnvollsten ist es, sofort den SMON zu starten, das

129

Hilfsprogramme

C64

vorher in 45 abgeédnderte Byte wieder in 41 zu verwandeln
und abzuspeichern. Die Diskette kann dann wieder zum
Lesen und Schreiben verwendet werden. Hier nun das kleine
Programm:

10 OPEN 1,815

20 PRINT #1, "M-W”"CHR$(1)CHR$(1)CHR$(1)CHR$(65)
30 CLOSE1

Andern des Diskettennamens oder der ID

Wir haben bereits oben gesehen, daB in Spur 18, Sektor O
einer Diskette etwa in der Mitte der Diskettenname gespei-
chert wird. Dieser Name kann durch einfaches Uberschrei-
ben geédndert werden; er darf bekanntlich bis zu 16 Zeichen
enthalten. Hat Ihr neuer Name weniger Buchstaben als der
alte, missen Sie die Liicken mit »AO« und nicht mit »20« als
Leerzeichen ausfillen. Dies gilt vor allem, wenn Sie mit dieser
Methode Filenamen &ndern wollen. Das geht natirlich im
Prinzip genauso wie eben beschrieben. Hinter dem Disket-
tennamen ist in Spur 18, Sektor O die ID abgelegt. Sie wird
beim Formatieren vor jeden Sektor in einen sogenannten
Header geschrieben und dient dem DOS zur Identifikation
der Diskette. Zusatzlich wird sie noch in der BAM gespei-
chert, damit sie beim Laden eines Directory mit angezeigt
werden kann. Nun ist es grundsétzlich nicht moglich, die ID
im Header eines Sektors ohne Formatieren zu &ndern, wohl
aber die Eintragung in der BAM und damit die ID, die im
Directory angezeigt wird. Genau wie beim Namen ist dies
durch einfaches Uberschreiben in der BAM méglich.

Andern eines Filetyps

Wenn Sie einmal versucht haben, ein sequentielles File,
etwa eine Datei, mit LOAD zu laden, werden Sie gemerkt
haben, daB dies nicht mdéglich ist. Das DOS behauptet ein-
fach, ein solches File existiere nicht und der Computer mel-
det »FILE NOT FOUNDK«. Viele Spiele zum Beispiel legen die
»Hall of Fame« oder Highscore-Liste als sequentielle Datei ab.
Mit dem Disk-Monitor ist es nun aber méglich, den Filetyp im
Directory zu verandern. Erinnern Sie sich an die »82«, die im
Directory vor jedem Filenamen steht. Bei sequentiellen Files
steht dort »81«. Was zu tun ist, werden Sie sich denken kén-
nen. Naklar, die »81« wird in »82« geandert, und schon ist die
Datei ohne weiteres ladbar, nattrlich wieder erst nach dem
Zuriickschreiben mit »We«.

Sinnvoll ist dies naturlich nur von SMON aus (mit Eingabe
einer Ladeadresse). Mit »M« oder »K« kénnen Sie dann die
Datei ansehen und natirlich auch andern. Vergessen Sie
nicht, die geédnderte Datei nach dem Zurlickschreiben wieder
in ein sequentielles File zu verwandeln. Verbliffen Sie Ihre
Freunde doch mal mit einem auf diese Weise »errungenenc«
High-Score. Die Anerkennung lhrer Umwelt ist lhnen sicher!

Andern der Startadresse eines Programms

Wir haben uns bisher auf Manipulationen in der BAM oder
im Directory beschrénkt. Wollen wir in einem Programm
selbst Anderungen vornehmen, miissen wir etwas tiefer in
die »Geheimnisse der Floppy« eindringen. So ist es bisweilen
interessant, die Startadresse eines Maschinenprogramms zu
kennen oder zu &ndern. Dazu gehen wir folgendermaBen vor:
Zunéchst suchen wir mit »>R 12 01« und eventuell weiteren
Folgesektoren (12 04, 12 07...) den Fileeintrag im Directory.
Die beiden Byte hinter der »82« direkt vor dem Programmna-
men geben an, auf welcher Spur und in welchem Sektor das
Programm startet. Wenn dort zum Beispiel »0A 04« steht,
beginnt das Programm auf Spur 10, Sektor 4. Lesen Sie nun
diesen Block mit »R OA 04« ein. Die ersten beiden Bytes die-
ses Blocks zeigen auf den néchsten Block des Programms,
die beiden nachsten Bytes enthalten die Startadresse in der
Ublichen Low-High-Byte-Reihenfolge. Zum Andern der Start-
adresse Uberschreiben Sie die Bytes mit der neuen und spei-
chern den Block mit »W« auf die Diskette zurick.

130

Die Zusammenarbeit mit SMON

Mit all diesen Beispielen sind die Méglichkeiten des Disk-
Monitors noch lange nicht erschépft. Sie sollten lhnen als
Anregung fiir eigene Experimente dienen. Uben Sie aber
unbedingt so lange, bis Sie alle Kommandos aus dem »FF«
(oder dezimal 255) beherrschen. Sie ersparen sich damit
unnétigen Arger und durchweinte Nachte. Besonders inter-
essant ist es, von SMON aus auf den Puffer zuzugreifen und
die SMON-Befehle auf den Puffer anzuwenden. Erwihnen
mochte ich nur die Mdéglichkeit, Programme fir das DOS
direkt zu assemblieren und in einem bestimmten Sektor able-
gen zukdnnen, die »Find«-Routinen oder das »K«-Kommando
fur Textdnderungen. Da der Puffer im RAM unter dem Basic
liegt, muB Basic in solchen Féllen abgeschaltet werden.
Andern Sie dazu mit dem »M«-Befehl in Speicherstelle 0001
die »37« in »36«.

Haben Sie die Arbeit mit SMON beendet, kénnen Sie mit
»Z« in den Disk-Monitor schalten und den Pufferbereich mit
»W« (Spur, Sektor) abspeichern.

Die Ausgabe von Diskettenfehlern

Beim Arbeiten mit dem Disk-Monitor werden samtliche
Fehler vom Laufwerk direkt, auch ohne Eingabe von »@«,
ausgegeben, zum Beispiel »ILLEGAL TRACK OR SECTORc,
wenn Sie mit »R« einen Block lesen wollen, den es gar nicht
gibt. Einen Fehler hat das Programm allerdings, den wir nicht
verschweigen wollen. Der letzte Block eines Files enthélt als
Koppeladresse »00 FF«. Da es einen solchen Block nicht
geben kann, »weiB« das DOS, daB es am Ende angelangt ist.
Versuchen Sie aber, den nachsten Block (Spur 0, Sektor
255!!) mit »R« zu lesen, erscheint als Fehlermeldung nicht,
wie es sein miBte, »ILLEGAL BLOCK OR SECTOR«, sondern
»SYNTAX ERROR«. Das ist zwar eigentlich unerheblich,
sollte aber erwahnt werden. Der Fehler liegt in der Routine,
die unsere Zahleneingaben in das richtige Diskettenformat
wandelt. Es fehlte einfach der Platz im Programm fiir eine
rkorrekte« Umwandlung, wir muBten uns mit einer »Sparrou-
tine« behelfen.

AbschlieBend noch ein SMON-Trick, den wir einem auf-
merksamen Leser verdanken. Fir eine Directory-Ausgabe
fehlte der Platzim SMON. Es geht aber hilfsweise so: Laden
Sie das Directory zum Beispiel mit
L "$” 8000
an einen freien Speicherplatz. Mit »M« oder »K« kbnnen Sie
jetzt das Directory »lesen«. Damit sind alle wichtigen Funktio-
nen fur den Umgang mit der Diskette im SMON enthalten.

SMON liiftet Geheimnisse

Zwei Erweiterungen haben wir lhnen zu Beginn angekiindigt,
die SMON noch leistungsfahiger machen sollen. Dabei han-
delt es sich einmal um eine Erweiterung des Disassemblers,
mit dem nun auch die »illegalen« Opcodes des 6502
disassembliert werden, zum anderen um neue Funktionen
beim Diskmonitor, mit denen Sie in den Innereien Ihrer Floppy
herumstébern kénnen. Nun ist der Speicherplatz bis auf 5
Byte ausgeschépft, und die 4-KByte-Grenze soll auf keinen
Fall Uberschritten werden. Wir haben daher andere Funk-
tionen herausgenommen, und zwar fur die Disassembler-
Erweiterung den Diskmonitor und fur die Diskmonitor-
Erweiterung den Trace-Modus. Beide Erweiterungen sind
also nicht gleichzeitig einsetzbar; Uberhaupt ist es sinnvoll,
eigene Versionen fir spezielle Anwendungen zusammenzu-
stellen, eine »normaleg, eine Spezial-Disk-Version und eine
fur verscharftes Disassemblieren.

Beginnen wir mit dem letzten: Wie Sie wissen, erscheinen
beim Disassemblieren immer drei Sternchen, wenn SMON
auf ein Byte trifft, das keinen gultigen 6510-Opcode darstellt.
Nun wissen Sie aber vielleicht auch, daB es Uber den offiziel-

TR

C 64

Hilfsprogramme

len Befehlssatz hinaus noch einige Befehle gibt, die der
Hersteller des Prozessors zwar nicht dokumentiert hat, die
aber nichtsdestotrotz funktionieren und in einigen Program-
men auch ausgenutzt werden. Es wére naturlich schén, wenn
SMON auch diese »illegalen« Opcodes anzeigen konnte.
Unsere Erweiterung macht's moglich.

