
Programmiersprachen C 64

B
eide Worte Compiler und In­
terpreter — kommen aus dem
Englischen wie alles in der
Computerei. Frei übersetzt bedeu­

tet Compiler soviel wie Sammler
oder Zusammensteller und Inter­
preter heißt Übersetzer. Damit ließe
sich mit einiger Phantasie die Ar­
beitsweise schon erraten, aber wir
wollen uns anhand zweier der be­
kanntesten Vertreter beider Grup­
pen ein genaues Bild über ihre
Funktionsprinzipien machen. Diese
beiden Vertreter sind zum einen der
Basic-Interpreter von Microsoft, den
wir in den meisten Heimcomputern
finden, wie zum Beispiel im C 64, im
Apple IIc, TRS-80 und so weiter.
Aber auf vielen PCs und sogar
Großrechnern läuft eine Version
dieses Interpreters. Der Vertreter
der Compiler ist das Turbo-Pascal,
das sich mittlerweile zu einem Stan­
dard entwickelt hat. Da der Compi­
ler unter CP/M läuft, ist es Voraus­
setzung, daß bei Heimcomputern ei­
ne Z80-CPU vorhanden ist. Natürlich
finden wir auch hiervon Versionen
auf allen anderen Rechnern.

Wie funktioniert ein Interpreter? Be­
stimmt haben Sie schon mit einem
Monitorprogramm in den Speicher
Ihres Computers geschaut und sich
gewundert, daß Sie keine Basic-
Wörter gefunden haben. Nun, sie
sind schon vorhanden, wenn auch in
verschlüsselter Form. Bekanntlich
wird meist der ASCII-Code zur Dar­
stellung von Zeichen verwendet.
Dieser endet bei 127 ($7F). Mit 8 Bit
Datenbreite, wie wir sie m den
Heimcomputern finden, ist es aber
möglich, 128 weitere Codes zu ver­
geben. Genau dies wird mit den
Basic-Schlüsselwörtern gemacht.
Der Interpreter übersetzt diese in
sogenannte »Token«. Token heißt
Kennzeichen. Diese Umwandlung
hat einen entscheidenden Einfluß
auf die Arbeitsgeschwindigkeit des
Interpreters. Mit Hilfe des Codes für
die einzelnen Basic-Befehle kann er
schnell die Adresse der dazugehö­
rigen Routine in einer Tabelle fin­
den. Ein weiterer Vorteil ist, daß die
zeitraubende Unterscheidung zwi­
schen Variable und Befehl entfällt,
da alle Codes größer 127 als Token
und der Rest als Variable interpre­
tiert wird. Nebenbei wird durch die
Umwandlung in nur einen Wert für
einen Befehl auch eine Menge Spei­
cherplatz eingespart. Nun wissen
wir, welche Aufgabe der Interpreter
während der Programmeingabe
hat: das Übersetzen von Schlüssel­
wörtern in Token und Kennzeichnen
der Variablen. Um nun die Arbeits­
weise während des Programmab­

Gegenüberstellung
Compiler oder Interpreter? Compiler sind schneller.
Interpreter brauchen weniger Platz. Wir zeigen
Ihnen die Vorteile beider Methoden.

laufes zu verstehen, wollen wir ein­
mal eine Basic-Programmzeile ana­
lysieren.

Wenn wir folgendes eingeben:
10 PRINT"BASIC":G0T010 {Retum)
und uns dann mit dem Monitor das
Programm anschauen, so ent­
decken wir folgende (hexadezima­
le) Zeichenfolge ab Adresse $0800:
0800: 00 U 08 0A 00 00 99 22 42 41 53
080B: 49 43 22 3A 89 31 30 00 00 00 00

