Programmiersprachen

C 64

rolog 64 ist eine spezielle
PProlog—Implementation fiir den

C 64. Sie ist kompatibel zu
den meisten Prolog-Interpretatio-
nen. Prolog 64 ist in das Betriebssy-
stem des C 64 eingebettet und nutzt
dessen 64 KByte RAM optimal aus.
Spracherweiterungen unterstiitzen
die Grafikmoglichkeiten, die Toner-
zeugung und das Dateisystem des
C 64.

Was ist Kiinstliche
Intelligenz?

Ein »intelligenter« Computer soll
sich unterhalten kénnen, Sprache
und Bilder verstehen, Probleme
selbstandig 16sen und wissen, wie
es auf der Welt so zugeht. Die Wis-
senschaft, die Computern dies alles
beibringen will, nennt sich Kiinstli-
che Intelligenz (KI). Die zentrale Fra-
ge, um die es in der KI geht, ist fol-
gende: »Wie kann das, was Men-
schen wissen, im Computer darge-
stellt und verarbeitet werden?« Das
Schlagwort Wissensreprasentation
bezeichnet genau dieses Kernpro-
blem. Die Probleme der Kiinstli-
chen Intelligenz kénnen mit den
bisherigen Programmiermethoden
nicht mehr gelost werden. Man
braucht geeignete Methoden, um
die Dinge der realen Welt (bei-
spielsweise Personen, Gegenstdn-
de, GesetzmaRigkeiten, Zusammen-
hange) auf dem Computer darzu-
stellen. Der Computer soll ja die
Realitdt kennenlernen, denn nur
wenn er iiber die Welt, in der die
Menschen leben, Bescheid weil3,
kann er »intelligent« agieren. Ein sol-
cher Computer »weild« zum Beispiel:
»Baume sind Pflanzen.«

»Baume sind griin.«

Damit hat er Informationen iiber
Dinge, namlich Baume.

»Menschen brauchen Nahrung, weil
sie sonst verhungern.«

»Autos fahren nur, wenn sie genug
Benzin im Tank haben.«

Diese GesetzmaBigkeiten muf
man auch als Computer einfach ken-
nen.

»Boris Becker ist ein bekannter Ten-
nisspieler. Daher berichten die Zei-
tungen oft iiber ihn.«

Diese Information sagt etwas tiber
eine Person (Boris Becker) aus und
klart zusatzlich einen Zusammen-
hang (weil er beriihmt ist, schreibt
man uber ihn).

So wie eben beschrieben, kann
Wissen iiber die reale Welt ausse-
hen. Nun braucht man geeignete
Methoden, um dieses Wissen auf ei-
nem Computer darzustellen. Daher

140 3:¥ap

Intelligenz for
lhren C 64!

Die Programmiersprache Prolog ist besonders geeig-
net, um vintelligente« Programme zv entwickeln.
Sie ist in der »Kunstlichen Intelligenz«-Forschung
berihmt und wird zur Entwicklung von Experten-
systemen gebraucht. Diese iﬂmthe wurde fir den

C 64 um Ton- und Grafi

wurden neue Sprachen und Kon-
zepte entwickelt, mit denen diese
komplexen Aufgaben zu lésen sind.
Lisp und Prolog sind bekannte KI-
Sprachen, die speziell fiir solche
Zwecke entwickelt wurden.

Aber neue Programmierspra-
chen allein reichen nicht aus. Auch
der Aufbau von Programmen mufte
neu durchdacht werden. Ein Basic-
Programm besteht aus den Compu-
teroperationen auf der einen Seite.
Auf der anderen Seite stehen die
Eingabedaten, mit denen das Pro-
gramm arbeitet. KI-Programme ar-
beiten nicht mehr mit Zahlen, son-
dern mit Informationen in Form von
Regeln. Diese Regeln werden wie
die Basic-Eingabedaten auferhalb
des Programms in einer Datei zu-
sammengefalt. Eine Regel konnte
so aussehen:

IF das Auto hat genug Benzin im
Tank THEN es fahrt

Diese IFTHEN-Form gibt es in Ba-
sic auch. In unserer Regel haben wir
aber keinen Befehl, der sagt, was
der Computer tun solll Die Regel
sagt nur aus, wie ein Auto reagiert,
wenn es genug Benzin im Tank hat.

