
Programmiersprachen C 64

P
rolog 64 ist eine spezielle 
Prolog-Implementation für den 
C 64. Sie ist kompatibel zu 
den meisten Prolog-Interpretatio- 

nen. Prolog 64 ist in das Betriebssy­
stem des C 64 eingebettet und nutzt 
dessen 64 KByte RAM optimal aus. 
Spracherweiterungen unterstützen 
die Grafikmöglichkeiten, die Toner­
zeugung und das Dateisystem des 
C64.

Was ist Künstliche 
Intelligenz?

Ein »intelligenter« Computer soll 
sich unterhalten können, Sprache 
und Bilder verstehen, Probleme 
selbständig lösen und wissen, wie 
es auf der Welt so zugeht. Die Wis­
senschaft, die Computern dies alles 
beibringen will, nennt sich Künstli­
che Intelligenz (KI). Die zentrale Fra­
ge, um die es in der KI geht, ist fol­
gende: »Wie kann das, was Men­
schen wissen, im Computer darge­
stellt und verarbeitet werden?« Das 
Schlagwort Wissensrepräsentation 
bezeichnet genau dieses Kernpro­
blem. Die Probleme der Künstli­
chen Intelligenz können mit den 
bisherigen Programmiermethoden 
nicht mehr gelöst werden. Man 
braucht geeignete Methoden, um 
die Dinge der realen Welt (bei­
spielsweise Personen, Gegenstän­
de, Gesetzmäßigkeiten, Zusammen­
hänge) auf dem Computer darzu­
stellen. Der Computer soll ja die 
Realität kennenlernen, denn nur 
wenn er über die Welt, in der die 
Menschen leben, Bescheid weiß, 
kann er »intelligent« agieren. Ein sol­
cher Computer »weiß« zum Beispiel: 
»Bäume sind Pflanzen.«
»Bäume sind grün.«

Damit hat er Informationen über 
Dinge, nämlich Bäume.
»Menschen brauchen Nahrung, weil 
sie sonst verhungern.«
»Autos fahren nur, wenn sie genug 
Benzin im Tank haben.«

Diese Gesetzmäßigkeiten muß 
man auch als Computer einfach ken­
nen.
»Boris Becker ist ein bekannter Ten­
nisspieler. Daher berichten die Zei­
tungen oft über ihn.«

Diese Information sagt etwas über 
eine Person (Boris Becker) aus und 
klärt zusätzlich einen Zusammen­
hang (weil er berühmt ist, schreibt 
man über ihn).

So wie eben beschrieben, kann 
Wissen über die reale Welt ausse­
hen. Nun braucht man geeignete 
Methoden, um dieses Wissen auf ei­
nem Computer darzustellen. Daher

Intelligenz für 
Ihren C 64!

Die Programmiersprache Prolog ist besonders geeig­
net, um »intelligente« Programme zu entwickeln. 
Sie ist in der »Künstlichen lntelligenz«-Forschung 
berühmt und wird zur Entwicklung von Experten­

systemen gebraucht. Diese Sprache wurde für den 
C 64 um Ton- und Grafikbefehle erweitert.

wurden neue Sprachen und Kon­
zepte entwickelt, mit denen diese 
komplexen Aufgaben zu lösen sind. 
Lisp und Prolog sind bekannte KI- 
Sprachen, die speziell für solche 
Zwecke entwickelt wurden.

Aber neue Programmierspra­
chen allein reichen nicht aus. Auch 
der Aufbau von Programmen mußte 
neu durchdacht werden. Ein Basic- 
Programm besteht aus den Compu­
teroperationen auf der einen Seite. 
Auf der anderen Seite stehen die 
Eingabedaten, mit denen das Pro­
gramm arbeitet. Kl-Programme ar­
beiten nicht mehr mit Zahlen, son­
dern mit Informationen in Form von 
Regeln. Diese Regeln werden wie 
die Basic-Eingabedaten außerhalb 
des Programms in einer Datei zu­
sammengefaßt. Eine Regel könnte 
so aussehen:
IF das Auto hat genug Benzin im 
Tank THEN es fährt

Diese IF-THEN-Form gibt es in Ba­
sic auch. In unserer Regel haben wir 
aber keinen Befehl, der sagt, was 
der Computer tun soll! Die Regel 
sagt nur aus, wie ein Auto reagiert, 
wenn es genug Benzin im Tank hat.

