
64'er Extra C 64

64-er Extra

Das 64'er Extra bringt ge­
ballte Information iiber lhren
C 64 zum Herau$trennen und
Sammeln.

In dieser siebten Ausgabe
finden Sie den dritten Teil ei­
ner Übersicht über alle ROM-
Routinen des C 64. Statt ziel­
los in ROM-Listings zu blät­
tern, finden Sie hier im Klar­
text die Funktionsbeschrei­
bung aller irgendwie nutzba­
ren Routinen.

LINES SECFO
Niederwertiges Byte der Tabelle der Bildschirmzeilen.

TALK SED09
Kernel-Routine TALK.

LISTN $EDOC
Kernel-Routine LISTN.

SEND SED16
Sendet mit OR behandeltes Zeichen.

SET $ED62
Sendet 8 Datenbits.

SECND $EEC0
Kemel-Routlne SECOND.

SCATN $EDBE
Gibt ATN frei.

TKSA SEDC7
Kernel-Routine TKSA.

CIOUT SEDDD
Kemel-Routine CIOUT.

UNTKL SEDEF
Kernel-Routine UNTALK.

UNLSN SEDFE
Kernel-Routine UNLSN.

DLABYE SEE03
Gibt alle Leitungen frei.

ACPTR SEE13
Kernel-Routine CPTR.

ACPOOC $EE47
»TIMEOUT« Ausführung.

ACPO1 SEE56
Empfängt 8 Datenbits.

CLKHI $EE85
Clock-Leitung high

CLKLO SEE8E
Clock-Leitung low

DATAHI SEE97
Data-Leitung high

DATALO $EEA0
Data-Leitung low

DEBCIA SEEA9
CIA-Entprellung.

WLMS SEEB3
Verzögerungsschleifen.

RSTRAB SEEBB
Teil der Routine, die von NMI verwendet wird, wenn er RS232-Übertragung bedient.

RST010 SEED7
Berechnet Parität. Beim Eintritt ist NXTBIT=O.

RST050 $EFOO
Verarbeitung der Stop-Bits.

RSTBGN SEF06
Einsprung: Beginnt die Übertragung eines Bytes.

RST060 $EF13
Bereitet das Senden des nächstens Bytes vor.

DSRERR SEF2E
Legt RS232-Fehler in ST ab.

BITCNT $EF4A
Ermittelt die Zahl der zu sendenden Bits+1.

RSRCVR $EF59
Sammelt Bits zu einem Byte während NMI.

RSR030 $EF97
Überträgt Daten in den Puffer für Paritätsprüfung.

ECERR $EFCA
Meldet Empfangsfehler.

CK0232 $EFE1
Gibt über die RS232-Schnittslelle am USER-Port eine Datei aus.

BSO232 SF014
Gibt ein RS232-Zeichen aus.

BSO11O SF02E
Macht die MNIs des Timers 1 in CIA scharf (unterschiedlich zwischen den Kemelversionen 0
und 3).

CKI232 $F04D
Liest über die RS232-Schnittstelle (über den Usen-Port) eine Datei ein.

BSI232 SF086
Liest ein RS232-Zeichen ein.

RSP232 $F0A4
Schützt seriellen Bus und Bandbetrieb vor NMIs.

SPMSG SF12B
Gibt die Bandbetriebsmeldung von der Tabelle ab SFOBD aus, falls durch Flag bei $9D freige­
geben.

NGETIN $F13E
Kernel-Routine GETIN.

NBASIN $F157
Kernel-Routine CHRIN.

JTGET1 $F179
Holt ein Zeichen vom Band.

BSCOUT $F1CA
Kernel-Routine CHROUT.

CASOUT $F1DD
Sendet ein Zeichen zum Kassettengerät.

NCHKIN $F20E
Kernel-Routine CHKIN.

NCKOUT $F250
Kernel-Routine CHKOUT.

NCLOSE $F291
Kernel-Routine CLOUSE.

NCLALL SF32F
Kernel-Routine CLALL

NOPEN $F34A
Kernel-Routine OPEN.

0P152 SF38B
OPEN für Kassettendatei.

OPENI SF3D5
OPEN für Datei für ein serielles Gerät (Drucker, Diskettenlaufwerk).

0PN232 $F409
OPEN für eine RS232-Datei.