In einem Basic-Programm wiirde
man im Programm den Befehl IF
Benzin>0 THEN GOTO Autofahrt
schreiben. In einem KI-Programm
werden solche Informationen aus
dem Programm rausgezogen und in
einer eigenen Dateiabgelegt. Diese
Ansammlung von Wissen nennt man
»Wissensbasis« und ein KI-Pro-
gramm, das darauf arbeitet, heil3t
»wissensbasiertes« Programm oder

efehle erweitert.

im Spezialfall Expertensystem. —
»Wissensbasis« und »Expertensy-
stem« sind ganz wesentliche Fach-
begriffe in der Kl-Forschung. Sie
werden in Tabelle 1 kurz erlautert.
— Die wissensbasierten Programm-
systeme und die Expertensysteme
gehodren zu den bekanntesten Kon-
zepten, mit denen sowohl Wissen
iiber Objekte und Zusammenhénge
als auch Metawissen (Regeln dar-
liber, wie man Wissen anwendet) in
Programmen dargestellt werden
kann. Mit diesen Methoden kann
auch sogenanntes »vages« Wissen
verarbeitet werden. »Wage« ist alles,
was man nicht mit 100prozentiger Si-
cherheit weif. Man wirft zum Bel-
spiel eine Miinze und weil;

Mit BO0prozentiger Wahrschein-
lichkeit werfe ich Kopf. Aber genau-
so wahrscheinlich ist es, daB eine
Zahl geworfen wird. Expertensyste-
me zeichnen sich unter anderem da-
durch aus, daf sie auf solch »wagemu
Wissen arbeiten.

Was ist an Prolog
so anders?

Prolog wurde etwa 1970 in Mar-
seille entwickelt. Ahnlich wie Lisp,
die wohl bekannteste Sprache der
Kiinstlichen Intelligenz, unterschei-
det Prolog sich grundlegend von
Sprachen wie Basic und Pascal. Pro-
log ist ebenso wie Basic eine inter-
aktive Sprache. Die Entwicklung
und Ausfithrung wvon Prolog-Pro-
grammen erfolgt im Dialog mit dem

Ausgabe 3/Mérz 1986

C 64

Programmiersprachen

Computer. Das ist aber auch schon
die einzige Gemeinsamkeit von Ba-
sic und Prolog. Denn diese Sprache
beruht auf einem radikal neuen Kon-
zept. Der Programmierer braucht
sich nicht mehr um Algorithmen zur
Losung seines Problems zu kim-
mern, sondern muf genau ange-
ben, worin sein Problem besteht.
In herkémmlichen Programmier-
sprachen, wie auch zum Beispiel in
Basic, bestimmt der Programment-
wickler die Reihenfolge der Com-
puteroperationen. Er legt sie nam-
lich mit den Programmbefehlen
fest. In Prolog-Programmen wird
nicht mehr das »wie« spezifiziert,
sondern das »was«. Prolog besitzt

Ausgabe 3/Méarz 1986

keine Sprachelemente, die festle-
gen, in welcher Reihenfolge der
Computer die Programmoperatio-
nen ausfiihrt. Solche Anweisungen
sind in Basic IF/THEN, ELSE, FOR,
WHILE und GOTO. Mit solchen Kon-
trollbefehlen sagen wir dem Com-
puter smache zuerst das, dann ma-
che das« Ein Prolog-Programm da-
gegen gleicht mehr einer ungeord-
neten Ansammlung von Wissen. Mit
einfachen Wenn-Dann-Befehlen
und mit Fakten werden Sachverhal-
te beschrieben. Dem Computer
wird so gesagt, was er liber seine
»Welt« wissen muB. Man nennt sol-
che Programmiersprachen, die
dem Computer nicht sagen, in wel-