In einem Basic-Programm würde 
man im Programm den Befehl IF 
Benzin>0 THEN GOTO Autofährt 
schreiben. In einem KI-Programm 
werden solche Informationen aus 
dem Programm rausgezogen und in 
einer eigenen Datei abgelegt. Diese 
Ansammlung von Wissen nennt man 
»Wissensbasis« und ein KI-Pro- 
gramm, das darauf arbeitet, heißt 
»wissensbasiertes« Programm oder

im Spezialfall Expertensystem. — 
»Wissensbasis« und »Expertensy­
stem« sind ganz wesentliche Fach­
begriffe in der Kl-Forschung. Sie 
werden in Tabelle 1 kurz erläutert. 
— Die wissensbasierten Programm­
systeme und die Expertensysteme 
gehören zu den bekanntesten Kon­
zepten, mit denen sowohl Wissen 
über Objekte und Zusammenhänge 
als auch Metawissen (Regeln dar­
über, wie man Wissen anwendet) in 
Programmen dargestellt werden 
kann. Mit diesen Methoden kann 
auch sogenanntes »vages« Wissen 
verarbeitet werden. »Vage« ist alles, 
was man nicht mit 100prozentiger Si­
cherheit weiß. Man wirft zum Bei­
spiel eine Münze und weiß:

Mit 50prozentiger Wahrschein­
lichkeit werfe ich Kopf. Aber genau­
so wahrscheinlich ist es, daß eine 
Zahl geworfen wird. Expertensyste­
me zeichnen sich unter anderem da­
durch aus, daß sie auf solch »vagem« 
Wissen arbeiten.

Was ist an Prolog 
so anders?

Prolog wurde etwa 1970 in Mar­
seille entwickelt. Ähnlich wie Lisp, 
die wohl bekannteste Sprache der 
Künstlichen Intelligenz, unterschei­
det Prolog sich grundlegend von 
Sprachen wie Basic und Pascal. Pro­
log ist ebenso wie Basic eine inter­
aktive Sprache. Die Entwicklung 
und Ausführung von Prolog-Pro­
grammen erfolgt im Dialog mit dem

140 ^3? Ausgabe 3/März 1986



C 64 Programmiersprachen

Computer. Das ist aber auch schon 
die einzige Gemeinsamkeit von Ba­
sic und Prolog. Denn diese Sprache 
beruht auf einem radikal neuen Kon­
zept. Der Programmierer braucht 
sich nicht mehr um Algorithmen zur 
Lösung seines Problems zu küm­
mern, sondern muß genau ange­
ben, worin sein Problem besteht.

In herkömmlichen Programmier­
sprachen, wie auch zum Beispiel in 
Basic, bestimmt der Programment­
wickler die Reihenfolge der Com­
puteroperationen. Er legt sie näm­
lich mit den Programmbefehlen 
fest. In Prolog-Programmen wird 
nicht mehr das »wie« spezifiziert, 
sondern das »was«. Prolog besitzt

keine Sprachelemente, die festle­
gen, in welcher Reihenfolge der 
Computer die Programmoperatio­
nen ausführt. Solche Anweisungen 
sind in Basic IF/THEN, ELSE, FOR, 
WHILE und GOTO. Mit solchen Kon­
trollbefehlen sagen wir dem Com­
puter »mache zuerst das, dann ma­
che das«. Ein Prolog-Programm da­
gegen gleicht mehr einer ungeord­
neten Ansammlung von Wissen. Mit 
einfachen Wenn-Dann-Befehlen 
und mit Fakten werden Sachverhal­
te beschrieben. Dem Computer 
wird so gesagt, was er über seine 
»Welt« wissen muß. Man nennt sol­
che Programmiersprachen, die 
dem Computer nicht sagen, in wel­