LOASP $F49E
Kernel-Routine LOAD.

LD25 SF4BF
LOAD für Diskette.

LD102 SF539
LOAD für Kassettengerät.

SAVESP SF5DD
Kernel-Routine SAVE.

SV21 SF5FA
SAVE für Diskette

SV102 S65F
SAVE für Kassettengerät.

UDTIMK SF69B
Kernel-Routine UDTlM.

RDTIMK SF6DD
Kernel-Routine RDTIM.

SETTMK SF6E4
Kernel-Routine SETTIM.

NSTOP $F6ED
Kernel-Routine STOP.

ERROR1 $F6FB
Tabelle der l/O-Fehlernummern1...9 und -meldungen.

FAH $F72C
Lädt nächsten Kassettenvorspann.

TAPEH $F76A
Schreibt Kassettenvorspann.

FAF $F7EA
Lädt angegebenen Kassettenvorspann.

TRD SF84 A
Lädt vom Kassettengerät.

TWRT SF867
Schreibt zum Kassettengerät.

READ $F92C
Kassetten-Lese-Routinen.

WRITE SFBA6
Routinen für Schreiben auf Kassette.

START $FCE2
Reset-Routine. Einschalten des »64« oder ein Reset-Schalter verursachen einen Sprung hier­
her, SYS 64738 springt hierher, es sei denn, das RAM unter dem Kernel ist aktiviert. Ist bei
$8000 ein Modul vorhanden, erfolgt JMP ($8000), andernfalls laufen RAMTAS, RESTOR. lOI-
NIT, CINT und ein Basic-Kaltstart ab. Sonstiges RAM bleibt unverändert; Basic-Programme las­
sen sich daher wiedergewinnen.

RESTOR SFD15
Kernel-Routine RESTOR.

VECTOR SFD1A
Kernel-Routine VECTOR.

RAMTAS SFD50
Kernel-Routine RAMTAS.

IOINIT SFDA3
Kernel-Routine IOINIT.

SETNAM SFDF9
Kernel-Routine SETNAM.

SETLFS SFEOO
Kernel-Routine SETFLS.

READST SFE07
Kernel-Routine READST.

SETMSG $FE18
Kernele-Rouline SETMSG.

SETTMO $FE21
Kernel-Routine SETTMO.

MEMTOP $FE25
Kernel-Routine MEMTOP.

88 ^ Ausgabe 3/März 1986

C 64 64'er Extra

MEMBOT $FE34
Kernel-Routine MEMBOT.

NMI $FE43
NMI-Routine. Alle NMIs laden hier (es sei denn, der Kernel wurde im RAM modifiziert) und wer­
den über den Vektor in ($0318) gelenkt. STOP-RESTORE, RS232-Betrieb und benutzerdefi­
nierte NMIs werden sämtlich hier verarbeitet.

TIMB $FE66
POST-RESTORE oder die BRKs »Not-Rücksetz-Routine«.

NNM121 $FE66
Prüft RS232-Schnittstelle und sendet Bit, wenn möglich.

NNM130 $FEA3
Prüft RS232-Schnittstelle und empfängt Bit, wenn möglich.

BAUDOT SFEC2
Baudaten-Tabelle für RS232

T2NMI SFED6
Behandelt Eingang eines RS232-Bits.

FLNMI SFF07
Behandelt zeitliche Abstimmung des Startbits für RS232.

PULS SFF48
Einsprung für IRO oder BRK. Alle IRQ-Interrupts laufen über diesen Punkt (es sei denn, der
Kernel wurde am RAM modifiziert). IRO lenkt ein Vektor in ($0314), BRK-Befehle ein Vektor in
($0316); Änderungen beider Routinen durch den Benutzer sind daher häufig.

CINT SFF81
Setzt die Interrupt-Frequenz.

IOINIT SFF84
Initialisiert die Ein-/Ausgabe-Chips.

RAMTAS SFF87
Testet und setzt RAM.

RESTOR SFF8A
Restauriert Standard-Ein-/Ausgabevektoren.

VECTOR SFF8D
Speichert/setzt Ein/Ausgabevektoren.

SETMSG EFF90
Gibt Meldung zum Bildschirm aus.

SECOND SFF93
Sendet Sekundäradresse nach LISTEN über den seriellen Bus.

TKSA SFF96
Sendet Sekundäradresse nach TALK über den seriellen Bus.