cher Reihenfolge er eine Folge von
Problemen bearbeiten soll, »nichtal-
gorithmisch«. In nichtalgorithmi-
schen Sprachen wie zum Beispiel
Prolog wird durch ein Programm
nur das Problem beschrieben. Wir
teilen dem Computer wahre Fakten
(Tatsachen) iiber ein Problem mit
und sagen ihm, wie er sie zu inter-
pretieren hat. Und nun soll endlich
an einem ganz einfachen Beispiel
gezeigt werden, wie solche Fakten
(Bild 1 gibt eine genauere Erklarung
des Begriffs) in Prolog aussehen
kénnen,

Prolog lernt Tiere kennen.

Wir geben ein: »Ein Hund ist ein
Tier.« »Eine Katze ist ein Tier.« und
»Eine Kuh ist ein Tier.«

tier(hund).
tier(katze).
tier(kuh).

Der Punkt hinter jeder Zeile ist
wichtig! Prolog erkennt daran das
Ende einer Eingabe.

Nehmen wir an, unser Prolog-Pro-
gramm »wiiBte« nur diese drei Fak-
ten, die wir ihm eingegeben haben.
Wir fragen nun das Programm nach
dem, was es weifR:

»Ist ein Hund ein Tier?.
?-tier(hund).

Das Prologsystem antwortet mit:
yes.

»Ist eine Katze ein Tier?«
?-tier(katze).
yes.

»Ist ein Wolf ein Tier?«
?-tier(wolf).
no.

Auf die letzte Anfrage kann Pro-
log nur mit »no« antworten, da dem
System ja noch nicht bekannt ist,
daB der Wolf auch ein Tier ist. Ein
»no« ist in diesem Sinne immer als
ein »ich weiR es (noch) nicht« zu ver-
stehen.

So lauft in etwa eine Prolog-Ses-
sion ab. Eine Menge von Fakten und
Regeln wird eingegeben, wie wir es
in unserem Beispiel in ganz kleinem
Rahmen getan haben. Die Regeln
und Fakten kénnen auch als Séatze
(wie ein Basic-Programm) von einer
Datei geladen werden. Danach
kann der Benutzer Fragen an das
System stellen, auf die Prolog im ein-
fachsten Fall mit »yes« oder »no« ant-
wortet. Dies ist natiirlich noch keine
anspruchsvolle Anwendung von
Prolog. Die Fahigkeiten von Prolog
sind sehr viel umfassender, als hier
gezeigt werden kann.

Aber das folgende Programm
zeigt anschaulich, wie die bekann-

354 141

Programmiersprachen

C 64

ten »Tiirme von Hanoi« in Prolog im-
plementiert werden kénnen.

196 hanoi
197 Die Tuerme von Hanoi
198 */

210 hanoi (N) :-

211 moves(N, left,centre, right).
220 moves(0,_,_,_) :=! .

230 moves(N,A,B,C) :—

240 M is N-1,

250 moves(M, A,C,B),

260 inform(A,B),

270 moves(M,C,B,4A).

280 inform(X,Y) :—

281 write([move,a,dise, from,
the, X, pole, to, the,Y,pole]).

282 nl.

Prolog wird vor allem dort einge-
setzt, wo Symbole verarbeitet wer-
den. Fiir numerische Datenverar-
beitung, also Berechnungen und
die Verarbeitung von Zahlen, ist
diese Sprache nicht entworfen wor-
den. Typische Anwendungen von
Prolog sind:

e der Aufbau von Wissensbasen
(Tabelle 1) fiir Expertensysteme
oder intelligente Datenbanksy-
steme

e Verarbeitung natiirlicher Spra-
che; sie umfaBt das Erkennen natiir-
licher Sprache und die Gesprachs-
fithrung durch das Programm