Wir haben Mnemonics fir eine Reihe dieser Befehle einge-
setzt und lassen diese von SMON mit einem vorangesteliten
»* « ausgeben. Ubrig bleiben noch zehn Befehle, deren Wir-
kung aber so komplex ist, daB sie sich beim besten Willen
nicht mit einem Mnemonic abkiirzen lassen. Sie fallen auch
aus der Logik der Prozessorstruktur heraus. Im einzelnen
handelt es sich um die Opcodes 0B, 2B, 4B, 6B, 8B, 9C, 9E,
AB, CB und EB. Bei diesen Befehlen haben wir keine gemein-
same Struktur entdecken kénnen. Die neuen Mnemonics
haben folgende Bedeutung:

LAX Load Akku and X
entspricht LDA und LDX.
DCP Decrement and ComPare

entspricht DEC und CMP.
ISC Increment and SubtraCt
entspricht INC und SBC.

RLA Rotate Left AND Akku
entspricht ROL und AND.
RRA Rotate Right and Add with carry
entspricht ROR und ADC.
SLO Shift Left OR Akku
entspricht ASL und ORA.
SRE Shift Right and EOR Akku
entspricht LSR und EOR.
SAX Store Akku AND X
fuhrt eine UND-Verknipfung zwischen Akku und
X-Register durch und speichert das Ergebnis in der
angegebenen Adresse ab.
CRA CRAsh
fuhrt zum »Absturz« des Prozessors.
NOP NO Operation

entspricht dem bekannten NOP, jedoch kann dieser
Befehl auch 2 oder 3 Byte lang sein. Dies wird durch die
angegebene Adresse deutlich, die in diesem Fall natdrlich
keinerlei Bedeutung hat.

Uber den Sinn dieser Befehle 4Bt sich sicher streiten; aller-
dings kommen sie bisweilen in Programmen vor, meist um
das Lesen dieser Programme unméglich zu machen, also als
Programmschutz. Von der Verwendung dieser Befehle in
eigenen Programmen raten wir auf jeden Fall ab. Erstens wird
kein Hersteller garantieren, daB die »illegalen« tatséchlich mit
jedem 6510-Prozessor funktionieren, zweitens gibt es keine
Funktion, die nicht auch mit den »normalen« Befehlen
ebensogut erreicht werden kénnte. Und als Programmschutz
taugen die »illegalen« spéatestens mit der Veréffentlichung
dieses Artikels ja auch nichts mehr. Aus diesem Grund haben
wir bewuBt auf eine Erweiterung des Assemblers in dieser
Richtung verzichtet. Sie kénnen also keine normalen Op-
codes durch Uberschreiben in »illegale« andern, wohl aber
umgekehrt. Es bleibt lediglich die Eingabe als Einzelbyte, was
aber hoffentlich zu umstandlich ist.

Komfortabler Disketten-Monitor
fir SMON

Jetzt folgt unser zweiter Leckerbissen in Form eines kleinen
aber ungemein wertvollen Zusatzprogrammes fir den
SMON. Es handelt sich dabei um eine Erweiterung des
Disketten-Monitors, mit dem jeder auf einen Schlag die Arbeit
von Stunden zunichte machen kann. Geben Sie das Pro-
gramm wie beschrieben ein, starten Sie SMON wie gewohnt
und springen mit »Z« in den Disketten-Monitor. Von hier aus

1 -

erreichen Sie mit »F« (wie Floppy) die neuen Befehle. Wir
haben absichtlich diesen umstéandlichen Weg gewdhit, denn
Fehler in diesem Modus wirken noch dramatischer als sonst.
Mit diesem Werkzeug haben Sie unmittelbaren Zugriff auf die
Eingeweide der Floppy. Jetzt kénnen Sie die folgenden
Befehle mit einer Ubungsdiskette (!!!) in aller Ruhe durch-
arbeiten.

M Memory-Dump des Disketten-Monitors
Beispiel: M (ohne weitere Eingabe) listet den Bereich des
Floppy-RAM von $0000-$00FF. (Es erscheint zunachst die
erste Zeile, weitere Ausgabe mit der SPACE-Taste.)

In diesem Bereich befinden sich unter anderem die
Jobspeicher ($00-$04) fur die funf Puffer O bis 4 sowie die
wichtigsten Variablen des DOS.

M 07 Memory-Dump ab $0700
Die BAM der Diskette wird nach dem Initialisieren in Puffer 4
($0700 im Floppy-RAM) eingelesen. Schauen Sie sich also
mit »M 07 « die aktuelle BAM an. Sie kénnten jetzt durch ein-
faches Uberschreiben den Inhalt der BAM &andern. (Der
Doppelpunkt vor der Zeile wirkt als »hidden command).
Dann schauen Sie sich lhre Anderung mit »M 07« wieder an.
Sie sehen, daB inzwischen der Inhalt des Floppy-RAM
gedndert wurde. Wenn Sie nun den Jobcode »90« (=
Schreibbefehl an den Floppy-Controller) in Speicherstelle
$04 bringen, wirde die gednderte (falsche!) BAM auf
Diskette zuriickgeschrieben werden!! Es gibt also genug
Méglichkeiten, wie oben angedeutet, die Disketten zu
»versauenc.

Fur das Ausprobieren noch einige wichtige Speicherstel-
len und Jobcodes:

$80 Lesen

$90 Schreiben

$CO »Anschlagen« des Kopfes

$DO Maschinenprogramme im Puffer
ausfihren

$EO Programm im Puffer ausfihren mit Hoch-

fahren des Laufwerks
Speicherstellen im Floppy-RAM:
$06/$07 st Spur- und Sektornummer fir den
Befehl in Puffer O
$08/$09 fir Puffer 1
$0A/$0B fur Puffer 2
$0C/$0D fur Puffer 3
$OE/$OF fur Puffer 4
Jedem Puffer sind zwei Speicherstellen zugeordnet, eine
fur den Jobcode ($0000 bis $0004) und eine fur Spur und
Sektor. Wenn Sie also in Puffer O (in $0300 gelegen) einen
bestimmten Block einlesen wollen, geben Sie folgende
Befehle ein:
" »Mcliest die Zeropage der Floppy ein — so sehen dann zum
Beispiel die ersten Zeilen aus:
:0000 01 01 01 FF 03 04 01 34
:0008 23 02 04 50 01 03 OA 11
Gehen Sie mit dem Cursor in die erste Zeile und schreiben
Sie »80« in die erste Speicherstelle (anstelle der ersten 01).
In Speicherstelle $06/$07 (die letzten beiden in der ersten
Reihe) die Spur- und die Sektornummer, die gelesen werden
soll, zum Beispiel 12 01. Sie sehen dann
:0000 80 01 01 FF 03 04 12 O1
:0008 unverandert
Driicken Sie die RETURN-Taste, Mit »M 03« kann jetzt der
eingelesene Block (hier der erste Directory-Block) ange-
sehen werden. Anderungen kénnen durch einfaches Uber-
schreiben vorgenommen werden. Dauerhaft wird lhre Ande-
rung erst durch Zuriickschreiben (nach Spur $12 und Sektor
$01) mit dem Jobcode »90« in der ersten Speicherstelle.
Nach Anderung der beiden fiir Puffer O zusténdigen Adres-
sen ($06/$07) auch an jede beliebige andere Stelle. Das ist
wértlich zu nehmen, denn wir befinden uns hier »unterhalb«

131

Hilfsprogramme

C64

,Befehisﬂbersicht zum SMON .
entfallen. SMON benutzt dann sinnvolle, vorgegebene Werte.

_ geSHIFTet eingegeben.
| A 4000 (Assembler) - . ‘
. symbolischer Assembler (Verarbettung von Label
~ mdglich) Startadresse $4000 ,,
- 4000 4200 (Bas#c Data) ' ~
~ erzeugt Basic-DATA-Zeilen aus Maschmen-
‘programm im Bereich von $4000 bis $41FF
4010 4200 4013 4000 4200 (Convert) ~
~ in ein Programm, das von $4000 bis $4200 im
~ Speicher steht, soll bei 4010 ein 3-Byte-Befehl
 eingeflugt werden. Dazu wird das Programm ab
- $4010 bis 4200 auf die neue Adresse $4013
verschoben. Alle absoluten Adressen, die inner-
halb des Programmbereichs ($4000 bis $4200)
stehen, werden umgerechnet, so daB die Sprung-
ziele stimmen.
4000 (4100) (Disassembler)
disassembliert den Bereich von $4000 (bxs ,
$4100) mit Ausgabe der Hex-Werte. Anderungen
sind durch Uberschreiben der Befehle még!fch
(Find)
findet Zeichenketten (F), absolute Adressen (FA),
relative Springe (FR), Tabellen (FT), Zeropage-
adressen (FZ) und Immediate-Befehle (FI)
(4000) Go)
startet ein Maschinenprogramm, das bei $4000
im Speicher beginnt
01 (I/0-Gerat)

oder Datasette (01) ein
A000 (A500) (Kontrolle)

$A000 (bis $A500) nach ASCII-Zeichen (32
Byte pro Zeile). Anderungen sind durch Uber-f
schreiben der ASCII-Zelchen mbglach .

- (4000) (Load)

eine angegebene Adresse ($4000)
4000 (4400) (Memory-Dump)

_gibt den Inhalt des Speichers von $4000 (bis
$43FF) in Hex-Byte und ASCIl-Code aus.
Anderungen sind durch Uberschreiben der
Hex-Zahlen maglich. >

- 4000 4500 AA (Occupy)

~ mit vorgegebenem Byte ($AA) aus -
05 (Printer) -
~ setzt Gerateadresse 5 fur Drucker -
~ (Register) ,
~ zeigt die Regsstermhalte und Flags an.