cher Reihenfolge er eine Folge von 
Problemen bearbeiten soll, »nichtal­
gorithmisch«. In nichtalgorithmi­
schen Sprachen wie zum Beispiel 
Prolog wird durch ein Programm 
nur das Problem beschrieben. Wir 
teilen dem Computer wahre Fakten 
CTatsachen) über ein Problem mit 
und sagen ihm, wie er sie zu inter­
pretieren hat. Und nun soll endlich 
an einem ganz einfachen Beispiel 
gezeigt werden, wie solche Fakten 
(Bild 1 gibt eine genauere Erklärung 
des Begriffs) in Prolog aussehen 
können.
Prolog lernt Tiere kennen.

Wir geben ein: »Ein Hund ist ein 
Tier.« »Eine Katze ist ein Tier.« und 
»Eine Kuh ist ein Tier.«
tier(hund). 

tier(katze). 

tier(kuh).

Der Punkt hinter jeder Zeile ist 
wichtig! Prolog erkennt daran das 
Ende einer Eingabe.

Nehmen wir an, unser Prolog-Pro­
gramm »wüßte« nur diese drei Fak­
ten, die wir ihm eingegeben haben. 
Wir fragen nun das Programm nach 
dem, was es weiß:
»Ist ein Hund ein Tier?«, 
t-tier(hund).

Das Prologsystem antwortet mit: 
yes.

»Ist eine Katze ein Tier?« 
?-tier(katze).

yes.

»Ist ein Wolf ein Tier?« 
?-tier(wolf).

no.

Auf die letzte Anfrage kann Pro­
log nur mit »no« antworten, da dem 
System ja noch nicht bekannt ist, 
daß der Wolf auch ein Tier ist. Ein 
»no« ist in diesem Sinne immer als 
ein »ich weiß es (noch) nicht« zu ver­
stehen.

So läuft in etwa eine Prolog-Ses- 
sion ab. Eine Menge von Fakten und 
Regeln wird eingegeben, wie wir es 
in unserem Beispiel in ganz kleinem 
Rahmen getan haben. Die Regeln 
und Fakten können auch als Sätze 
(wie ein Basic-Programm) von einer 
Datei geladen werden. Danach 
kann der Benutzer Fragen an das 
System stellen, auf die Prolog im ein­
fachsten Fall mit »yes« oder »no« ant­
wortet. Dies ist natürlich noch keine 
anspruchsvolle Anwendung von 
Prolog. Die Fähigkeiten von Prolog 
sind sehr viel umfassender, als hier 
gezeigt werden kann.

Aber das folgende Programm 
zeigt anschaulich, wie die bekann-

Ausgabe 3/März 1986 141



Programmiersprachen C 64

ten »Türme von Hanoi« in Prolog im­
plementiert werden können.

196 hanoi
197 Die Tuerme von Hanoi 
198 */
210 hanoi (N) :-
211 moves(N,left,centre,right).
220 moves(0,_,_,_) :- ! .
230 moves(N,A,B,C) :-
240 M is N-1,
250 moves(M,A,C,B),
260 inform(A,B), 
270 moves(M,C,B,A)- 
280 inform(X,Y) :- 
281 write([move,a,disc, from,

the, X, pole, to, the,Y, pole]). 
282 nl.

Prolog wird vor allem dort einge­
setzt, wo Symbole verarbeitet wer­
den. Für numerische Datenverar­
beitung, also Berechnungen und 
die Verarbeitung von Zahlen, ist 
diese Sprache nicht entworfen wor­
den. Typische Anwendungen von 
Prolog sind:
• der Aufbau von Wissensbasen 
CTabelle 1) für Expertensysteme 
oder intelligente Datenbanksy­
steme
• Verarbeitung natürlicher Spra­
che; sie umfaßt das Erkennen natür­
licher Sprache und die Gesprächs­
führung durch das Programm
• Bilderkennungund-verarbeitung 
(Szenenanalyse)
• der Entwurf kompletter Exper­
tensysteme CTabelle 1)
• rapid prototyping (Tabelle 1)