® Bilderkennung und -verarbeitung
(Szenenanalyse)

e der Entwurf kompletter Exper-
tensysteme (Tabelle 1)

e rapid prototyping (Tabelle 1)

Bedienung und Handbuch

Prolog 64 bietet dem Programmie-
rer eine gelungene Kombination
der neuen Befehle dieser Program-
miersprache und der Befehle, die
jedem C 64-Besitzer bekannt sind.
So kann man in einem Prolog-Lauf
beliebige Basic-Programme ausfiih-
ren oder nachtraglich laden. Aus
dem aktiven Prolog-System kann
man jederzeit mit dem Befehl "EOFk«
oder dem EOF-Zeichen »SHIFT/
PFUND« auf den Basic-Bildschirm
zuriickschalten. Mit »STOP/RESTO-
RE« wird wieder zum Prolog-System
zuriickgeschaltet.

Die Schnitistelle zv Basic

Andersherum geht's auch: Prolog
kénnen Sie von einem Basic-Pro-
gramm aus mit dem Befehl »SYS
49152« aufrufen. Will man Prolog von
einem eigenen Programm aus la-
den, so geht das ebenfalls ohne gro-
Be Probleme,

In 40 Sekunden wird das Prolog-
System von der Diskette geladen
(LOAD "PROLOG"8« und »RUN).

142 ‘330

Intelligenz fir
lhren C 64!

Nach dem »LOAD« kénnen Monitor-
und Klangfarben verandert wer-
den. Nun sind noch genau 19703 By-
te frei, nachdem Prolog 64 unter Ba-
sic geladen wurde. Der Speicher
wird vom Prolog-System aufgeteilt.
16 KByte sind fiir Daten, 16 KByte fiir
Grafik reserviert. Fiir den Stack
werden 34,5 KByte (mit Grafik 21
KByte) und fiir den Grafik-RAM-
Speicher werden 8 KByte belegt.
Das Handbuch zum Programm

Das Handbuch zum Programm
bietet neben der Bedienungsanlei-
tung nur eine kurze Beschreibung
von Prolog. Wer Prolog lernen und
in dieser Sprache Programme ent-
wickeln will, muf sich zusatzlich das
Standardwerk von Clocksin und
Mellish anschaffen. In diesem Buch
wurde 1981 das Kern-Prolog defi-
niert und dieser sogenannte »Edin-
burghe«Standard liegt den heutigen
Prolog-Implementationen zugrun-
de. Auch Prolog 64 basiert auf dem
Kern-Prolog.
Mitgelieferte Bibliotheken

Mitgeliefert wird eine Beispielsit-
zung, anhand derer man die ersten
Versuche mit der neuen Program-
miersprache relativ sicher durch-
fithren kann. Dies ist auch nétig! Pro-
log ist halt vollig anders als die iibli-
chen Programmiersprachen und
man mubB sich erst an seine Beson-
derheiten (zum Beispiel: jede Einga-
be muB mit einem Punkt abge-
schlossen werden) gewohnen. Je-
der, der lange in Basic (oder ande-

ren algorithmischen Sprachen wie
Pascal oder Fortran) programmiert
hat, wird anfangs grofe Schwierig-
keiten haben, sich auf die neue Pro-
grammierweise in Prolog einzustel-
len, weil er noch »in Basic denkt«.
Auf der mitgelieferten Diskette fin-
den sich Bibliotheken fiir Gramma-
tikregeln, grafische Routinen, Spri-
tedefinitionen fiir das Demo-Pro-
gramm, Musikroutinen, verschiede-
ne mathematische Programme,
Mengenoperationen und Suchver-
fahren, einen Precompiler fiir
Grammatikregeln und einen Uber-
setzer von Pradikatenlogik in Klau-
selform (siche Clocksin/Mellish),
komfortable Ein-/Ausgabeoperatio-
nen und Faktenverwaltung auf Flop-
py und natiirlich fiir ein Demo-Pro-
gramm. Zusammen mit einer Biblio-
thek fiir einige Prolog-Befehle um-
fassen die Beispielprogramme 43,4
KByte. Die Listings dieser Beispiel-
Files sind im Anhang des Hand-
buchs abgedruckt. Es ist alles da,
was man braucht, um eine fremde
Sprache kennenzulernen. Nun muf
man nur noch loslegen und das Pro-
log-System ausprobieren.