~ "Test” 4000 5000 (Save)

unter dem Namen »Test«‘ab
(4000) (Trace Walk)
fuhrt auf Tastendruck d
Maschinenbefehl aus und ze

- ﬁs‘nﬁchstew -
: die Regfsterm-

laufen werden (»J«). Wird keine Startadresse ein-

angezeigten Adresse.

TB 4010 05 (Trace Break)

132

Alle Eingaben erfolgen in der hexadez:malen Schre»b- ,

‘ ‘wexseh In Klammern angegebene AdreBemgaben koénnen
‘TQ
~ Bei allen Ausgabe-Befehlen ist gleichzeitig die Ausgabe
‘auf einem Drucker moghch Dazu werden dle Befehief,i -
‘ TS *
- arbeitet ein Programm ab $4000 in Echtzeit ab

stellt die Geratenummer fir Floppy (08 oder 09) -
ladt ein Maschinenprogramm an die nchtlge oder

fillt den Speicherbereich von $4000 bis $4500

- Anderungen sind durch Uberschrexben méghch . ,T
speichert ein Programm von $4000 bis $4FFF e

halte an. Subroutinen kénnen in Echtzeit durch-

setzt einen Haltepunkt fiir den Schneltschrittmo- .

. dus bei $4010 Der Schneﬂschnttmodus wird

unterbrochen, nachdem $4010 zum funften Mai

‘erreicht worden ist.

4000 (Trace quick)

~ Schnellschrittmodus, sprmgt betm Erretchen -
~eines Haltepunktes in den Einzelschnttmodus ‘

4000 4020 (Trace stop)

~ und springt beim Erreichen von $4020 in die -

: 'Registeranzelga Von dort aus kann (nach even-
~ tueller Anderung der Register) mit »G« oder sTWe« -
 fortgefahren werden. T S« arbeltet nur im RAM' ’

Speicher.

V. 6000 6200 4000 4100 4200 (Verschicben)

%

o

gegeben, beginnt TWe bei der letzten mit>R« @
' . . normale Dusketten-»BefehEe senden
x .

andert in einem Programm von $4100 bis $41FF
alle absoluten Adressen, die sich auf den Bereich

von $6000 bis $6200 beziehen, auf einen

neuen Bereich, der bei $4000 beginnt.

- 4000 4300 5000 (Write)

verschiebt den Spelchennhalt von $4000 bis
$42FF nach $5000 ohne Umrechnung der
Adressen (zum Beispiel Tabellen)

(Exit)

springt aus dem Momtor-Programm ins Basic
zuriick

49152 ,

Dezimalzahl umrechnen

- 0o2B

4stellige Hex-Zahl umrechnen

01101010

8stellige Binarzahl umrechnen

0344 + 5234

Addition oder Subtraktlon zweier 4stelliger
Hex-Zahlen

4000 5000 (Vergleich)

_ vergleicht den Speicherinhalt ab $4000 mit dem
~ ab$5000 ,

zum schnellen Durchsuchen des Berenchs von 2 (Diskmonitor)

~ ruft den Diskmonitor auf Dneser verfbgt Uber

folgende Befehle

2 01) (Read)
liest Track $12, Sektor $01 von der Diskette in
einen Puffer im Speicher. Fehlt die Angabe von

- Track und Sektor, wird der logisch (1) n&chste
~ Sektor gelesen.

(12 01) (Write) .
schreibt den Puffer im Spencher nach Track $12,

~ Sektor $01 auf die Diskette. Ohne Angabe von
~ Track und Sektor werden dle ietzten Emgaben
~_von »R¢ benutzt. . ,,
(Memory-Dump) . . ‘
 zeigt den Puffennhalt a!s Hexdump (w:e normales
~ »Mq). Weitere Ausgabe mit CBM-Taste, Abbruch
- mit STOP. Werte kénnen durch Uberschre iben
~ geéndert werden ‘ - .
- (BExt) (
vsprmgt in SMON zurtlck

(weitere Disketten- Befehte mntzahsleren)
’ 'smd dxe Befeh| ‘lemmahsiert, gxlt -

$6000mde Laufwe pu

weise in das FIoppy*-RAM

zur&ck zum normalen Dfskeﬁen-Momtor

C64

Hilfsprogramme

der Controllerebene, die unter anderem fur die Prifung auf
Einhaltung der zulassigen Spur und Sektorgrenzen ver-
antwortlichist. Es erfolgt also keine Fehlermeldung, wenn Sie
versuchen sollten, mit lhrer Floppy bis in die des Nachbarn zu
schreiben (zum Beispiel mit der Spur 152).

Entsprechende Lese- und Schreiblibungen kénnen mit
den anderen Puffern durchgefthrt werden. Denken Sie
daran, erst ist die Spur- beziehungsweise Sektornummer fir
den entsprechenden Puffer (in der zweiten Zeile!) einzuge-
ben, bevor Sie in Zeile 1 den Jobcode mit einem »RETURN«
Ubergeben, denn mit Druck auf die RETURN-Taste wird lhr
Befehl ausgeflihrt. Und noch eins: Quélen Sie bitte dabei
lhren Schreibkopf nicht mehr als unbedingt erforderlich,
sonst kdnnte er sich mechanisch verklemmen und nur noch
mit einem Eingriff in die Floppymechanik wieder »befreit«
werden.

Falls Sie die Ausgaben 1/85 (Seite 151) und 3/85 (Seite
103 bis 135) der 64’er besitzen, kénnen Sie sich dort tber
andere Speicherstellen der Floppy und die weitere Anwen-
dung der Jobcodes informieren.

Der Befehl @ ohne weitere Angaben fragt den Fehlerkanal
ab, ansonsten dient er zur Befehlstibermittlung an die Floppy.
Beispiel: @ Fehlerkanal

@l Initialisierungsbefehl oder
@S:name Befehl zum Scratchen
und so weiter.

Bedingt durch die verschiedenen Versionen, springt dieser
Befehl manchmal in den »normalen« Disketten-Monitor
zurlck, erkennbar an dem »* « am Zeilenanfang. Sie missen
dann wieder ein »F« eingeben.

Mit X gelangt man wieder in den Disketten-Monitor.

Zum AbschluB ein sehr hilfreicher Befehl namens »V«, der
es erlaubt, Speicherbereiche aus dem Computer in den Lauf-
werkspuffer zu verschieben. Folgende einfache Syntax gilt
dabei: V von nach

Um zum Beispiel ein Maschinenprogramm von $6000 in
den Puffer 1 zu bekommen, geben Sie folgendes ein:

V 6000 0400

Dabei wird immer eine ganze Seite, also 256 Byte, Uber-
tragen. Was das Programm dort soll, fragen Sie? Fiihren Sie
es doch einfach aus (Jobcode $DO in Speicherstelle $01
schreiben); oder schreiben Sie es mit dem Jobcode »90« in
einen beliebigen Sektor der Diskette.

Wenn Sie dann lhre Floppy so richtig durcheinander
gebracht haben und nichts lauft mehr, brauchen Sie nicht zu
verzweifeln. AuBer einem eventuell festhdngenden Lesekopf
passiert der Floppy nichts, nur lhren Disketten.

Hinweise zum Abtippen

Tippen Sie die beiden Erweiterungsprogramme (Listing 2
und 3 beziehungsweise bei der M&T-Version Listing 4 und 5)
mit dem MSE-Programm ab und speichern Sie die fertigen
Programme. Die Programme fiir die M&T-Version haben sinni-
gerweise ein M&T im Namen.

Laden und starten Sie dann Inren SMON $C000. Geben
Sie ein: L”NDISASS”

Damit werden die neuen Befehle automatisch tber den bis-
herigen Disketten-Monitor geladen. Sie missen nun aber
noch aktiviert werden. Geben Sie dazu G CFOD ein.

SMON meldet sich sofort mit seiner Registeranzeige
wieder. Sie sollten nun diese Version unbedingt abspeichern,
zum Beispiel mit S” SMON NDISASS” CO00 CF3D

Wenn Sie nun das Programm »ILLEGAL-CODE« (Listing 6)

laden und mit D 4000 disassemblieren, sehen Sie die
»illegalen« Opcodes schén geordnet nacheinander.

Um die neuen Befehle des Disketten-Monitors in SMON
einzubinden, gehen Sie ganz dhnlich vor. Nach dem Abtippen

BAEr,

und Speichern des Programms »FLOPPYMON« muB natir-
lich SMON CO000 geladen und gestartet werden. Anschlie-
Bend geben Sie ein: L” FLOPPYMON” und aktivieren es mit
G CDD8 (64'er-Version) beziehungsweise G CDB6 (M&T-
Version).

Zum Speichern geben Sie S”SMON-FLOPPY”COOO
CFFF ein. Das gilt fur beide Versionen.

' (Dietrich Weineck/ah)

SMON-Speicherstellen
Folgende Zeropage-Adressen werden benutzt:

FLAG $AA Universalflag
ADRCODE $AB Adressierungscode fir
Assembler/Disassembler

COMMAND $AC
BEFCODE $AD

SMON-Befehlscode
Befehlscode Ass./Disass.