Bedienung und Handbuch

Prolog 64 bietet dem Programmie­
rer eine gelungene Kombination 
der neuen Befehle dieser Program­
miersprache und der Befehle, die 
jedem C 64-Besitzer bekannt sind. 
So kann man in einem Prolog-Lauf 
beliebige Basic-Programme ausfüh­
ren oder nachträglich laden. Aus 
dem aktiven Prolog-System kann 
man jederzeit mit dem Befehl »EOF« 
oder dem EOF-Zeichen »SHIFT/ 
PFUND« auf den Basic-Bildschirm 
zurückschalten. Mit »STOP/RESTO- 
RE« wird wieder zum Prolog-System 
zurückgeschaltet.
Die Schnittstelle zu Basic

Andersherum geht’s auch: Prolog 
können Sie von einem Basic-Pro- 
gramm aus mit dem Befehl »SYS 
49152« aufrufen. Will man Prolog von 
einem eigenen Programm aus la­
den, so geht das ebenfalls ohne gro­
ße Probleme.

In 40 Sekunden wird das Prolog- 
System von der Diskette geladen 
(»LOAD ”PROLOG”,8« und »RUN«),

Intelligenz für 
Ihren C 64!

Nach dem »LOAD« können Monitor- 
und Klangfarben verändert wer­
den. Nun sind noch genau 19703 By­
te frei, nachdem Prolog 64 unter Ba­
sic geladen wurde. Der Speicher 
wird vom Prolog-System aufgeteilt. 
16 KByte sind für Daten, 16 KByte für 
Grafik reserviert. Für den Stack 
werden 34,5 KByte (mit Grafik 21 
KByte) und für den Grafik-RAM- 
Speicher werden 8 KByte belegt.
Das Handbuch zum Programm

Das Handbuch zum Programm 
bietet neben der Bedienungsanlei­
tung nur eine kurze Beschreibung 
von Prolog. Wer Prolog lernen und 
in dieser Sprache Programme ent­
wickeln will, muß sich zusätzlich das 
Standardwerk von Clocksin und 
Mellish anschaffen. In diesem Buch 
wurde 1981 das Kem-Prolog defi­
niert und dieser sogenannte »Edin- 
burgh«-Standard liegt den heutigen 
Prolog-Implementationen zugrun­
de. Auch Prolog 64 basiert auf dem 
Kern-Prolog.
Mitgelieferte Bibliotheken

Mitgeliefert wird eine Beispielsit­
zung, anhand derer man die ersten 
Versuche mit der neuen Program­
miersprache relativ sicher durch­
führen kann. Dies ist auch nötig! Pro­
log ist halt völlig anders als die übli­
chen Programmiersprachen und 
man muß sich erst an seine Beson­
derheiten (zum Beispiel: jede Einga­
be muß mit einem Punkt abge­
schlossen werden) gewöhnen. Je­
der, der lange in Basic (oder ande­

ren algorithmischen Sprachen wie 
Pascal oder Fortran) programmiert 
hat, wird anfangs große Schwierig­
keiten haben, sich auf die neue Pro­
grammierweise in Prolog einzustel­
len, weil er noch »in Basic denkt«.

Auf der mitgelieferten Diskette fin­
den sich Bibliotheken für Gramma­
tikregeln, grafische Routinen, Spri­
tedefinitionen für das Demo-Pro­
gramm, Musikroutinen, verschiede­
ne mathematische Programme, 
Mengenoperationen und Suchver­
fahren, einen Precompiler , für 
Grammatikregeln und einen Über­
setzer von Prädikatenlogik in Klau­
selform (siehe Clocksin/Mellish), 
komfortable Ein-/Ausgabeoperatio- 
nen und Faktenverwaltung auf Flop­
py und natürlich für ein Demo-Pro­
gramm. Zusammen mit einer Biblio­
thek für einige Prolog-Befehle um­
fassen die Beispielprogramme 43,4 
KByte. Die Listings dieser Beispiel- 
Files sind im Anhang des Hand­
buchs abgedruckt. Es ist alles da, 
was man braucht, um eine fremde 
Sprache kennenzulernen. Nun muß 
man nur noch loslegen und das Pro­
log-System ausprobieren.

