
Software-Test

E
ntstanden ist der Assembler aus 
dem in Ausgabe 7/85 bezie­
hungsweise Sonderheft 8/85 
veröffentlichten Hypra-Ass. Jedoch 

ist Top-Ass, wie der neue Assembler 
heißt, um viele Funktionen erweitert 
worden. Außerdem befinden sich 
auf der Diskette ein zusätzlicher Mo­
nitor und Programme, die das Ar­
beiten mit Top-Ass zum Genuß wer­
den lassen.

Der Editor
Die Geschwindigkeit, mit der Top- 

Ass einen Quelltext in Maschinen­
sprache übersetzt, liegt um ein Viel­
faches höher als beim Hypra-Ass. 
Erreicht wurde dieser Geschwin­
digkeitszuwachs, weil der Quelltext 
nicht im ASCII-Format im Speicher 
abgelegt wird, sondern als Token. 
Daraus resultiert ein weiterer Vor­
teil. Top-Ass überprüft nämlich 
schon während der Erstellung des 
Quelltextes auf eventuell vorhande­
ne Syntax-Fehler und zeigt sie an. 
Pseudo-Opcodes, also Steueranwei­
sungen an den Assembler, können 
wie ganz normale Basic-Befehle ab­
gekürzt eingegeben werden. So­
bald RETURN gedrückt wird, er­
scheinen sie voll ausgeschrieben 
auf dem Bildschirm. Außerdem 
wird die jeweils zuvor bearbeitete 
Quelltextzeile genauso wie bei Hy­
pra-Ass formatiert ausgegeben. Die 
Editorbefehle sind weitgehendst 
identisch zu denen von Hypra-Ass. 
Die einzigen Befehle, die neu hinzu­
gekommen sind, beziehen sich auf 
die formatierte Ausgabe des Quell­
textes. Unter Top-Ass läßt sich mit 
Hilfe der Editorbefehle ».-« bezie­
hungsweise ». + « die formatierte 
Ausgabe aus- beziehungsweise ein­
schalten.

Der Assembler
Die eigentlichen Vorteile von Top- 

Ass gegenüber jedem anderen As­
sembler ist der Top-Assembler 
selbst. In ihm wurden alle Besonder­
heiten der zur Zeit erhältlichen As­
sembler für den C 64 eingebaut. So 
liegt zum Beispiel die maximale Ver­
schachtelungstiefe für Makros bei 
über 80 Makros, bei denen es sich 
bekanntlich um kurze, häufig auftre­
tende Befehlsfolgen handelt. Dies 
gehört heute zum Standard eines gu­
ten Assemblers. Was aber die we­
nigsten beherrschen, ist die Defini­
tion eines Blocks. Innerhalb eines 
Blocks sind alle Label und Variablen 
lokal. Dies erleichtert das Einfügen 
von Quelltext ganz erheblich und er­
höht die Übersichtlichkeit des Pro­
gramms. Denn man braucht sich kei­

ne Gedanken mehr darüber ma­
chen, ob einige Label vielleicht dop­
pelt verwendet wurden. Definiert 
man einen Quelltextteil als Block, so 
ist es gleichgültig, ob zum Beispiel 
das Label »LOOP« schon einmal au­
ßerhalb des Blocks benutzt wurde. 
Der Assembler erkennt automa­
tisch, daß es sich bei den beiden La­
bel um unterschiedliche Label han­
delt.

Neben den normalen, frei defi­
nierbaren Makros sind im Top-Ass 
schon sogenannte Minimakros inte­
griert. Sie enthalten Befehle für 
16-Bit-Operationen und zur beding­
ten Verzweigung über den gesam­
ten 64-KByte-Bereich. Das Besonde­
re an den Minimakros sind die ein­
gebauten Befehle zur strukturierten 
Programmierung. Durch sie wird 
die Programmierung in Assembler 
fast so leicht wie in Basic. Im einzel­
nen enthalten die Minimakros fol­
gende Strukturen:
REPEAT / UNTIL; DO / WHILE; IF / 
ENDIF; CASE OF / CASEEND.

Alle Schleifentypen haben noch 
zusätzliche Abbruchbedingungen.

Einige Befehle zur bedingten As­
semblierung sind bei Top-Ass leider 
unter den Tisch gefallen. Übrig ge­
blieben ist noch die bedingte IF / 
ELSE / ENDIF- und eine Art CASE 
OF-Konstruktion. Dafür hat sich der 
Autor jedoch einiges zur Verkettung 
von Quelltextteilen einfallen lassen.