LOPER $AE Low-Operand fir Ass./Disass.
HOPER $AF High-Operand fiir Ass./Disass.
BEFLEN $B6 Befehlislange Ass./Disass.
PCL $FB SMON-Programmcounter
Low-Byte
PCH $FC SMON-Programmcounter
High-Byte
AuBerhalb der Zeropage benutzt SMON die Bereiche:
PCHSAVE $02A8
PCLSAVE $02A9
SRSAVE $02AA
AKSAVE $02AB dienen der Zwischen-
speicherung
XRSAVE $02AC der angegebenen Register
YRSAVE $02AD
SPSAVE $02AE
PRINTER $02AF Printernummer
IONR $02B0 Devicenummer
MEM $02B1 Buffer bis $02B8
TRACEBUF $02B8 Buffer fur Trace-Modus
bis
$02BF

Dann folgen die von Diskmonitor benétigten Adressen:

SAVEX $02C1 Zwischenspeicherung der
X- und Y-Register
TMPTRCK $02C2
TMPSECTO $02C3 Zwischenspeicher fur Track
und Sektor
DCMDST $02DO Diskkommandostring
TRACK $02D8
SECTO $02DB Track und Sektornummer
BUFFER $033C Buffer fiir Label, nur fir
bis Assembler
$03FC

Einsprungadressen von SMON-Routinen
Die Angaben in Klammern beziehen sich auf die
M &T-Version

;. (TICK) $CADB ($CACF)
(BEFDEC) $C92E ($C92F)
$ (BEFHEX) $C908 ($C909)
% (BEFBIN) $C91C ($C910)
, (KOMMA) $C6FC ($C6B1)
: (COLON) ' $C41D ($C40B)
;. (SEMIS) $C3B6 ($C3A0)
= (COMP) - $CAF5 ($CAE9) - V Kommando
? (ADDSUB) $C89A ($C89B)
A (ASSEMBLER) $C6D1 ($C6BC)
B (BASICDATA) $C96C ($C96D)
C (CONVERT) $CA3D ($CA32)