Was haben diese Bytes zu bedeu­
ten? Das erste Byte (00) kennzeich­
net den Beginn einer Basic-Zeile,
die beiden darauffolgenden Bytes
(12 08), auch Linkpointer genannt,
geben die Adresse der nächsten Ba­
sic-Zeile im Speicher an. Byte 3 und
4 stellen die Zeilennummer dar (0A
00 ergibt 10 Dezimal — das erklärt
auch, warum die Zeilennummern
65535 nicht überschreiten können,
da man mit 2 Bytes nicht mehr dar­
stellen kann). Tatsächlich wird aber
nur bis 63999 numeriert. Die nächste
00 ist ein Trennungszeichen; der In­
terpreter kann dadurch erkennen,
daß hier der eigentliche Programm­
text beginnt. Die 99 steht als Token
des Print-Befehls, spart also 4 Bytes.
Die 22 stellt das Anführungszeichen
dar und die folgenden 5 Bytes erge­
ben das Wort Basic, geschlossen
von einem weiteren Anführungszei­
chen (22). Der Doppelpunkt mit dem
Wert 3A trennt das GOTO (89) ab. Es
folgt nun wieder die Zeilennummer,
zu der gesprungen werden soll — in
diesem Falle (00 00 00), welches das
Ende des Basic-Textes kennzeichnet
(3 mal 00 = Textende). Während des
Programmablaufes liest der Inter­
preter nun die im Speicher abgeleg­
ten Bytes der Reihe nach durch.
Stößt er nun auf ein Token, so ver­
zweigt er in die entsprechende Be­
triebssystemroutine (in der die Auf­
gabe dieses Befehls festgelegt ist),
führt diese aus und liest das nächste
Byte. Entdeckt er nun eine Variable,
so versucht er, diese zuerst einmal
im Speicher zu finden. Gelingt ihm
dies nicht, so fügt er sie an eine
eventuell bestehende Variablenta-
belle an oder er schafft sich mit Hilfe
der Garbage Collection, wenn nö­
tig, Platz dafür. Gleichzeitig muß der

Variablentyp erkannt werden, das
heißt ob es sich um Real, Integer
oder um Arrays handelt. Wird das
Programm editiert, so muß der In­
terpreter den Programmtext im
Speicher verschieben, insofern et­
was hinzukommt oder gelöscht wird.
Dies erklärt auch, warum ein mit
STOP oder BREAK unterbrochenes
Programm, wenn es verändert wird,
nicht wieder mit CONT fortgesetzt
werden kann. Beim Verschieben
des Programmtextes wird nämlich
die Variablentabelle überschrie­
ben, so daß der Interpreter seine
Variablen nicht mehr findet. Eine
weitere Aufgabe hat der Interpreter
beim Listen. Er muß jetzt die Token
wieder in Klartext zurücküberset­
zen, so daß sie vom Bediener gele­
sen werden.

Compiler geben Gas

Compiler kann man als direkte
Schnittstelle einer Hochsprache zur
niedersten Ebene des Computers,
der Maschinensprache, betrachten.
Worin liegt nun der große Unter­
schied zum Interpreter? Es gibt zwei
Gruppen von Compilern. Die einen
erzeugen einen Zwischencode, den
sogenannten P-Code und arbeiten
somit in entferntem Sinne ähnlich
wie ein Interpreter. Dieser P-Code
hat den Vorteil, daß er relativ platz­
sparend ist, andererseits ist aber,
durch die interpreterähnliche Struk­
tur bedingt, der Geschwindigkeits­
vorteil nicht überragend hoch. Es
lassen sich hierbei Zeitvorteile von
bis zu 40 Prozent gegenüber einem
Interpreter erreichen. Beispiele
hierfür sind der bekannte UCSD-
Compiler oder der Austro-Compi-
ler. Die zweite Compiler-Art erzeugt
direkt Maschinencode. Da wäre
zum einen der Aztek-C-Compiler,
der Assembler-Quellcode erzeugt
oder Turbo-Pascal, das direkt Ma­
schinencode im Speicher ablegt.
Doch wie läuft nun eine Programm­
ausführung mit einem Compiler ab?
Bereits bei der Eingabe bemerken
wir den ersten Unterschied: Wir
können den Programmtext (Quell-