Bei Top-Ass existieren zwei unter­
schiedliche Methoden zur Verket- 
tungvon Quelltexten. Die erste, wohl 
bekannteste Methode ist die, jeden 
Quelltextteil zweimal in den Spei­
cher zu laden — einmal im ersten 
und einmal im zweiten Paß. Jeder 
Paß erstreckt sich bei dieser Verket­
tungsart, der sogenannten »chain«- 
Verkettung, über alle Quelltextteile. 
Dadurch werden alle Label und Va­
riablen des Gesamtquelltextes ver­
fügbar gemacht, indem alle Label­
und Variablennamen indie Namens-

Top- 
Der erste 

für den
Endlich ist er da, der erste 

Wir haben ihn für Sie

tabelle beziehungsweise in die 
»Symboltabelle« aufgenommen wer­
den. Die zweite Verkettungsart funk­
tioniert vollkommen anders. Hier 
wird jeder Quelltextteil vor dem 
Nachladen des nächsten vollstän­
dig, also in Paß 1 und 2, assembliert. 
Erst nach erfolgreicher Assemblie­
rung wird der nächste Quelltextteil 
nachgeladen. Dabei werden nach 
der Assemblierung alle Label und 
Variablen in der Symboltabelle ge­
löscht. Das heißt, daß alle Einträge 
in der Symboltabelle für jeden 
Quelltextteil lokal sind. Von anderen 
Quelltextteilen kann auf die zuvor 
definierten Variablen nicht zurück­
gegriffen werden. Daraus folgt na­
türlich, daß eine solche Verkettung 
ziemlich witzlos wäre, könnte man 
sich in keinster Weise im nachgela­
denen Qelltextteil auf vorangegan­
gene beziehen. Zu diesem Zweck 
existiert ein Befehl, der einzelne 
Quelltextbereiche vor dem Löschen 
beim Nachladen schützt. Der Befehl 
heißt »common« und hat zwei Aufga­
ben.

1. Der nachzuladende Quelltextteil 
wird hinter der letzten »Common«- 
Zeile angefügt. Bei der anschließen­
den Assemblierung werden die Zei­
len im Common-Bereich noch ein­
mal durchlaufen. Liegen in dem Be­
reich Label- oder Variablen-Defini- 
tionen, so sind diese auch für die 
neue Assemblierung gültig.

2. Der Common-Befehl selbst darf 
Labelnamen enthalten. Solche La­
bel sind dann automatisch von der 
Löschung der Symboltabelle ausge­
nommen.

Natürlich lassen sich mit Top-Ass 
nicht nur Quelltextteile verketten, 
sondern auch einbinden. Dieses ge­
schieht mit dem Befehl »source«. Ei-

146 3^a? Ausgabe 3/März 1986



Software-Test

Ass: 
Assembler
C 128
Assembler für den C 128. 
ausführlich getestet.

ne Einbindung von Quelltext liegt 
dann vor, wenn der nächste Teil des 
Gesamttextes nicht am Ende, son­
dern innerhalb des aufrufenden 
Textes angesprochen wird. Daraus 
folgt, daß der eingebundene Quell­
textteil direkt von der Diskette bear­
beitet wird. Nach erfolgreicher Be­
arbeitung wird die Assemblierung 
hinter dem »source«-Befehl im RAM 
fortgesetzt.

Top-Ass ist einer der wenigen As­
sembler, die in der Lage sind, relo- 
katible Module zu erzeugen. Zuerst 
einmal ein paar Worte dazu, was ein 
relokatibles Modul ist. Bei Top-Ass 
handelt es sich hierbei um ein File 
auf Diskette. Dieses File stellt kein 
lauffähiges Maschinenprogramm 
dar, sondern eine Art Zwischenco­
de, der den Relativlader und den 
eingebauten Linker in die Lage ver­
setzt, aus diesem File ein lauffähiges 
Maschinenprogramm zu erzeugen, 
das an einer frei wählbaren Start­
adresse liegen darf.

Das Besondere nun ist der einge­
baute Linker. Durch ihn lassen sich 
größere Programme in mehrere Tei­
le splitten,deren relokatible Module 
man nach völlig getrennter Assem­
blierung mit Hilfe des Relativladers 
zusammenbinden kann. Dies ist für 
die Entwicklung größerer Program­
me sehr nützlich, denn Änderungen 
des Programms ziehen danri nicht 
eine Assemblierung des gesamten 
Quelltextes nach sich, sondern es 
muß nur der Quelltextteil assem- 
bliert werden, in dem eine Ände­
rung stattgefunden hat. Alle ande­
ren Teile liegen ja in Form von Mo­
dulen vor, die im Speicher beliebig 
hin- und hergeschoben werden kön­
nen. Die Assemblierung einzelner 
Quelltextteile wäre aber sinnlos,

wenn man aus einem Modul heraus 
nicht auf andere Module zurück­
greifen könnte; zum Beispiel Unter­
programmaufrufe oder gemeinsa­
me Variablen. Dazu existieren bei 
Top-Ass zwei zusätzliche Pseudo- 
Opcodes »extern« und »public«. Die­
se beiden Pseudos könnte man auch 
als Kopf eines Moduls bezeichnen. 
Sollen zum Beispiel von einem Mo­
dul Unterprogramme aus einem an­
deren Modul aufgerufen werden, so 
ist der Labelname im aufrufenden 
Quelltextteil und zwar in der ersten 
Zeile, als extern zu deklarieren. Das 
setzt natürlich voraus, daß in dem 
Modul beziehungsweise in dem da­
zugehörigen Quelltext, der das Un­
terprogramm enthält, ebenfalls in 
der ersten Zeile der Labelname als 
»public« deklariert wurde.