133

Hilfsprogramme ce64

D (DISASS.) $C55D ($C542) P (SETPRINTER) $C83D ($C829)
F (FIND) $CB11 ($CBOC) R (REGISTER) $C386 ($C370)
G (GO) $C3E3 ($C3CD) S (LOADSAVE) $C84E ($C83A)
I (IO.SET) $C844 ($C830) T (TRACE) $CBF1 ($CBEC)
K (KONTROLLE) $CAB7 ($CAAC) V (VERSCHIEB) $CA43 ($CA38) - U Kommando
L (LOADSAVE) $C84E ($C83A) W (WRITE) $CaD3 ($C9D4)
M (MEMDUMP) $C3F9 ($C3E3) X (EXIT) $C36E ($C369)
O (OCUPPY) $CoC1 ($C9C2) Z (DMON) $CEO09 ($CDFE)
programm : smon $c@2@ c@0B cffa €278 : c2 c2 dB @Bc Bd 77 @82 e5 b3 c448 : e@ 16 d@ f6 bl fb 3d fb de
c278 : cb 6@ 20 7e c2 2c a2 fb S& cS0B8 : c@ Sd 11 c1 f80 @5 ca d@ ef
c28@ : 20 8d c2 95 01 20 9a c2 cb cS@8 : f3 a2 @0 86 ad Ba 0 Of 2e
cl2@ : a? 14 8d 16 @83 a9 c2 8d 7d c288 : 95 00 e8 eB 6@ 20 ca c2 2c c51@ : a2 11 bl fb 3d bS5 c@ 5d 66
cl@8 : 17 @3 @@ 27 23 24 25 2c¢ cé c290 : c9 20 0 f9 c9 2c f0O f5 92 cS518 : cé6 c@ f@ O3 ca d@ 3 bd 59
c@1@ : 3a 3b 3d 3f 41 42 43 44 db c298 : d@ @3 20 ca c2 20 af c2 bd c52@0 : ea c@ 85 ab bd d8 c@ B5 {2
c@18 : 46 47 49 4b 4c 4d 4f S@ cb c2a@ : @a @a Oa Pa 85 b4 280 ca 87 c528 : bé ab ad 40 a@® 01 bl fb 7a
c@2@ : 52 53 54 56 57 S8 Sa @@ 9d c2aB : c2 20 af c2 @5 b4 &0 c9 ca cS53@ : aa cB bl fb a® 10 c4 ab 1f
c@28 : 00 00 @0 da ca 2d c? @7 cf c2b@ : 3a 90 @2 &9 08 29 Bf 68 a7 c538 : dO@ @7 20 4a cS5 a@ 03 d@ ec
c@30 : c? 1b c? fb cé& 1lc c4 bS 44 c2b8 : 20 ca c2 c9 20 f@ f9 c&6 26 €548 : @2 a4 bs Be ae 0@ 8d af 94
c@38 : c3 f4 ca 99 c8 dO cbé &b &0 c2c@® : d3 6@ 20 cf ff cé6 d3 c9 de cS548 : 00 40 a® @1 bl fb 10 81 fe
c@4@ : c? 3c ca Sc c5 1@ cb e2 37 c2cB : Od 60 28 cf ff c? @d d@ 2b cS5@ : 88 38 65 fb aa eB f0 @1 B85
c@48 : c3 43 cB8 b6 ca 4d c8 f8 e2 c2d® : f8 a9 3f 20 d2 ff ae ae b6 cS58 : 88 98 &5 fc 4@ a2 0@ 86 4d
c@58 : c3 c@ c? 3c c8 85 c3 4d d@ c2d8 : 02 9a a2 0@ 86 cé& 20 51 92 cS56@ : aa 20 64 c2 20 8c cS5 a5 54
c@58 : cB f@ cb 42 ca d2 c9 &d 19 c2e® : c3 al dil c? 27 f0 11 c9? 3 cS568 : ad c9 16 f@ @9 c? 30 f@ 1f
c@60 : c3I 08 ce OO 00 B0 00 @@ db c2e8 : 3a f@ Od c? 3b f@ B9 c9 Oa cS570 : OS5 c9 21 dO@ 11 ea 20 94 ce
c@48 : 00 00 0B ff ff @1 0@ 41 3 c2f@ : 2c f@ OS5 a9 2e 20 d2 ff 3a €578 : c4 20 51 c3 a2 23 a? 2d Sd
c@7@ : Sa 49 52 54 80 20 40 1@ b8 c2f8 : 20 ca c2 c9 2e f@ f9 85 «c4 cS58@ : 20 d2 ff ca d@ fa 28 S5Sd 83
c@78 : 0@ 02 01 @1 02 PO 91 91 &3 c380 : ac 29 7f a2 20 dd @a c@ 10 cS88 : c4 9@ d9 6@ a2 2c 20 48 a3
c@80 : Od 53 d? 31 37 32 od 8@ @d c308 : f@ @S ca d@ f8 f@ c2 28 aa €598 : c3 20 23 c3 20 4c c3 20 S8
c@88 : 7d 4c 7d c9 @d @d 20 20 be €318 : 15 c3 4c db6 c2 Ba Ba aa 3 €598 : 75 cé 20 cb c4 2@ 4c c3I 8
c@9@ : 58 43 20 20 53 52 2@ 41 59 c318 : eB bd 29 c@ 48 ca bd 29 &5 cSa@ : bl fb 20 2a c3 20 4c c3 92
c@98 : 43 20 58 52 20 59 52 2@ a2 c320 : c@ 48 6@ aS fc 20 2a c3 d2 cSaB : cB c4 bé d@ f3 a? @3 38 a3
cla@ : S3 S50 20 20 4e S6 2d 42 8 c328 : a5 fb 48 4a 4a 4a 4a 20 87 cS5b@ : eS bb aa f@ @9 20 49 c3 7
c@a8 : 44 49 Sa 43 OC 02 04 @1 b2 €330 : 35 c3 68 29 Of c? Ba 90 Of cS5b8 : 20 4c c3 ca d@ f7 a? 20 fc
cBb@ : 2c @@ 2c 59 29 58 94 1f 1id c338 : @2 69 06 69 3@ 4c d2 ff 4e cS5c@ : 20 d2 ff a@ 0@ ab6 ad d@ eb
c@b8 : ff 1c 1c 1f 1f 1f 1c df cb c340 : a9 Od 20 d2 ff B8a 4c d2 +d cS5cB8 : 11 a2 @3 a9 2a 20 d2 ff Of
c@c@ : 1c 1f df ff ff @3 1f B@ 9 c348 : ff 20 4c c3 a% 2@ 4c d2 55 cSd@ : ca dO@ f8 24 aa 30 85 4c a@
c@Oc8 : @9 20 Oc 04 10 @1 11 14 da c35@8 : ff a9 Od 4c d2 ff 85 bb ab c5d8 : ba cb 24 aa S50 29 a? 08 09
c@dd : 96 1c 19 94 be 6c 03 13 cf c358 : 84 bc a@ 80 bl bb f@ @6 2b cSe@ : 24 ab f0 23 bl fb 29 fc 14
c@d8 : @1 02 02 @3 @3 B2 02 82 08 c360@ : 20 d2 ff cB d@ f6 60 e6 16 cSeB : 85 ad cB8 bl fb @a a8 b9 d2
cled : 02 02 02 03 23 02 @3 B3 17 c3468 : fb dO@ 02 eb& fc 60 a? @e be c5f0@ : 3c @3 Bd ae @0 c8 b? 3c 8d
cle8 : B3 02 00 40 40 8@ 80 28 3f c370 : Bd 86 @2 8d 20 d@ a? B6 ae cS5f8 : @3 8d af 08 20 be cb6 a4 0a
cBf@ : 10 25 26 21 22 81 82 21 bb c378 : 8d 21 d@ a%? 37 85 @1 ae Q@O cbBB : bb 20 93 c6 20 cb c4 bd 73
c@f8 : 82 84 08 08 e7 e7 e7 e7 ed c380 : ae B2 Pa 4c 74 a4 a@ cO d@ cé608 : Sb c1 20 d2 ff bd 93 c1 66
cl@@ : e3 el e3 e3 el e3 e3 el ff c388 : a? Bc 20 56 c3 a2 3b 20 c9 c61@ : 20 d2 ff bd cb c1 28 d2 42
cl1@8 : e3 e3 e7 a7 e7 e7 3 3 41 c390 : 48 c3 ad aB @2 85 fc ad ce c618 : ff a9 20 24 ab fO @3 28 @7
cl1@ : 7 df 26 46 06 66 41 B1 eS €398 : a? @2 85 fb 2@ 23 c3 20 B8e cb208 : 49 c3 a2 20 a? @4 24 ab 9a
c118 : el @1 a@ a2 al cl 21 &1 &6 c3a@ : 4c c3 a2 fb bd af 81 20 93 cé628 : f@ B2 a2 28 Ba 20 d2 ff bc
c120 : B4 B6 eb cb ed c@ 24 4c b7 c3aB : 2a c3 20 4c c3I eB8 dO f4 f6 c630 : 24 ab 5@ @5 29 23 28 d2 b8
c128 : 20 92 b0 f0 30 d@ 1@ S@ 45 c3b® : ad aa 02 4c d@ c3 20 4e @5 cé&38 : ff 20 2c cS5 88 f0 16 a9 c7
cl130 : 70 78 0@ 18 dB8 58 b8 ca a8 c3b8 : c2 a2 fb 20 ca c2 28 9a 47 c640 : @8 24 ab f@ B7 a9 4d 20 96
cl138 : 88 e8 cB ea 48 08 68 28 7a c3c@ : c2 9d af @1 eB8 d@ f4 20 86 cé48 : d2 ff a@ O1 b9 ad @0 28 ab
cl14@ : 40 68 aa aB ba Ba 9a 98 @c c3c8 : 4c c3 bd aa @2 4c d@ c3 @8 c650 : 2a c3 B8 d@ f7 a® @3 b9 9c
c148 : 38 {8 89 9c 9e b2 2a 4a af c3d@ : 85 aa a9 28 a® 09 20 d2 91 c658 : ac c@ 24 ab f0@ @9 b? af 80
c150 : Ba 6a 4f 23 93 b3 £3 33 d5 c3d8 : ff @6 aa a? 30 69 00 88 19 cb60 : c@ be b2 cO 20 42 c3 88 78
€158 : d3 13 53 73 52 4c 41 52 29 c3e@ : dB@ f4 60 20 49 c2 ae ae 09 cb6b8 : dO ed a5 bé 20 &7 3 38 2c
c16@8 : 45 53 53 4f 4c 4c 4c 43 ec c3eB : @2 Pa a2 fa bd ae @1 48 25 cb70 : e9 @1 dO f8 60 a4 d3 a? fb
€168 : 41 41 53 53 49 44 43 43 d3 c3f@ : eB d@ 9 48 aB 68 aa 68 15 c&78 : 28 91 dl c8 c@ 28 90 f9 72
c17@8 : 42 4a 4a 42 42 42 42 42 76 c3§8 : 40 20 64 c2 a2 3a 20 4@ b7 cbB80 : 60 e4 ab d@ @4 @5 ad 85 81
cl78 : 42 42 42 53 42 43 43 43 a8 c400 : c3 20 23 c3 al 20 a2 0@ aa c4B8 : ad 60 b? ad @@ 91 fb d1 a9
cl18@ : 43 44 44 49 49 4e S@ 5@ 09 c4@8 : 20 4c c3 al fb 2@ 2a c3 644 cé9@ : fb dB B4 88 10 4 4B 48 00
c188 : 50 5@ 52 52 54 54 54 54 ci c410 : al fb 20 39 c4 dO f1 20 b9 c698 : 6B 6@ dO@ 1c Ba @5 ab 85 72
c19@ : 5S4 54 53 53 4Ff 53 53 4f c9 c418 : 5d c4 90 e@ 60 20 7e c2 e cba@ : ab a? @4 85 b5 20 cf ff &d
c198 : 4f 54 42 52 44 44 44 Ad fe c420 : a@ 20 a2 00 20 ca c2 20 1id cbaB : c? 20 f0 @d c? 24 f0 @9 3
cla@ : 4e 44 5S4 54 4e 45 S0 5@ ai c428 : 9a c2 81 fb cl fb f@ @3 c9 c6b@ : c9 28 f@ @5 c9 2c f@ @1 2e
claB : 49 4d 53 43 43 45 4d 4e @5 c4308 : 4c dil c2 20 39 c4 d@ ec 0O céb8 : 6@ cé bS dO eB 40 ed@ 18 48
clb@® : 5@ 56 56 45 S2 4c 4c 4c bb c438 : 68 c9 20 90 Bc c9 &B B8 49 cébc@ : 30 Be ad ae 0@ 38 e 02 ab
clb8 : 4c 45 45 4e 4e 4f 48 48 d3 c44@8 : Ba c? c@ 90 B4 c? db 9@ 90 céotc8 : 38 e5 fb 8d ae 00 a® 40 <91
clcB : 4c 4c 54 54 41 41 53 58 ee c448 : 04 a? 2e 29 3f 29 7Ff 91 30 c6dB : 608 20 7e c2 85 fd a5 fc 11
clcB8 : 58 59 45 45 4c 52 4c 52 4 c450 : dil ad 86 @2 91 £3 2@ &7 e2 céd8 : 85 fe 20 51 c3 20 e4 cb 6&d
c1ld@ : 52 41 43 41 59 58 41 S@ ba €458 : c3 cB c@ 28 60 20 &f c4 @3 cébe@ : 30 fb 10 f6 a9 0@ 85 d3 49
c1d8 : 44 43 59 58 43 43 58 59 82 c468 : 4c 66 c4 20 67 c3 a5 fb 38 céeB : 20 4c c3 20 23 c3 20 4c 8d
cle@ : 54 S@ 52 43 53 51 49 45 9 c468 : cS5 fd a5 fc e5 fe 60 28 4d cof@ : c3 20 cf ff a9 O1 B85 d3 17
cleB : 4c 43 53 49 4b 43 44 49 44 c478 : 94 c4 20 86 c4 fO Ve 20 Bb cb&f8 : a2 80 d@ @5 a2 80 8e bl 7b
c1f@ : 56 58 59 58 59 S50 41 S@ 91 €478 : 86 c4 f@ fb c? 20 do @5 @7 c78@ : 02 86 aa 20 7e c2 a? 25 e3
c1f8 : 41 5@ 49 53 58 59 58 41 52 c480 : Bd 77 B2 eb cb 60 20 e4 e c7@8 : B85 c8 2c bl 02 1@ @8 a2 39
c200 : 53 41 43 44 @8 84 81 22 3c c488 : ff 48 20 el ff f0 02 48 50 €710 : @a 20 cf ff ca d@ fa a9 90
c208 : 21 26 20 80 @3 20 1c 14 1le c498 : 60 4c db c2 a@ 28 24 ac 59 c718 : @@ 8d bl 02 28 al cb6 c? 49
c21@ : 14 10 04 Bc dB a? 08 8d S5 c498 : 10 f46 B84 cB B4 d@ a? ff d3 c720 : 46 d@ 16 46 aa 68 68 a2 2
c218 : bO 02 a? 04 Bd af @2 a9 &6 c4al@ : 20 c3 ff a9 ff B85 b8 85 f1 €728 : @82 b5 fa 48 b5 fc 95 fa Sc
c220 : O6 8d 20 d@ 8d 21 dB a9 87 c4aB : b9 ad af 02 85 ba 20 c@ 94 c73@ : 68 95 fc ca d@ f3 4c &4 a2
c228 : @3 Bd 86 B2 a2 @5 68 9d @3 c4b® : ff a2 0@ 86 d3 ca 20 c? 79 €738 : c5 c? 2e d@ 11 20 9a c2 89
c230 : a8 02 ca 10 f9 ad a9 82 46 c4bB : ff 20 cf ff 28 d2 ff c9 e7 c748 : a@ 00 91 fb d1 fb dO@ @4 @c
c238 : d@ 03 ce a8 02 ce a? 02 94 c4c@® : @d d@ f6 20 cc ff a9 91 8d c748 : 20 67 c3 cB 88 60 a2 fd 38
c240 : ba B8e ae B2 a9 52 4c ff 8c c4cB : 4c d2 ff a@ @0 bl fb 24 57 c75@ : c? 4d d@ 19 20 Pa c2 a®@ 3a
c248 : c2 20 c2 c2 f0 @b 20 7e @8 c4d@® : aa 30 02 SO Bc a2 1f dd 2b €758 : 00 c? 3f b@ ef @a aB a5 60
c250 : c2 8d a? B2 a5 fc 8d a8 4d c4dB : 3c cl €@ 2§ ca e@ 15 d@ c@ c768 : fb 99 3c @3 a5 fc cB8 99 30
c258 : 02 40 a2 a4 20 80 c2 20 19 cd4e@ : 6 a2 04 dd 49 c1 @ 21 8d c768 : 3c @3 20 al c6 95 a? e@ e4
c268 : 80 c2 d@ 1c 20 7e c2 a9 A4d c4e8 : dd 4d cl1 0 le ca d@ f3 Se c778 : fd d@ 04 a? @7 85 b7 e8 59
c268 : fe 85 fd a? ff B85 fe 20 46 c4f@ : a2 38 dd 11 c1 @ 14 ca di €778 : d@ f@ a2 38 a5 ab dd Sb 2e