Prolog für Sie!
Prolog ist eine sehr interessante 

Sprache für alle, die sich näher mit 
der Künstlichen Intelligenz beschäf­
tigen wollen. Jeder C 64-Besitzer, 
der sich in diesem Bereich der Zu­
kunft engagieren will, wird die Mög­
lichkeit begrüßen, die Prolog 64 ihm 
bietet: Auf dem Computer, den er 
kennt, dem Commodore 64, kann er 
sich mit einer berühmten KI-Spra- 
che anfreunden. Prolog 64 umfaßt 
die Sprachmöglichkeiten, die auch 
den Prolog-Programmierern auf 
Großrechnern zur Verfügung ste­
hen. Für Verspielte sind die Grafik- 
und Tonerzeugungsmöglichkeiten 
des C 64 voll verfügbar. Und man 
kann jederzeit Basic-Programme 
und damit auch Routinen in Maschi­
nensprache in Prolog-Programme 
einbauen! Zum Kennenlernen die­
ser Sprache ist die Prolog-Version 
Prolog 64 ideal. Und an Speicher­
platzprobleme dürfte jeder C 64-Be- 
sitzer gewöhnt sein. Denn große 
Programmsysteme kann man so na­
türlich nicht entwickeln. Wenn Sie 
Interesse an Künstlicher Intelligenz 
haben, dann schreiben Sie uns!

Der erste Prolog-Interpreter für 
den C 64 ist mit deutschem Hand­
buch für 289 Mark erhältlich, (cg) 
Info: Brainware GmbH. Kirchgasse 24, 6200 Wiesbaden, 
Ttel:(06121)372011
Literatur: Clocksin und Mellish, Programming in Prolog, 
Springer Verlag. Berlin, Heidelberg, New York, 1985, ISBN 
3-540.11046-1, 44 Mark

142 ^aj4 Ausgabe 3/März 1986



C 64 Programmiersprachen

Expertensystem (expert system):
Expertensysteme sind »intelligente« 

Programme aus dem Bereich der Künstli­
chen Intelligenz. Ihre Aufgabe ist es, wie 
ein menschlicher Experte über ein be­
stimmtes Gebiet (möglichst) vollständig 
Bescheid zu wissen. Solche Anwen­
dungsgebiete können in der Medizin 
(Diagnose, Behandlung von Tropen­
krankheiten), der Technik (Konstruktion 
von Automotoren, Aufbau von Rechner­
konfigurationen) oder in der Geschichte 
liegen. Jedes Gebiet, in dem es mensch­
liche Spezialisten gibt, ist geeignet.

Expertensysteme bestehen aus mehre­
ren Komponenten. Die Wissensbasis ent­
hält das Expertenwissen, das auf geeig­
nete Weise im Computer dargestellt 
wird. Der Aufbau dieser Wissensbasis ist 
das Kernproblem, das sich beim Aufbau 
eines Expertensystems stellt. Nicht nur 
Buchwissen soll aufgenommen werden, 
sondern auch Erfahrungswissen, das, 
was man erst durch langjährige Praxis an 
Tricks und Kniffen lernt. Ein Expertensy­
stem arbeitet auf dieser Wissensbasis 
und zwar im Dialog mit seinem Benutzer. 
Diese Dialogkomponente ist ebenfalls ty­
pisch. Der Benutzer stellt dem Pro­
grammsystem eine Frage (»Welche 
Krankheit hat der Patient, wenn folgende 
Symptome auftreten: ...?« oder »Ich will 
für meine Schreinerei einen Computer 
und Software anschaffen. Was braucht 
man und was gibt es?« Nachdem der 
Computerexperte aufgrund seines ge­
speicherten Wissens und im Gespräch 
mit dem Fragenden alle nötigen Informa­
tionen gesammelt und eine Lösung des 
Problems gefunden hat, kann der Benut­
zer von der Erklärungskomponente Ge­
brauch machen. Das Expertensystem er­
klärt jeden einzelnen Schritt seiner 
Schlußfolgerungen. Dies sind die we­
sentlichen Bestandteile eines Experten­
systems: eine Wissensbasis, die auch va­
ges Wissen enthält, die Dialog- und die 
Erklärungskomponente.
rapid prototyping:

Dies ist eine Methode, die schon beim 
Entwickeln von Programmen logische 
Fehler im späteren Programm verhin­
dern soll. Programme werden auf einer 
abstrakteren Ebene, als dies die Pro­
grammierebene ist, spezifiziert. Die Spe­
zifikationssprache ist so konzipiert, daß 
Fehler schnell erkannt und oft schon au­
tomatisch behoben werden können. Ist 
die Spezifikation des Programms dann 
fehlerfrei, folgt die (teilweise wieder au­
tomatische) Programmierung in konven­
tioneller Sprache. Auf diese Weise soll 
garantiert fehlerfreie Software ent­
wickelt werden. Dies spart Kosten für 
Wartung und Service.
Wissensbasis (knowledge base):

In einer Wissensbasis werden Informa­
tionen gespeichert. Die übliche Form, in 
der sie dargestellt werden, ist: 
WENN (IF) .. DANN CTHEN) ...

WENN bestimmte Bedingungen zutref­
fen DANN kann man daraus (mit einer 
bestimmten Wahrscheinlichkeit) schluß­
folgern, daß eine bestimmte Situation 
vorliegt, also:

»WENN der Patient raucht, DANN ist 
die Wahrscheinlichkeit, daß er zu dick 
ist, 5 Prozent niedriger als sonst«.

Tabelle 1. Fachtermini

Fakten sind Tatsachen über Objekte und 
ihre Beziehungen zueinander. Namen 
von Gegenständen, Personen und so wei­
ter (Petra, Prolog) werden in Fakten klein­
geschrieben. Die Beziehung oder die 
Aussage über Objekte steht vor der 
Klammer (sind, kennt). Geben wir zum 
Beispiel folgende Fakten über Prolog 
und Computerfans ein: 
pr_sprache(prolog).

»Prolog ist eine Programmiersprache.« 
kennt(petra,logo).

»Petra kennt Logo.« 
kennt(petra arnd). 

s ind(arnd,petra,c_fans).

»Arnd und Petra sind Computerfans.«

Fragen sehen genauso aus wie Fakten, 
vor die»?-«gesetzt wurde. Wenn eine Fra­
ge an Prolog gestellt wird, durchsucht 
das System die Datenbank, die alle be­
kannten Fakten enthält. Prolog sucht ein 
Fakt, das der Frage entspricht. Existiert 
ein solches Fakt, dann antwortet Prolog 
auf die Frage des Benutzers mit »yes«, 
sonst mit »no«. Beispiel: 
?-kennt(dr_bobo,indiana_Joe).

no

»Kennt Dr. Bobo (den Hacker) Indiana 
Joe?« Prolog weiß nur das, was wir ihm 
oben eingegeben haben und sagt: 
Nein.

?-kennt(petra,logo).

yes

»Kennt Petra Logo?« Prolog sagt: Ja.
Variablen verwendet man in Fragen, um 

(alles) zu erfahren, was das Prolog-Sy- 
stem über ein bestimmtes Objekt weiß. 
Variablen beginnen mit einem Groß­
buchstaben. Eine solche Variable heißt 
zum Beispiel »X« oder »Diesisteinbeliebi- 
gervariablenname«. Eine Variable be­
zeichnet kein Objekt. Sie wird dann ver­
wendet, wenn man etwas sucht, das man 
nicht genau bezeichnen kann. Nehmen 
wir die Variable X und fragen, was Petra 
alles kennt (X bezeichnet das, was Petra 
kennt):
?-kennt(petra,X).