Prolog fiir Sie!

Prolog ist eine sehr interessante
Sprache fiir alle, die sich ndher mit
der Kiinstlichen Intelligenz beschéaf-
tigen wollen. Jeder C 64-Besitzer,
der sich in diesem Bereich der Zu-
kunft engagieren will, wird die Mog-
lichkeit begriiBen, die Prolog 64 ihm
bietet: Auf dem Computer, den er
kennt, dem Commodore 64, kann er
sich mit einer berithmten KI-Spra-
che anfreunden. Prolog 64 umfaft
die Sprachmoglichkeiten, die auch
den Prolog-Programmierern auf
GroRrechnern zur Verfligung ste-
hen. Fiir Verspielte sind die Crafik-
und Tonerzeugungsméglichkeiten
des C 64 voll verfiigbar. Und man
kann jederzeit Basic-Programme
und damit auch Routinen in Maschi-
nensprache in Prolog-Programme
einbauen! Zum Kennenlernen die-
ser Sprache ist die Prolog-Version
Prolog 64 ideal. Und an Speicher-
platzprobleme diirfte jeder C 64-Be-
sitzer gewohnt sein. Denn groBe
Programmsysteme kann man so na-
tiirlich nicht entwickeln. Wenn Sie
Interesse an Kiinstlicher Intelligenz
haben, dann schreiben Sie uns!

Der erste Prolog-Interpreter fiir
den C 64 ist mit deutschem Hand-
buch fiir 289 Mark erhaltlich. (cg)
Info: Brainware GmbH, Kirchgasse 24, 6200 Wiesbaden,
Tel: (06121) 372011
Literatur: Clocksin und Mellish, Programming in Prolog,

Springer Verlag, Berlin, Heidelberg, New York, 1985, ISBN
3-540-11046-1, 44 Mark

Ausgabe 3/Maérz 1986

C64

Programmiersprachen

Expertensystem (expert system):

Expertensysteme sind »intelligente«
Programme aus dem Bereich der Kiinstli-
chen Intelligenz. Ihre Aufgabe ist es, wie
ein menschlicher Experte iiber ein be-
stimmtes Gebiet (moglichst) vollstdndig
Bescheid zu wissen. Solche Anwen-
dungsgebiete konnen in der Medizin
(Diagnose, Behandlung von Tropen-
krankheiten), der Technik (Konstruktion
von Automotoren, Aufbau von Rechner-
konfigurationen) oder in der Geschichte
liegen. Jedes Gebiet, in dem es mensch-
liche Spezialisten gibt, ist geeignet.

Expertensysteme bestehen aus mehre-
ren Komponenten. Die Wissensbasis ent-
halt das Expertenwissen, das auf geeig-
nete Weise im Computer dargestellt
wird. Der Aufbau dieser Wissensbasisist
das Kernproblem, das sich beim Aufbau
eines Expertensystems stellt. Nicht nur
Buchwissen soll aufgenommen werden,
sondern auch Erfahrungswissen, das,
was man erst durch langjéhrige Praxisan
Tricks und Kniffen lernt. Ein Expertensy-
stem arbeitet auf dieser Wissensbasis
und zwar im Dialog mit seinem Benutzer.
Diese Dialogkomponente ist ebenfalls ty-
pisch. Der Benutzer stellt dem Pro-
grammsystem eine Frage (Welche
Krankheit hat der Patient, wenn folgende
Symptome auftreten: ..% oder »Ich will
fiir meine Schreinerei einen Computer
und Software anschaffen. Was braucht
man und was gibt es? Nachdem der
Computerexperte aufgrund seines ge-
speicherten Wissens und im Gesprich
mit dem Fragenden alle nétigen Informa-
tionen gesammelt und eine Lésung des
Problems gefunden hat, kann der Benut-
zer von der Erklarungskomponente Ge-
brauch machen. Das Expertensystem er-
klart jeden einzelnen Schritt seiner
SchluBfolgerungen. Dies sind die we-
sentlichen Bestandteile eines Experten-
systems: eine Wissensbasis, die auch va-
ges Wissen enthalt, die Dialog- und die
Erklarungskomponente.
rapid prototyping:

Dies ist eine Methode, die schon beim
Entwickeln von Programmen logische
Fehler im spéteren Programm verhin-
dern soll. Programme werden auf einer
abstrakteren Ebene, als dies die Pro-
grammierebene ist, spezifiziert. Die Spe-
zifikationssprache ist so konzipiert, dap
Fehler schnell erkannt und oft schon au-
tomatisch behoben werden kénnen. Ist
die Spezifikation des Programms dann
fehlerfrei, folgt die (teilweise wieder au-
tomatische) Programmierung in konven-
tioneller Sprache. Auf diese Weise soll
garantiert fehlerfreie Software ent-
wickelt werden. Dies spart Kosten fiir
Wartung und Service.

Wissensbasis (knowledge base):

In einer Wissensbasis werden Informa-
tionen gespeichert. Die iibliche Form, in
der sie dargestellt werden, ist:

WENN (IF) ... DANN (THEN) ...

WENN bestimmte Bedingungen zutref-
fen DANN kann man daraus (mit einer
bestimmten Wahrscheinlichkeit) schluf3-
folgern, daB eine bestimmte Situation
vorliegt, also:

*WENN der Patient raucht, DANN ist
die Wahrscheinlichkeit, da® er zu dick
ist, 5 Prozent niedriger als sonst«.

Tabelle 1. Fachtermini

Fakten sind Tatsachen iiber Objekte und
ihre Beziehungen zueinander. Namen
von Gegenstanden, Personen und so wei-
ter (Petra, Prolog) werden in Fakten klein-
geschrieben. Die Beziehung oder die
Aussage ilber Objekte steht vor der
Klammer (sind, kennt). Geben wir zum
Beispiel folgende Fakten iiber Prolog
und Computerfans ein:

pr_sprache(prolog) .

»Prolog ist eine Programmiersprache.«
kennt(petra,logo).

»Petra kennt Logo.«
kennt(petra arnd).

sind(arnd,petra,c_fans).
»Arnd und Petra sind Computerfans.«

Fragen sehen genauso aus wie Fakten,
vor die »*« gesetzt wurde. Wenn eine Fra-
ge an Prolog gestellt wird, durchsucht
das System die Datenbank, die alle be-
kannten Fakten enthalt. Prolog sucht ein
Fakt, das der Frage entspricht. Existiert
ein solches Fakt, dann antwortet Prolog
auf die Frage des Benutzers mit »yess,
sonst mit »no«. Beispiel:
?-kennt(dr_bobo,indiana_joe).

no

»Kennt Dr. Bobo (den Hacker) Indiana
Joe? Prolog wei nur das, was wir ihm
oben eingegeben haben und sagt:
Nein,

?-kennt(petra,logo).
ves

»Kennt Petra Logo?« Prolog sagt: Ja.

Variablen verwendet man in Fragen, um
(alles) zu erfahren, was das Prolog-Sy-
stem iliber ein bestimmtes Objekt weif.
Variablen beginnen mit einem GroR-
buchstaben. Eine solche Variable heift
zum Beispiel »X« oder »Diesisteinbeliebi-
gervariablennames. Eine Variable be-
zeichnet kein Objekt. Sie wird dann ver-
wendet, wenn man etwas sucht, das man
nicht genau bezeichnen kann. Nehmen
wir die Variable X und fragen, was Petra
alles kennt (X bezeichnet das, was Petra
kennt):

?-kennt(petra,X).
X=logo

ist die Antwort. Gibt man nach dieser er-
sten Antwort ein »;« (das logische »oder«)
ein, so sucht das Prologsystem nach wei-
teren Objekten. Die nachste Antwort ist
dann

X=arnd

Geben wir einfach »Return« ein, dann
wird die Suche beendet.