134 b4 E

C 64

Hilfsprogramme

c780@
c788
c79@
c798
c7a@
c7a8
c7b@
c7b8
c7c@
c7c8
c7d@
c7d8
c7e@
c7e8
c7{@
‘c7+8
c800
c8as
c81@
c818
cB82@
c828
c830
c838
cB40
c848
c850
c858
cB860
cB68
cB870
cB878
cB880
cB888
c890
c898
cBa®
cB8a8
cB8bO
c8b8
cBc@
cBc8
c8d@
c8d8
cBe@
cBeB8
c8fa
c8f8
c700
c9e8
c910
c?18
c?20
c928
c938
c?38
c940
c948
c958
c958
c?60
c?68
c970
c?78
c988
c988
c99@
c998
c?a@
c9a8
c9b@
c7b8
c9c@
c9c8
c9d@
c9d8
c?e@
c%e8
c9f0
c?f8
ca®e
ca@d8
cal@
cal8
ca2@
ca28
ca3@
ca38
cad@
ca48
caSe
caS8
cab@®
ca&8
ca7@

W &8 #% w8 % s s s ®e ws %5 s% 4% we W as 5 a8 6 M S8 a4 6% me VE 8 S5 5 S5 85 98 s 9% a5 S8 %S U6 s S sy €8 63 U8 65 5 sr OF o8 6 65 4 w8 €8 65 S ar N Gp U2 5 U8 e N4 W5 B4 S5 U0 5 N8 62 N R S5 35 U0 a5 G5 S5 S5 B3 M5 08 00 G B8 3 U8 B8 80 W M5 s W G oW

a5
dd
cb

10
cil
c?
fa
8d
c?
a0
9d
c@
ab
a2
a2
29
20
a2
ad
b9
f4
8a
4c
22
60

20
ca
22
85
20
[=0"]
-1
a2
2e
4a
c3
aa
aS
fe
62
20
49
b
c3
8d
20
a2
c2
fa
b@
20
da
[.]"]
cf
be
26
aS
18
aS

21
ca
aS
a2
a9
fb
20
2c
a9
a2
7a
fb
&8
cé
bS
20
aS
81
aS

95
aS

bS
fe
da
c?

es4
&5
20
ca
ab

1]

20

60
b@

aa
c2
cb
26

ca78
caB@
caB8
ca9@
ca98
caa@
caa8
cab@
cab8
cac@
cac8
cad@
cad8
cae@
cae8
caf@
caf8
cbB@
cb@8
cb1@
cb18
cb28
cb28
cb30@
cb38
cb4@
cbag
cb5@
cb58
cb&@
cb&8
cb7@
cb78
cbB8@
cb88
cb?0
cb98
cba@
cba8
cbb@®
cbb8
cbc@®
cbc8
cbd@
cbd8
cbe®
cbe8
cbf@
cbf8
ccla
cc@8
ccl@
ccl8
cc20
cc28
cc3e
cc38
cc4@
cc48
ccSe
cc58
ccb@
ccéB8
cc7@
cc78
ccB80
cc8s
cce
cc?8
cca@
cca8
ccb@
ccb8
ccc@
cccB8
ccd@
ccd8
cce@
cce8
ccf@
ccf8
cdae
cd@ag
cd1@
cdi18
cd28
cd28
cd30
cd38
cd4@
cd48
cd5@
cdS8
cdé@d
cdé8

@ U a5 B ms 85 ws U8 ws w8 38 %3 s % ax WE wr S5 wa U5 @8 S5 ws WS as €8 we S8 5 S8 ar N @S S5 s G s S8 48 U5 S5 RS WA 5 un 8 w3 6 we S5 a5 6 we 68 es A5 sa O S5 35 Su 30 80 U5 WS S0 U3 S8 05 65 5 SN b 65 s2 B A OB A3 S0 O3 B0 B8 S5 GF T NP B G U @ W A0 BN

fc
85
46
fb

fb
91
cé

23
c3
a2
ba
28
c2

a2
20
fe
c3
do

a?
c?
20
b1l
i@
a4

63
c4
c@
cb
cb
ab
da

£5
c4
ba
cc
20
a2
a3
4a
cc
59
60
da
a3
4c
di
c2
fb
36
a3
&8
68
85
bc
8d
a9
ad
60

a2
&8
8d
20
a8
8d
22
a2
a?

a2
be
bf
a2
ae
7@
a9
20
2a
21
ad
86
20
c?
a2
c?
£2
cd
8d
49

20
bS
ca
45
23
aa
fb
20
c2

al

ca
ct
c9
20

&7
da
a%?
fb
ca

20
7a
fb
f6
d3
20
c4
bd
as
ca
c4
do
id
20
84
20
[=1-)
a3
ca

98
4a
a3
3c
&8
a3
4c
44
c2

ad

a2
9d
ba
fc
a2
16
52
11
ad
aa
&8
69
bc
dd
a2
bb
ba

52
8d

a2
30
ae
48
a8
4c
c3
f0
a%?
fc
c7
4a
de
7
cd
a8
bc
c2

fb
20
91
c3
b1
ca
ba

20
4c
£9
4c
a3
ca
c8

@b
eb
23
ca
dd
86
£f
a3
a?
88
c3
94

96
78
b4

24
ad
ad
do
&f

9d

de

b4
39
b4
af
57
da
a3
4c
8d
b1
a9
17
a3
&8
ez
ad
14
a3
c3
da
ef
ad
a2z

cd
9d
a3
ba
aa
cc
a2
bd
ed
ad
bc
cd
a?
cc
fc

c@

fb
c4
fb
bc
91
20
£2
8a

a2

ec
d7
bé
fd
9a

c8

39
31
Se
31
S5a
9f
Qa
f4
&7
b9
e7
a5
c9

58
£7
57

&3
86
36
8d
3d
46

dc
Sd
af
fb
aé
31
dc

eb
d2
94
le
cd
9b
b7
ec
75
fe
87
@a
a6
c4
ab
70
ca
40
b3
a3
fd
el
3f

46

@a
1S
11
99
4b
7@
61
Se
78
22
2a
49
49
b@
af
Qa
3f
a4
99
11
a4
54
al
5S4
b3

16
0
Sf
57
ca
f8

ad
98
a0
78
dc

bb
9a
8d
a2
a2
ac
be
20
c2
14
a3
b9
cc
20
bd

20
[1)
a2
48
10
fb
b
20
fa
c?
7e
c2
c4
ce
a2
bd
(0]
ce
ce

ad

("]
99
£f
40
("]
20
£f
cf
79
ad
a2
£f
£f
£f
£
£f
£f
£
£
£f
bd
e?
3a
a9
a8
£f
4c
£f
&8
a?
c3
37
57
ac
55
31
S50
£f

cd7@ : f@ 37 a2 0@
cd78 : 29 108 {0 10
cdB@ : 11 d@ ea ea
cdB88 : fd 68 do fa
cd9@ : 94 dc Be @5
cd98 : 29 80 09 11
cda@® : 95 a2 cc 8d
cda8 : 02 ae ae @02
cdb@ : @2 ae ba 02
cdb8 : 15 @3 ad a8
cdc@ : @2 48 ad aa
cdcB8 : 02 ae ac 02
cdd@ : 20 8d c2 8d
cdd8 : c2 8d bd @82
cde@® : bf @2 4c dé
cdeB8 : ae b9 @2 8d
cdf® : @3 60 ad 14
cdf8 : 8d b8 02 8e
ce@® : 8d 16 @3 a9
ce@8 : 6@ a9 @7 Bd
cel® : 85 01 a2 00
cel8 : d@ 02 e8 e0@
ce2@ : 2a 20 40 c3
ce28 : 2a f@ 9 a2
ce3® : d@ 11 Be cli
ce38 : eB8 bd dB8 cf
ced4® : cf 48 60 ca
ced48 : ce a%? 00 85
ce50 : fc B85 fe aS
ce58 : fd 20 fc c3
ceb@ : Bf ad 8d 02
ceb8 : B85 cbé a5 fc
ce78 : 4c 1f ce 20
ce78 : a2 2@ 20 ca
ce8@ : 81 fb 20 39
ceB88 : 51 c3 4c 24
ce9@ : ad cl1 82 c9
ce98 : eb ce a2 00
cea@ : c3 02 eB bd
ceaB : @2 Ba 4c cb
ceb@ : d@ @3 4c 8d
ceb8 : 8d c3 02 20
cec@® : @2 2@ 55 cf
cec8 : 02 f0 20 20
ced® : 28 c6 ff ad
ced8 : ea ea ea ea
cee@ : dO@ £3 20 cc
ceeB : 4c 49 ce 20
cef@ : 20 c? ff a@
cef8 : 20 d2 ff a6
cf@@ : dB €3 20 cc
cf@8 : Od cf 4c bé
cf1@® : ad c3 02 20
cf18 : @2 8d d? @2
cf28 : 79 cf Be db
cf28 : a2 @f 20 c9
cf30 : do 82 20 d2
cf38 : 90 5 20 cc
cf4@ : a2 Of 20 c9
cfa8 : 2 cf 20 d2
cfS@ 3 90 5 4c cc
cfS8 : a2 @8 20 ba
cfb@ : bd ff 20 c@
cf68 : a2 08 20 ba
cf78 : f1 a@ cf 208
cf78 : ff a2 30 38
cfB@ : eB8 bO 9 &9
cf88 : cf 4c b6 cf
cf9@ : 20 51 c3 a9
cf98 : a? &6f 20 96
cfa® : c9 30 d@ @6
cfaB : a5 ff 20 d2
cfb® : f6 20 ab f+
cfb8 : cf 4c 1f ce
cfc@ : ff a? @f 4c
cfcB8 : 8d 20 d@ a9
cfd® : dbé6 c2 3a 52
cfd8 : 72 ce ac ce
cfe@ : cS cf 85 cf
cfe8 : 33 20 30 20
cff@ = 30 23 42 2d
cff8 : 20 30 b7 00
Listing 1.
»SMON-komplettc-
Hauptprogramm.