X=logo

ist die Antwort. Gibt man nach dieser er­
sten Antwort ein»;«(das logische »oder«) 
ein, so sucht das Prologsystem nach wei­
teren Objekten. Die nächste Antwort ist 
dann
X=arnd

Geben wir einfach »Return« ein, dann 
wird die Suche beendet.

Wenn Prolog eine Frage gestellt wird, 
die eine Variable enthält, durchsucht 
das Prolog-System alle seine Fakten 
nach einem Objekt, das die Variable er­
setzen kann.

Konjugationen sind Verknüpfungen durch 
ein logisches »und«. Sie werden verwen­
det, wenn Fragen über kompliziertere 
Beziehungen zwischen Objekten gestellt 
werden sollen. Beispiel:
»Wer kennt Logo und Prolog?«

Bild 1. Die elementarsten Gr

In Prolog heißt das:
?-kennt(X,logo),kennt(X,pro- 

log).

Die Variable X steht für die Person, die 
wir suchen. Durch das»,«(=und) werden 
die Teile unserer Frage verknüpft. In un­
serer kleinen Beispieldatenbank finden 
wir leider niemanden, der beide Spra­
chen kennt. Aber auf die Frage 
»Wer kennt Arnd und (die Programmier­
sprache) Logo?«:
?-kennt(X,arnd),kennt(X,logo).

findet Prolog in unserem kleinen Beispiel 
die Antwort:
X=petra

Regeln braucht man, wenn eine Tatsa­
che für mehr als einen Fall gelten soll. 
Beispiel:

Wir wissen, daß Dr. Bobo das C 
64-Spiel Summer Games kennt. Aber er 
kennt auch alle anderen Computerspie­
le, die auf dem C 64 laufen. Das heißt in 
Prolog:
»Wenn ein Spiel auf dem C 64 läuft, dann 
kennt Dr. Bobo es ganz sicher.« 
lauft(Spiel,c-64):-kennt 

(dr_bobo,Spiel).

»Daraus folgt« wird in Prolog durch»:-« 
bezeichnet.
Eine kompliziertere Regel ist die fol­
gende:
*(x'*y+x*y') ist eine Ableitung von x*y, 
wenn x’ Ableitung von x ist und y' Ablei­
tung von y.« Die entsprechende Prolog- 
Regel ist:
ableitung(X*Y,Xl*Y+Yl*X):- 

ableitung(X,Xl), 

ableitung(Y,Yl).

Aus solchen Regeln und den oben be­
schriebenen Fakten besteht ein Prolog- 
Programm.

Backtracking ist eine Besonderheit von 
Prolog. Backtracking bedeutet »Zurück­
gehen und einen neuen Lösungsweg su­
chen«. Da ein Prolog-Programm aus vie­
len Regeln besteht, kann es mehrere 
Möglichkeiten geben, für eine Variable 
einen Wert zu finden. So kann das Pro- 
log-System auf der Suche nach einer Lö­
sung in einer Sackgasse landen. Prolog 
kann solche Sackgassen erkennen und 
wieder verlassen, indem der bisher ge­
fundene Lösungsweg bis zur letzten Al­
ternative rückgängig gemacht wird. Nun 
wird eine andere Möglichkeit auspro­
biert. Ist auch diese nicht erfolgreich, 
wird die nächste Alternative auspro­
biert, bis die Lösung gefunden ist.

Ein- und Ausgabe sind nützlich, wenn das 
Programm eine »Unterhaltung« mit dem 
Benutzer selbst beginnen soll. Haben wir 
zum Beispiel eine Datenbank program­
miert, so muß der Benutzer bei jedem 
Schritt gefragt werden, was als nächstes 
gemacht werden soll.

Der Befehl put druckt das Zeichen, 
dessen ASCII-Code in Klammern ange­
geben wurde: 
?-put(104),put(101),put(108),put(108), 
put(lll). 
hello
ist das Ergebnis des Prologsystems.
dlagen von Prolog

Ausgabe 3/März 1986 ^ 143