Der Monitor

Die Top-Ass-Diskette enthält zu­
sätzlich noch einen »Splitscreen-Mo- 
nitor« in zwei Versionen, als Maschi­
nenprogramm und als Relativlader. 
Die Bildschirmsteuerung kann zwi­
schen verschiedenen Bildschirmty­
pen umschalten. Man hat einmal die 
Möglichkeit, Dumps wie gewohnt 
auf dem 40-Zeichen- beziehungs­
weise 80-Zeichen-Bildschirm auszu­
geben. Zum anderen kann der Bild­
schirm in zwei Fenster zu je 20 bezie­
hungsweise 40 Zeichen gesplittet 
werden. Beide Fenster liegen paral­
lel nebeneinander, lassen sich ge­
trennt bearbeiten und, was nicht zu 
unterschätzen ist, nach oben und un­
ten verschieben (scrollen). So läßt 
sich auf der einen Bildschirmhälfte 
zum Beispiel ein Hexdump und auf 
der anderen ein Disassemblerli­
sting ausgeben. In beiden Bild­
schirmhälften kann durch einfaches 
Überschreiben editiert werden. Die 
Befehle des Monitors entsprechen 
dem Standard. Allerdings wur­

de ein besonderer Wert auf den 
Suchbefehl gelegt, der nicht nur he­
xadezimale Zahlen sucht, sondern 
auch ASCII-Zeichenketten. Der in­
teressanteste Suchbefehl ist das Su­
chen von Befehlen innerhalb eines 
Programms. Hier wurde ein Konzept 
gewählt, das es erlaubt Befehle, 
nach denen gesucht werden soll so 
einzugeben, wie sie im Disassem­
blerlisting erscheinen würden. 
Auch Joker, die entweder durch ».« 
oder »*« gekennzeichnet werden, 
sind erlaubt.

Das Aufspüren und Entfernen von 
Programmfehlern wird vom Monitor 
durch eine sehr leistungsfähige 
Breakpoint-Behandlung unterstützt.

Dabei werden drei Arten von 
Breakpoints unterschieden:
1. Der unbedingte Breakpoint. Die­
ser führt aufjeden Fall zum Abbruch 
des Testprogramms.
2. Der bedingte Breakpoint. Er wird 
nur dann ausgelöst, wenn ein Break­
point n-mal durchlaufen wird. Das 
»n« muß natürlich zuvor definiert 
werden.
3. Der Userbreakpoint. Dieser führt 
nicht direkt zum Abbruch des zu te­
stenden Programms, sondern ver­
zweigt in eine vom User geschriebe­
ne Routine. In ihr wird erst entschie­
den, ob das Programm fortgesetzt 
oder beendet werden soll.

Insgesamt lassen sich zehn be­
dingte beziehungsweise unbeding­
te und fünf User-Breakpoints gleich­
zeitig setzen. Zusätzlich zu der An­
zeige der Registerinhalte, die auch 
von anderen Monitoren vorgenom­
men wird, erlaubt dieser Monitor als 
Leckerbissen die Anzeige ausge­
suchter Speicherbereiche — soge­
nannter Hot Spots — während der 
Breakpoint-Behandlung. Ein »Hot 
Spot« wird in Form einer Hexdump- 
Zeile angezeigt. Auf diese Weise 
läßt sich auch der Inhalt flüchtiger 
Speicherzellen festhalten.

Fazit
Für 89 Mark erhält man ein kom­

plettes Maschinensprachepaket für 
den C 128, das neben dem Assem­
bler einen Monitor enthält und die 
Möglichkeit relokatible Module zu 
erzeugen. Das Programmpaket, das 
nicht nur für den Profi entwickelt 
wurde, läßt keine Wünsche offen 
und ist jedem zu empfehlen, der in 
Assembler auf dem C 128 program­
mieren will. Es ist alles vorhanden, 
selbst Funktionen, von denen der 
verwöhnte C 64-Nutzer bisher nur 
geträumt hat. (ah)
lnfo: Markt & 1fechnik Verlag AG. Hans-Pinsel-Str. 2. 8013 
Haar bei München, Tel,: 089/46130

Ausgabe 3/März 1986 W 147