Bitte beachten Sie die

Eingabehinweise auf Seite 110.

de
ef
ca
47
Qe
dc
B8e
ad
a3
ad
ad
az
20
c2
b8
8e
15
a9
17
a9
cf
£5
£+F
d2
Qa
bd
4c

bf

a4
£f
a9
20
ag
Qa
£3
55
a3
b¥f
8d
c2
8d
ad
022
a2

b
bc
a2

a3
32
d1
8e
a2
dc
[.]"]
ed

2
[=1]
of
("]
ad
a1
4c
20
20
a5
ba
aS
+f
ad
20
20
a9
o1
58
48
3a
20
31
£f

da
8d
dc
a9
ba
bb
Be
a9
ab
4@
8d
8d
a2
15
a3
95
a3
36
9d
a2

cf
aa
d8
1€
as
85
fo
("]
el
20
c2
20
cf
4c
ad
c4
c2
c2
c4
c?
ad
£
cB8
cf

bf
c8
20
a2
ds
20
o2
bd

cf
bd
a8
a8
20
a8
a2
c@
a3
8c
90
£
ff
20
de
be
c3
a6
4c
40
ce
31
3a
33
oa

9c
95
48
ba
74
76
e7

9b
3c
17
4d
b1

aS
a+

&3
11

b1l

2a
4c
3c
b2
£7
d7
57
b2
54
b3
a9
10
57
a6
c4
99
11

35
23
a9
14
fa
70
Sa
ab
42
a7
79
df

b8
S6
a3
c2
9b

25
el

a4
24
49
9
3c

Sf

&2
eb

i@
a4
38
13
ac
£7
d3
&b
d9
d3
&S
Sa
der
b
az
bé
12
f1

19
ie

135

Hilfsprogramme

C64

programm : ndisass ce@9 cf3d

ce@? : 2b 4b 6b 8b 9b ab bb cb c4
cell : eb 89 93 9f @b 9c Fe 4e 46
cel? : 53 52 53 52 533 4c 44 49 {0
ce2l : 43 4f 4c 4c 52 52 41 41 e8
ce2? : 43 S3 52 5@ 4f 41 45 41 4b
ce31l : 58 58 50 43 41 25 26 20 48
ce39 : 21 82 80 81 22 21 82 81 24
ced4l : @3 13 @7 17 1b @Of 1f 97 48
ced? : d7 bf df 02 82 02 B2 @3 76
ceS51 : @3 @3 02 02 03 @3 a2 02 ée
ceS59? : d@ 28 a6 ad d@ 2b a2 81 9@
cebl : bl fb c? 9c f@ 38 c? 80 Of
ceb? : f@ ec c9 89 f0 eB 29 @f 8c
ce7l : c9 @02 f@ 16 c? 0a fO Ba ff
ce79 : eB c? 04 f0 @S eB c? @c 3c
ceBl : d@ 1c 86 b6 a2 @1 8e cS5 do
ce89 : B2 4@ bl fb 29 90 49 80 e4
ce?l : dO@ @04 a2 @2 d@ ec 86 bs 48
ce?9 : a2 0a 8e cS 02 60 a@ 02 46
ceal : 84 b6 a@ @@ 8c cS5 02 b1 @b
cea? : fb a2 @f dd 08 ce f@ d9 e3
cebl : ca d@ 8 29 01 f@ d2 bl 8d
ceb? : fb 4a 4a 4a 4a 4a 18 69 df
cecl : @2 8d c5 @2 a2 @b bl fb 7d
cec? : 3d 40 ce dd 40 ce f@ @3 da
cedl : ca d@ f3 bd 35 ce 85 ab ef
ced? : bd 4b ce B85 bs 460 al 0@ 91
ceel : ab ad f0 @6 20 4c c3 4c &7
cee? : da cS5 ae c5 82 dO 06 28 @9
cefl : 4c €3 4c c9 c5 a9 2a 20 fe
cef? : d2 ff bd 17 ce 20 d2 ff 56
cf@1 : bd 21 ce 20 d2 ff bd 2b 81
cf@? : ce 4c 16 cé6 a9 @0 B8d 6b @3
cfll : c@® B8d &6c c@ a? 4c 8d 29 5@
cfl9 : cS Bd be cS5 a? 20 8d 30 3f
cf21 : cd a? S5b 8d 2a c5 a9 ce 6@
cf2? : Bd 2b cS5 a? df 8d bf c5 e7
cf31l : 8d 31 cd a? ce 8d c@ c5 e7
cf39 : 8d 32 cd @@ 4c B8c cf a2 @@

Listing 2. Mit dieser Erweiterung
lassen sich illegale Opcodes
disassemblieren.

cd21 : a2 @0 bd al cd 20 d2 ff 9@
cd29 : eB ed @6 90 5 68 20 75 e3
cd31 : c2 a2 fd 20 77 c2 a5 fd e8
cd39 : 8d a4 cd a5 fe B8d a5 cd cf
cd4l : a? 20 8d ab cd 20 19 cd 10
cd49 : al@ 0@ bl fb 20 d2 ff c8 ff
cdS1 : c@ 20 9@ f6 18 a9 20 &d A4e
cdS? : a4 cd b@ @c 8d a4 cd a9 1la
cdbél : 20 &5 fb 85 fb 4c 46 cd ba
cdbé? : 20 cc ff 20 c4 cf a? @8 7S5
cd71 : Bd aé cd 4c B2 cc a9 @f %a
cd79 : aB a2 08 2@ ba ff a? 8@ cb
cdB1 : 20 bd ff 4c c@ ff 20 e4 &0
cd8? : ff f@ fb 40 4c fe cd @d 19
cd?1 : 3e 456 4c 4f SO 2d 4d 4f 32
cd99? : 4e 0@ 4d 2d 52 0@ @0 ff @5
cdal : 4d 2d 57 @0 @0 @8 3a 4d 1f
cda? : 56 58 40 ea cc 92 cc 2¢ 8a
cdbl : cd Bc cd 76 cf a9 @@ 8d 6¢
cdb? : 22 c@ a9 46 Bd df cf a9 d9
cdcl : cb Bd eb cf a9 f@ 8d ea 76
cdc? : cf 0@ 56 40 58 ea cc 92 &b

Listing 3. (SchluB)

programm : floppymon m&t cbf1 cdcb

cbfl : a9 36 85 01 a2 @0 bd 90 79
cbf? : cd f0 046 20 d2 ff eB8 d@ 36
cc@1 : £f5 20 48 c3 a2 3e 20 37 %c
cc@? : c3 20 cf ff c9 3e fO0 f9 16
ccll : c9 20 f@ f5 a2 @5 dd aé fc
ccl? : cd f@ @9 ca d@ f8 20 48 e0
cc21 : c3 4c @S cc Ba @a aa e8 Sb
cc29 : bd aa cd 48 ca hd aa cd 99
cc31 : 48 60 20 b9 c2 dO Ba a9 17
cc3? : 00 8d e cd Bd 9f cd f@ S0
cc4l : 1a 20 84 c2 8d 9f cd 20 32
cc49 : b9 c2 dO @7 a? @@ 8d Fe 86
ccSl : cd f0 @8 20 84 c2 29 f8 <91
ccS59 : 8d 9e cd 20 77 cd a2 @f 3b
ccbl : 20 c9 ff a2 @@ bd 9b cd b2
ccé? : 20 d2 ff e8 e@ @6 90 f5 7c
cc71 : 20 cc ff a2 Bf 20 cé& ff 59
cc79 : al 00 20 cf ff 99 @0 bf &8
ccB1l : cB d@ f7 20 cc ff 4c c4 3b
ccB89 : cf a? bf 85 fc a7 @@ B85 5
cc91 : fb 6@ 20 33 cc 20 Ba cc bc
cc99 : a2 3a 20 37 c3 ad 9f cd @b
ccal : 20 21 c3 ad 92 cd 20 21 13
cca? : c3 a@ 20 a2 00 20 43 c3 ae
ccbl : 20 43 c3 al fb 29 21 c3I &5
ccb? : al fb 20 20 c4 d@ f1 a9 52
cccl : @8 18 &6d 9e cd 8d 9e cd 44
ccc? : @8 c9 8 d@ @6 20 S5c cc 7a
ccdl : 20 Ba cc 28 90 09 ee 9f bb
ccd? : cd 20 Sc cc 20 8a cc 20 31
ccel : 87 cd 20 el ff dB@ bl 4c 79
cce? : @2 cc 20 75 c2 a5 fb Bd &c
ccfl : a4 cd aS fc 8d a5 cd 20 02
ccf? : 19 cd a@ 20 a2 00 20 c1 S3
cd@1 : c2 20 cl1 c2 20 91 c2 20 76
cd@? : d2 ff 20 20 c4 dO@ f2 20 cé&
cdil : cc ff 20 c4 cf 4c @7 cc 93
cdl9 : 20 77 cd a2 Of 20 c9 ff db