138 i^a? Ausgabe 3/März 1986

C 64 Progr arsprachen

code) mit Hilfe eines beliebigen Edi­
tors erstellen. Das kann zum Beispiel
ein Textverarbeitungsprogramm
wie Wordstar sein. Zwar haben die
meisten Compiler einen Editor ein­
gebaut, aber die Eingabe gestaltet
sich über eine Textverarbeitung um
einiges komfortabler. Die eingebau­
ten Editoren sind meist dazu da,
eventuell auftretende Fehler rasch
zu beseitigen. Mit den Fehlern kom­
men wir zum zweiten großen Unter­
schied: Erst nach der vollständigen
Eingabe wird das Programm compi-
liert. Das geschieht in den soge­
nannten Passes (Durchgänge). Beim
ersten Paß wird die Syntax über­
prüft, im zweiten wird dann das Pro­
gramm übersetzt, alle erforderli­
chen Tabellen errechnet und in das
Programm eingebracht. Es gibt
Compiler, die nur einen Durchlauf
brauchen (zum Beispiel Turbo-Pas­
cal). Andere können sogar auf vier
Durchgänge kommen. Tritt wäh­
rend des Übersetzens ein Fehler
auf, so wird das Compilieren abge­
brochen und eine Meldung ausge­
geben, die die Art des Fehlers und
die Stelle, an der er auftrat, mitteilt.
Nun wird der Fehler vom Program­
mierer korrigiert. Dieser Vorgang
wiederholt sich so oft, bis das Pro­
gramm fehlerfrei ist. Der Vorteil da­
bei ist, daß auch Programmteile, die
selten aufgerufen werden, fehler­
frei sind und das Programm als sol­
ches von der Syntax her in Ordnung
ist. Der Nachteil an der ganzen Sa­
che ist, daß es oft sehr aufwendig
sein kann, den Quelltext zu ändern.
Dies trifft zum Glück nur noch für äl­
tere Compiler zu; bei den neueren
Versionen kann man teilweise bis zu
30 Kilobyte Quelltext auf einmal im
Speicher halten und kann zusätzlich
noch das Programm im Speicher
compilieren lassen. Damit sind wir
bei den verschiedenen Optionen,
die so ein Compiler zu bieten hat.

Die verschiedenen
Compiler-Optionen

Da wäre zum einen die Möglich­
keit, das Programm fix und fertig auf
die Diskette compilieren zu lassen.
Man braucht es nur noch einzuladen
und zu starten. Allerdings setzt der
Compiler noch seine Run-Time-Rou-
tinen vor das Programm. Das ist so­
zusagen eine Bibliothek, die die
Fehlermeldungen und einige wich­
tige Routinen (zum Beispiel schnelle
Arithmetik oder Bildschirmverwal­
tung) beinhaltet. Dadurch wird das
Programm je nach Compiler zwar

um 4 bis 40 KByte länger, aber es ist
absolut unabhängig vom Compiler
lauffähig. Eine zweite Möglichkeit
besteht darin, das Programm in den
Speicher compilieren zu lassen, um
es dort auszutesten und zu optimie­
ren. Als drittes kann man das Pro­
gramm ohne Run-Time-Routinen auf
Diskette compilieren lassen, so daß
es nur in Verbindung mit dem Com­
piler, quasi als Overlay, lauffähig ist.

Desweiteren bieten die meisten
Compiler dem Programmierer so­
genannte Switches; das sind Optio­
nen, die im Quellcode eingestellt
werden und die über Komfort und
Schnelligkeit entscheiden. So kann
man zum Beispiel Fehlermeldungen
abfangen oder man kann entschei­
den, ob Arrays möglichst schnell

Lesen und Schreiben

Schreibkopf bei der Übertragung eines Textes. Lesekopf beim Abtasten und Übertragen einer Grafik.

sollte Ihr Computer

Leistungsfähig, ßexibel und präzise - der Plo<ter/Scanner
als fischertechnik computing Bausatz.

schon können.
fischertechnikcomputing bringt noch mehrLeben inden

Home-Computer: Die Bausätze Plotter/Scanner und
Trainingsroboter und der fischertechnik computing

|

Baukasten für mehr
als 10 Peripheriegeräte ermöglichen
ein wirklichkeitsnahes Arbeiten mit
selbst programmierbaren Simulations­
geräten. fischertechnik computing -
über ein passendes lnterface/Software-
Paket kompatibel zu vielen gängigen
Home-Computern.

oder möglichst platzsparend behan­
delt werden sollen. Grundsätzlich ist
das Arbeiten mit einem Compiler
kein Kunststück, denn etwa die Hälf­
te der dem Markt erhältlichen Com­
piler sind menügesteuert und ge­
ben dem Bediener jederzeit Aus­
kunft über noch verfügbaren Spei­
cherplatz oder die Art des aufgetre­
tenen Fehlers. Durch die vom Com­
piler unabhängige Erzeugung des
Quellcodes erreicht man ein
Höchstmaß an Eingabekomfort,
denn welcher Editor ist schon so
komfortabel wie ein Textverarbei­
tungssystem? Der größte Vorteil des
Compilers einem Interpreter ge­
genüber ist aber die Zeitersparnis
beim Programmablauf.

(U. Reetz/cg/dm)

lnfo-Telefon 0 74 43 12 311 oder Coupon
bitte an: fischer-werke. Weinhalde 14-18,
D-7244 Tumlingen/Waldachtal, A3/86

Name

Straße

PLZ/Qn

fischertechnik^
Technik.MitZukunrt. ,®^^

Ausgabe 3/März 1986 ik^ 139

