Programmiersprachen

C 64

terpreter — kommen aus dem

Englischen wie alles in der
Computerei. Frei iibersetzt bedeu-
tet Compiler soviel wie Sammler
oder Zusammensteller und Inter-
preter heit Ubersetzer, Damit lieRe
sich mit einiger Phantasie die Ar-
beitsweise schon erraten, aber wir
wollen uns anhand zweier der be-
kanntesten Vertreter beider Grup-
pen ein genaues Bild {iber ihre
Funktionsprinzipien machen. Diese
beiden Vertreter sind zum einen der
Basic-Interpreter von Microsoft, den
wir in den meisten Heimcomputern
finden, wie zum Beispiel im C 64, im
Apple Ilc, TRS-80 und so weiter.
Aber auf vielen PCs und sogar
GroRrechnern lauft eine Version
dieses Interpreters. Der Vertreter
der Compiler ist das Turbo-Pascal,
das sich mittlerweile zu einem Stan-
dard entwickelt hat. Da der Compi-
ler unter CP/M lauft, ist es Voraus-
setzung, daB bei Heimcomputern ei-
ne Z80-CPU vorhanden ist. Natiirlich
finden wir auch hiervon Versionen
auf allen anderen Rechnern.

Wie funkfioniert ein Interpreter? Be-
stimmt haben Sie schon mit einem
Monitorprogramm in den Speicher
Ihres Computers geschaut und sich
gewundert, da Sie keine Basic-
Wérter gefunden haben. Nun, sie
sind schon vorhanden, wenn auch in
verschliisselter Form. Bekanntlich
wird meist der ASCII-Code zur Dar-
stellung von Zeichen verwendet.
Dieser endet bei 127 ($7F). Mit 8 Bit
Datenbreite, wie wir sie in den
Heimcomputern finden, ist es aber
moglich, 128 weitere Codes zu ver-
geben. Genau dies wird mit den
Basic-Schliisselwortern gemacht.
Der Interpreter iibersetzt diese in
sogenannte »Token«. Token heif3t
Kennzeichen. Diese Umwandlung
hat einen entscheidenden Einflu
auf die Arbeitsgeschwindigkeit des
Interpreters. Mit Hilfe des Codes fiir
die einzelnen Basic-Befehle kann er
schnell die Adresse der dazugeho-
rigen Routine in einer Tabelle fin-
den. Ein weiterer Vorteil ist, daf die
zeltraubende Unterscheidung zwi-
schen Variable und Befehl entfallt,
da alle Codes grofer 127 als Token
und der Rest als Variable interpre-
tiert wird. Nebenbei wird durch die
Umwandlung in nur einen Wert fiir
einen Befehl auch eine Menge Spei-
cherplatz eingespart. Nun wissen
wir, welche Aufgabe der Interpreter
wahrend der Programmeingabe
hat: das Ubersetzen von Schliissel-
wortern in Token und Kennzeichnen
der Variablen. Um nun die Arbeits-
weise wahrend des Programmab-

138 (e

Beide Worte Compiler und In-

Gegeniiberstellung

Compiler oder Interpreter? Compiler sind schneller.
Interpreter brauchen weniger Platz. Wir zeigen

lhnen die Vorteile beider

laufes zu verstehen, wollen wir ein-
mal eine Basic-Programmezeile ana-
lysieren.
Wenn wir folgendes eingeben:

10 PRINT"BASIC":G0T010 (Return)

und uns dann mit dem Monitor das
Programm anschauen, so ent-
decken wir folgende (hexadezima-
le) Zeichenfolge ab Adresse $0800:

0800: 00 12 08 OA 00 00 99 22 42 41 53
080B: 49 43 22 3A 89 31 30 00 00 00 0O

Was haben diese Bytes zu bedeu-
ten? Das erste Byte (00) kennzeich-
net den Beginn einer Basic-Zeile,
die beiden darauffolgenden Bytes
(12 08), auch Linkpointer genannt,
gebendie Adresse der nachsten Ba-
sic-Zeile im Speicher an. Byte 3 und
4 stellen die Zeilennummer dar (0A
00 ergibt 10 Dezimal — das erklart
auch, warum die Zeilennummern
65535 nicht iiberschreiten kénnen,
da man mit 2 Bytes nicht mehr dar-
stellen kann). Tatsdchlich wird aber
nur bis 63999 numeriert. Die nachste
00 ist ein Trennungszeichen; der In-
terpreter kann dadurch erkennen,
daR hier der eigentliche Programm-
text beginnt. Die 99 steht als Token
des Print-Befehls, spart also 4 Bytes.
Die 22 stellt das Anfithrungszeichen
dar und die folgenden 5 Bytes erge-
ben das Wort Basic, geschlossen
von einem weiteren Anfithrungszei-
chen (22). Der Doppelpunkt mit dem
Wert 3A trennt das GOTO (89) ab. Es
folgt nun wieder die Zeilennummer,
zu der gesprungen werden soll — in
diesem Falle (00 00 00), welches das
Ende des Basic-Textes kennzeichnet
(3mal 00 = Textende). Wahrend des
Programmablaufes liest der Inter-
preter nun die im Speicher abgeleg-
ten Bytes der Reihe nach durch.
StéRt er nun auf ein Token, so ver-
zweigt er in die entsprechende Be-
triebssystemroutine (in der die Auf-
gabe dieses Befehls festgelegt ist),
fithrt diese aus und liest das nachste
Byte. Entdeckt er nun eine Variable,
so versucht er, diese zuerst einmal
im Speicher zu finden. Gelingt ihm
dies nicht, so fligt er sie an eine
eventuell bestehende Variablenta-
belle an oder er schafft sich mit Hilfe
der Garbage Collection, wenn né-
tig, Platz dafiir. Cleichzeitig muP der

thoden.

Variablentyp erkannt werden, das
heiBt ob es sich um Real, Integer
oder um Arrays handelt. Wird das
Programm editiert, so muf der In-
terpreter den Programmtext im
Speicher verschieben, insofern et-
was hinzukommt oder geloscht wird.
Dies erklart auch, warum ein mit
STOP oder BREAK unterbrochenes
Programm, wenn es verandert wird,
nicht wieder mit CONT fortgesetzt
werden kann. Beim Verschieben
des Programmtextes wird namlich
die Variablentabelle iiberschrie-
ben, so daB der Interpreter seine
Variablen nicht mehr findet. Eine
weitere Aufgabe hat der Interpreter
beim Listen. Er muB jetzt die Token
wieder in Klartext zurlickiilberset-
zen, so daB sie vom Bediener gele-
sen werden.

Compiler geben Gas

Compiler kann man als direkte
Schnittstelle einer Hochsprache zur
niedersten Ebene des Computers,
der Maschinensprache, betrachten.
Worin liegt nun der grofe Unter-
schied zum Interpreter? Es gibt zwei
Gruppen von Compilern. Die einen
erzeugen einen Zwischencode, den
sogenannten P-Code und arbeiten
somit in entferntem Sinne &hnlich
wie ein Interpreter. Dieser P-Code
hat den Vorteil, daB er relativ platz-
sparend ist, andererseits ist aber,
durch die interpreterdhnliche Struk-
tur bedingt, der Geschwindigkeits-
vorteil nicht tiberragend hoch. Es
lassen sich hierbei Zeitvorteile von
bis zu 40 Prozent gegeniiber einem
Interpreter erreichen. Beispiele
hierfiir sind der bekannte UCSD-
Compiler oder der Austro-Compi-
ler. Die zweite Compiler-Art erzeugt
direkt Maschinencode. Da ware
zum einen der Aztek-C-Compiler,
der Assembler-Quellcode erzeugt
oder Turbo-Pascal, das direkt Ma-
schinencode im Speicher ablegt.
Doch wie lauft nun eine Programm-
ausfithrung mit einem Compiler ab?
Bereits bei der Eingabe bemerken
wir den ersten Unterschied: Wir
konnen den Programmtext (Quell-