Listing 3. Komfortabler
Disketten-Monitor. Bitte beachten
Sie die Eingabehinweise auf
Seite 110. (Fortsetzung)

programm : ndisass m&t ce@% cf3d

ce@? : 2b 4b 6b 8b 9b ab bb cb c4
cell : eb 89 93 9f @b 9c e 4e 46
cel? : 53 52 53 52 53 4c 44 49 {0
ce21 : 43 4f 4c 4c S52 52 41 41 eB
ce29 : 43 53 52 50 4f 41 45 41 4b
ce3l : 58 58 5@ 43 41 25 26 28 48
ce3? : 21 82 8@ 81 22 21 82 81 24
ce4l : @3 13 @7 17 1b Bf 1f 97 48
ced49 : d7 bf df 02 02 @2 @2 B3 76
ceS1 : 83 @3 02 92 @3 @3 a2 B2 be
ce59 : d@ 28 a6 ad d@ 2b a2 01 90
cebl : bl fb c9 9c f@ 38 c? 8@ 0Of
ceb? : f@ ec c? 89 f0 eB 29 Bf 8¢
ce7l : c? @2 f@ 16 c9 Qa O Ba ff
ce79 : eB8 c? 04 f0 05 e8 c? Bc 3c
ceBl : dB 1c 86 bé a2 @1 Be cS5 do
ceB8? : @2 4@ bl fb 29 90 49 8@ e4
ce91 : d@ 04 a2 @2 d@ ec B&6 bé 48
ce9? : a2 0a Be cS 02 6@ a@ 02 46
ceal : B84 b6 a@ B8 8c c5 082 bl @b
cea? : fb a2 @f dd 08 ce f@ d9 e3
cebl : ca d@ 8 29 01 f0 d2 b1 8&d
ceb? : fb 4a 4a 4a 4a 4a 18 469 df
cecl : @2 8d cS @92 a2 @ bl fb 7d
cec? : 3d 48 ce dd 40 ce f@ @3 da
cedl : ca d@ f3 bd 35 ce 85 ab ef
ced? : bd 4b ce 85 bé 40 al 00 <91
ceel : ab ad f@ @6 20 43 c3 4c 1le
cee? : be cS5 ae cS 02 d@ @6 20 ed
cefl : 43 c3 4c ad cS a? 2a 28 71
cef? : d2 ff bd 17 ce 20 d2 ff 56
cf@1 : bd 21 ce 20 d2 ff bd 2b 81
cf@9 : ce 4c 8 cS5 a%? @0 B8d 68 86
cfl1l : c@ B8d 61 c@ a9 4c 8d 18 Sc
cf19 : c5 8d a2 cS a9 20 B8d 28 28
cf21 : cd a9 Sb 8d 11 c5 a? ce cf
cf29 : 8d 12 c5 a? df 8d a3 c5 ea
cf31 2 8d 29 cd a? ce Bd a4 cS5 73
cf39 : 8d 2a cd @@ 4c 8Bc cf a2 fc

Listing 4. lllegale Opcodes disas-
semblieren mit der M&T-Version
des SMON

cc49 : c2 c2 d@ @7 a9 @0 Bd c@ d4
ccS1 : cd f@ @8 20 8d c2 29 f8 22
ccS59 : Bd c@ cd 208 77 cd a2 @f A4c
cchl : 208 c9 ff a2 @@ bd bd cd 3a
cchb9 : 20 d2 ff eB e@ 06 90 £S5 7c
cc71 : 20 cc ff a2 @f 20 c6 ff S5S9
cc79 : aB @8 20 cf ff 99 00 bf 68
ccBl : cB8 d@ f7 20 cc ff 4c bc 2b
cc89 : cf a? bf 85 fc a? @@ B85 5
cc?l : fb 60 20 33 cc 208 8a cc bc
cc99 : a2 3a 20 4@ c3 ad c1 cd bS
ccal : 20 2a c3 ad c@ cd 20 2a cc
cca% : c3 a@ 20 a2 @00 20 4c c3 d2
ccbl : 2@ 4c c3 al fb 20 2a c3 @d
ccb9 : al fb 2@ 39 c4 d@ f1 a9 7S
cccl : @8 18 6d c@ cd 8d c@ cd 31
cec? : @8 c? 8 d@ B6 28 Sc cc 7a
ccdl : 20 Ba cc 28 90 @9 ee cl1 ff
ccd? : cd 20 Sc cec 20 Ba cc 20 31
ccel : 87 cd 20 el ff d@ bl 4c 79
cce? : 02 cc 20 7e c2 aS fb 8d 8e
ccfl 2 c6 cd a5 fc 8d c7 cd 20 35
ccf? : 19 cd a@ 20 a2 @@ 20 ca &5
cd@1 : c2 20 ca c2 20 %a c2 20 0@
cd@9 : d2 ff 20 39 c4 dO f2 20 e9
cdil : cc ff 28 bc cf 4c @7 cc 92
cdi9 : 20 77 cd a2 Bf 20 c9 ff dé
cd21 : a2 @@ bd c3 cd 20 d2 ff d4
cd29 : eB8 e@ 06 90 5 60 20 7e 5
cd31 : c2 a2 fd 20 80 c2 a5 fd 78
cd39 : 8d cé cd a5 fe Bd c7 cd 648
cd4l : a9 20 8d cB8 cd 20 19 cd 55
cd49 : a@ 00 bl fb 20 d2 ff c8 ff
cdS1 : c@ 20 98 f6 18 a9 20 &6d A4e
cdS9 : c6 cd b@ Bc 8d cé& cd a? 4d
cdbl : 20 65 fb 85 fb 4c 46 cd ba
cdb69 : 20 cc ff 20 bc cf a9 08 {4
cd71 : B8d c8 cd 4c @82 cc a9 Bf ab
cd79 : aB a2 @8 20 ba ff a9 00 cb
cdB81 : 20 bd ff 4c c@ ff 20 e4 60
cdB89 : ff f@ fb 60 20 c2 c2 d@ d@
cd?1 : @3 4c 86 cf a9 @8 20 b1 15
cd?9 : ff a9 6f 20 93 ff 20 cf ab
cdal : ff 20 a8 ff c9 @d d@ f& 11
cda? : 20 ae ff 4c 02 cc 4c 09 74
cdbl : ce Od 3e 46 4c 4f S0 2d 39
cdb? : 4d 4f 4e B0 4d 2d 52 0@ c9
cdcl : @@ ff 4d 2d 57 @@ @0 @8 3f
cdc9 : 3a 4d 56 40 S8 ea cc 92 7d
cddl : cc 2e cd B8c cd ae cd a? 96
cdd? : 8@ Bd 22 c@® a9 46 8d d7 3
cdel : cf a9 cb 8d e3 cf a? f@ 6f
cde9 : 8d e2 cf 0@ @3 Be 15 @3 da

Listing 5. (SchluB)

programm : floppymon cbfl cded

cbfl : a9 36 85 @1 a2 9@ bd b2 bd
cbf? : cd f@ @06 20 d2 ff eB d@ 36
cc@1 : f5 20 51 c3 a2 3Je 20 40 0
cc@9 : c3 20 cf ff c9 3e 0 9 16
ccll : c9 20 f0 5 a2 @05 dd c€ 40
ccl? : cd f@ @9 ca dO 8 20 51 2
cc21 : 3 4c @5 cc Ba Qa aa eB8 Sb
cc29 : bd cc cd 48 ca bd cc cd 32
cc31 3 48 60 28 c2 c2 dB® Ga a9 38
cc39 : 80 8d c@® cd 8d cl cd f@ ea
cc4l : 1a 20 8d c2 8d cl cd 20 85

Listing 5. Komfortabler Disketten-
Monitor fiir die M&T-Version
(Fortsetzung)

programm : illegal-code 4000 4@f4

4000 : 87 87 c7 c7 e7 e7 a7 a7 el
4008 : 27 27 &7 &7 B7 @7 47 47 de
4010 : d7 d7 7 f 37 aa 17 6@ b6
4018 : 57 20 97 13 b7 20 8f @f a0
4020 : cf cf 01 B8f ef 20 Bc af 99
4228 : 19 2@ 2f 24 30 bf 460 60 62
4030 : Of Oc 04 4f 20 2a df 05 @d
4038 : @6 ff Bf B4 3f &0 60 7F fa
4040 : @3 Od 1f 20 23 5f 32 30 ec
4048 : db &@ 20 fb @5 11 bf 01 bS
4058 : @4 3b @3 Of 7b 12 33 1b ed
4058 : 6@ @1 Sb 12 @3 83 12 c3 be
4068 : 32 e3 Bc a3 18 23 @1 63 61
40468 : 01 @3 31 43 31 d3 19 f3 e
4070 : 6@ b3 Bc 33 01 73 @01 13 e9
40378 : @1 53 32 53 32 ea &6d 54 3
4088 : 6b @3 81 @9 ab @7 b9 B2 7c
4088 : 43 27 9d @6 ae @7 al 1la &5
4090 : Sb 3f BS le bs @f a9 12 Sf
4098 : 53 37 8d 16 be 2f 91 2a ad
42a@ : 6b @f bS5 2e B6 &7 99 22 14
40a8 : 63 @7 bd 26 Be 67 B1 3a 62
40b@ : 7b 1f aS 3e 9b 43 b2 21 cd
42b8 : 57 bd b6 b@ 4a b5 20 43 @b
40cB : ef 36 ce 95 59 ee 49 c4 ec
40c8 : 3f cl ee 4d e7 3a f@ 54 @Qa
40d@ : 72 d1 00 f7 le f7 f@ f@ 71
4@d8 : Sa 7b aa 6@ fc f7 c? 6@ 1le
40e@ : 42 95 59 @5 cb f2 ea e4 ae
40e8 : 92 a4 el 94 al c2 @3 fb @b
400 : 08 S4 20 00 00 Q0 20 2@ 23

Listing 6. Mit dem Befehl D 4000
erscheinen alle illegalen Opcodes
disassembiliert auf dem Bildschirm

136

ba-Er,