MEMTOP $FF99
Liest/setzt die obere Grenze des Speichers für Basic.

MEMBOT SFF82
Liest/setzt die untere Grenze des Speichers für Basic.

SCNKEY SFF9F
Naturabfrage.

SETTMO SFFA2
Setzt TIMEOUT für seriellen Bus.

ACPTR $FFA5
Holt ein Byte von einem seriellen Gerät (gewöhnlich Floppy-Disk).

CIOUT SFFA8
Gibt ein Byte zum seriellen Bus aus (gewöhnlich für Drucker oder Floppy-Disk).

UNTALK $FFAB
desaktiviert sendende Geräte am seriellen Bus.

UNLSN $FFAE
desaktiviert empfangende Geräte am seriellen Bus.

LISTN SFFB1
Schaltet Gerät am seriellen Bus auf Empfang (gewöhnlich Drucker oder Floppy-Disk).

READST $FFB7
Liest das Status-Byte nach A ein.

SETLFS $FFBA
Setzt Dateinummer, Gerät, Sekundäradresse.

SETNAM FFBD
Setzt Dateinamen.

OPEN SFFCO
Offnet Datei zum Lesen/Schreiben.

CLOSE $FFC3
Schließt eine Datei.

CHKIN SFFC6
Eröffnet Eingabekanal.

CHKOUT SFFC9
Eröffnet Ausgabekanal.

CLRCHN SFFCC
Schließt Kanal, stellt die Standardbedingungen für I/O wieder her.

CHRIN $FFCF
Holt ein Zeichen.

CHROUT $FFD2
Gibt ein Zeichen aus.

LOAD $FFD5
Lädt ein Programm (von Diskette oder Band).

SAVE SFFD8
Speichert einen Bereich als Programm (auf Diskette oder Band).

SETTIM $FFDB
Setzt Taktzähler. (BASIC 2 VERIFY)
RDTIM SFFDE

Uest Taktzähler. (BASIC 2 SYS)
STOP SFFE1

Prüft auf die STOP-Taste
GETIN SFFE4

Holt ein Zeichen (gewöhnlich von der Tastatur — GET).
CLALL SFFE7

Beendet jeglichen I/O-Betrieb und schließt alle Dateien.
UDTIM SFFEA

Addiert 1 zum Taktzähler; auf Null stellen, wenn 240 000.
SCREEN SFFED

Holt Anzahl von Zeilen und Spalten.
PLOT SFFFO

Liest/setzt Cursor.
OBASE SFFF3

Startadresse des Tastatur-VIA.

Nützliche PEEKs und POKEs
PRINT PEEK(17)

Anzeige von 0: die letzte Eingabe wurde über die Anweisung INPUT vorgenommen
Anzeige von 64; die letzte Eingabe wurde über die Anweisung GET vorgenommen
Anzeige von 152: die letzte Eingabe wurde über READ vorgenommen

PRINT PEEK(43)+256*PEEK(44)
Ausgabe der Adresse, von wo aus das Basic-Programm gespeichert ist

PRINT PEEK(45)+256*PEEK(46)
Ausgabe der Adresse, bis wohin das Basic-Programm reicht

PRINT PEEK(47)+256*PEEK(48)
Ausgabe der Adresse, bis wohin die Variablen reichen

PRINT PEEK(49)+256*PEEK(50)
Ausgabe der Adresse, bis wohin die Felder reichen

PRINT PEEK(55)+256*PEEK(56)
Ausgabe der Adresse, bis wohin der Basic-Arbeitsspeicher reicht

PRINT PEEK(57)+256*PEEK(58)
Ausgabe der Nummer der momentan bearbeiteten Programmzeile

PRINT PEEK(63)+256*PEEK(64)
Ausgabe der Nummer derjenigen DATA-Zeile, aus der Daten entnommen werden (READ-Befehl)

PRINT CHR$(PEEK(69)AND127) + CHRS(PEEK(70)AND127)
Ausgabe des zuletzt benutzten Variablennamens

PRINT PEEK(198)
Ausgabe der Anzahl der im Tastaturpuffer gespeicherten Zeichen

POKE 198,0
Der Tastaturpuffer wird geleert

PRINT PEEK(214)
Ausgabe der Nummer der Zeile, in der sich der Cursor befindet; dabei werden die Zeilen von 0
bis 24 (=25 Zeilen) gezählt