Wenn Prolog eine Frage gestellt wird,
die eine Variable enthalt, durchsucht
das Prolog-System alle seine Fakten
nach einem Objekt, das die Variable er-
setzen kann.

Konjugationen sind Verkniipfungen durch
ein logisches »unde«. Sie werden verwen-
det, wenn Fragen tiber kompliziertere
Beziehungen zwischen Objekten gestellt
werden sollen. Beispiel:

»Wer kennt Logo und Prolog?«

In Prolog heif3t das:
?-kennt (X, logo) ,kennt(X,pro-

log).

Die Variable X steht fiir die Person, die
wir suchen. Durch das »« (=und) werden
die Teile unserer Frage verkniipft. In un-
serer kleinen Beispieldatenbank finden
wir leider niemanden, der beide Spra-
chen kennt. Aber auf die Frage
»Wer kennt Arnd und (die Programmier-
sprache) Logo?«:

?-kennt(X,arnd) ,kennt(X,logo).

findet Prologin unserem kleinen Beispiel
die Antwort;

X=petra

Regeln braucht man, wenn eine Tatsa-
che fiir mehr als einen Fall gelten soll.
Beispiel:

Wir wissen, daR® Dr. Bobo das C
64-Spiel Summer Games kennt. Aber er
kennt auch alle anderen Computerspie-
le, die auf dem C 64 laufen. Das heifit in
Prolog:

»Wenn ein Spiel auf dem C 64 lauft, dann
kennt Dr. Bobo es ganz sicher.«

lauft(Spiel,c-64) : -kennt
(dr_bobo,Spiel).

»Daraus folgt« wird in Prolog durch »:-«
bezeichnet.
Eine kompliziertere Regel ist die fol-
gende:
W(x'#y +X+y’) ist eine Ableitung von xxy,
wenn x' Ableitung von x ist und y' Ablei-
tung von y.« Die entsprechende Prolog-
Regel ist:
ableitung (X*Y,X1¥Y+Y1%X): -
ableitung(X,X1),

ableitung(Y,Y1).

Aus solchen Regeln und den oben be-
schriebenen Fakten besteht ein Prolog-
Programm.

Backtracking ist eine Besonderheit von
Prolog. Backtracking bedeutet »Zuriick-
gehen und einen neuen Lisungsweg su-
chens. Da ein Prolog-Programm aus vie-
len Regeln besteht, kann es mehrere
Moglichkeiten geben, fiir eine Variable
einen Wert zu finden. So kann das Pro-
log-System auf der Suche nach einer Lo-
sung in einer Sackgasse landen. Prolog
kann solche Sackgassen erkennen und
wieder verlassen, indem der bisher ge-
fundene Lésungsweqg bis zur letzten Al-
ternative riickgédngig gemacht wird. Nun
wird eine andere Moglichkeit auspro-
biert. Ist auch diese nicht erfolgreich,

wird die ndchste Alternative auspro-

biert, bis die Ldsung gefunden ist.

Ein- und Ausgabe sind niitzlich, wenn das
Programm eine »Unterhaltung« mit dem
Benutzer selbst beginnen soll. Haben wir
zum Beispiel eine Datenbank program-
miert, so muB der Benutzer bei jedem
Schritt gefragt werden, was als nachstes
gemacht werden soll.

Der Befehl put druckt das Zeichen,
dessen ASCII-Code in Klammern ange-
geben wurde:
2-put(104), put(101), put(108), put(108),
put(111).
hello
ist das Ergebnis des Prologsystems.

Bild 1. Die elementarsten Grundlagen von Prolog

Ausgabe 3/Marz 1986

354 143