POKE 214,Z : POKE 211,S : SYS 58640
Diese Befehlssequenz setzt den Cursor unmittelbar auf die mittels Z und S angegebene
Zeilen- beziehungsweise Spaltenposition, wobei die Zeilen von 0 bis 39 und die Spalten von 0
bis 24 gezählt werden

PRINT PEEK(641)+256'PEEK(642)
Ausgabe der Adresse, von wo ab der für Basic nutzbare RAM-Bereich beginnt

PRINT PEEK(643)+256*PEEK(644)
Ausgabe der Adresse, bis wohin der für Basic nutzbare RAM-ßereich reicht

POKE 641,AL : POKE 642,AH : SYS 58260
Die Anfangsadresse für Basic-Programme wird auf den Wert AL+256'AH festgelegt

POKE 643,EL : POKE 644,EH : SYS 58260
Die Endadresse für den Basic-Arbeitsspeicher wird auf den Wert EL+256*EH festgelegt

PRINT PEEK(646)
Anzeige der Nummer der momentanen Zeichenfarbe

POKE 646,F
Einstellen der Zeichenfarbe, wobei F der Farbnummer entspricht

POKE 649,MX
MX ist eine Zahl zwischen 0 und 10; diese POKE-Anweisung legt fest, wieviele Zeichen sich
maximal im Tastaturpuffer befinden dürfen (der Grundwert ist 10); wenn also MX=0 gewählt
wird, ist die Tastatur völlig abgeschaltet und keine Eingabe mehr ist möglich (Vorsicht!!)

POKE 650,128
Die Tasten-Wiederholungs-Automatik wird auf alle Tasten ausgedehnt

POKE 650,64
Die Tasten-Wiederholungs-Automatik wird für alle Tasten abgeschaltet

POKE 650,0
Die Tasten-Wiederholungs-Automatik wird für die INST DEL-, die Leertaste und die Cursortasten
eingeschaltet (Grundwert)

PRINT PEEK(653) AND 7
Anzeige von 0: keine der Tasten SHIFT, CBM oder CTRL gedrückt
Anzeige von 1: die SHIFT-Taste ist gedrückt
Anzeige von 2: die CBM-Taste befindet sich in gedrückter Haltung
Anzeige von 4: die CTRL-Taste befindet sich in gedrückter Haltung
Anzeige von 3,5,6,7: diese Zahlen ergeben sich aus der Addition zweier oder aller drei oben
beschriebenen Werte und geben somit an, daß sich die den Summanden zugeordneten Tasten
in gedrückter Haltung befinden

POKE 657,128
Umschaltungsverriegelung von dem Großschrift/Grafik-Modus in den Klein-/Großschrift-Modus

POKE 657,0
Aufheben der Verriegelung (siehe voriger POKE-Befehl)

POKE 775,200
LIST-Schutz einschalten

POKE 775,167
LIST-Schutz ausschalten

POKE 788,52
RUN-STOP-Taste wirkungslos machen

POKE 788,49
RUN-STOP-Taste reaktivieren

POKE 801,0 : POKE 802,0 :
Nach dieser Befehlssequenz wird das Speichern eines Programms unmöglich gemacht

POKE 808,225
RUN-STOP- + RESTORE-Taste wirkungslos machen, außerdem erscheint ein »verrücktes« Li­
sting

POKE 808,237
RUN-STOP- + RESTORE-Taste reaktivieren

POKE 53265,11
Bildschii minhalt unsichtbar machen, ohne daß dcbsen Inhalt verK*rengent

POKE 53265,27
Bildschirniinl^lt wieder sicntbar macnen

WAIT 56320,16,16
Warten, bis beim Joystick Port 2:
der Feuerknopf gedrückt wird,

WAIT 56320,4,4
Linksbewegung vorgenommen wird,

WAIT 56320,1,1
Bewegung nach oben erfolgt.

WAIT 56320,2,2
Bewegung nach unten erfolgt,

WAIT 56320,8,8
Rechtsbewegung vorgenommen wird

WAIT 56321,16,16
Warten, bis beim Joystick Port 1:
der Feuerknopf gedrückt wird,
(Richtungsabfragen anak>g zu Joystick Port 2)

Ausgabe 3/März 1986 ^ 89