Ausgabe 3/Marz 1986

C 64

Programmiersprachen

code) mit Hilfe eines beliebigen Edi-
tors erstellen. Das kann zum Beispiel
ein Textverarbeitungsprogramm
wie Wordstar sein. Zwar haben die
meisten Compiler einen Editor ein-
gebaut, aber die Eingabe gestaltet
sich iiber eine Textverarbeitung um
einiges komfortabler. Die eingebau-
ten Editoren sind meist dazu da,
eventuell auftretende Fehler rasch
zu beseitigen. Mit den Fehlern kom-
men wir zum zweiten grof3en Unter-
schied: Erst nach der vollstandigen
Eingabe wird das Programm compi-
liert. Das geschieht in den soge-
nannten Passes (Durchgange). Beim
ersten PaB wird die Syntax iiber-
priift, im zweiten wird dann das Pro-
gramm iibersetzt, alle erforderli-
chen Tabellen errechnet und in das
Programm eingebracht. Es gibt
Compiler, die nur einen Durchlauf
brauchen (zum Beispiel Turbo-Pas-
cal). Andere kdnnen sogar auf vier
Durchgange kommen. Tritt wédh-
rend des Ubersetzens ein Fehler
auf, so wird das Compilieren abge-
brochen und eine Meldung ausge-
geben, die die Art des Fehlers und
die Stelle, an der er auftrat, mitteilt.
Nun wird der Fehler vom Program-
mierer korrigiert. Dieser Vorgang
wiederholt sich so oft, bis das Pro-
gramm fehlerfrei ist. Der Vorteil da-
beiist, daB auch Programmteile, die
selten aufgerufen werden, fehler-
frei sind und das Programm als sol-
ches von der Syntax her in Ordnung
ist. Der Nachteil an der ganzen Sa-
che ist, daB es oft sehr aufwendig
sein kann, den Quelltext zu &ndern.
Dies trifft zum Gliick nur noch fiir al-
tere Compiler zu; bei den neueren
Versionen kann man teilweise bis zu
30 Kilobyte Quelltext auf einmal im
Speicher halten und kann zusétzlich
noch das Programm im Speicher
compilieren lassen. Damit sind wir
bei den verschiedenen Optionen,
die so ein Compiler zu bieten hat.

Die verschiedenen
Compiler-Optionen

-Da ware zum einen die Moglich-
keit, das Programm fix und fertig auf
die Diskette compilieren zu lassen.
Man braucht es nur noch einzuladen
und zu starten. Allerdings setzt der
Compiler noch seine RunTime-Rou-
tinen vor das Programm. Das ist so-
zusagen eine Bibliothek, die die
Fehlermeldungen und einige wich-
tige Routinen (zum Beispiel schnelle
Arithmetik oder Bildschirmverwal-
tung) beinhaltet. Dadurch wird das
Programm je nach Compiler zwar

Ausgabe 3/Mirz 1986

um 4 bis 40 KByte langer, aber es ist
absolut unabhangig vom Compiler
lauffahig. Eine zweite Moglichkeit
besteht darin, das Programm in den
Speicher compilieren zu lassen, um
es dort auszutesten und zu optimie-
ren. Als drittes kann man das Pro-
gramm ohne RunTime-Routinen auf
Diskette compilieren lassen, so daB3
es nur in Verbindung mit dem Com-
piler, quasi als Overlay, lauffahig ist.

Desweiteren bieten die meisten
Compiler dem Programmierer so-
genannte Switches; das sind Optio-
nen, die im Quellcode eingestellt
werden und die iiber Komfort und
Schnelligkeit entscheiden. So kann
man zum Beispiel Fehlermeldungen
abfangen oder man kann entschei-
den, ob Arrays moglichst schnell

oder moglichst platzsparend behan-
delt werden sollen. Grundsatzlich ist
das Arbeiten mit einem Compiler
kein Kunststiick, denn etwa die Half-
te der dem Markt erhaltlichen Com-
piler sind meniigesteuert und ge-
ben dem Bediener jederzeit Aus-
kunft iiber noch verfiigbaren Spei-
cherplatz oder die Art des aufgetre-
tenen Fehlers. Durch die vom Com-
piler unabhéngige Erzeugung des
Quellcodes erreicht man ein
Hoéchstmal® an Eingabekomfort,
denn welcher Editor ist schon so
komfortabel wie ein Textverarbei-
tungssystem? Der grofte Vorteil des
Compilers einem Interpreter ge-
geniiber ist aber die Zeitersparnis
beim Programmablauf.

(U. Reetz/cg/dm)

Les und hreiben

Schreibkopf bei der (bertragung eines Textes.

Lesekopf beim Abtasten und Ubertragen einer Grafik.

sollte Ihr Computer

Leistungsfahig, flexibel und prazise - der Plotter/Scanner
als fischertechnik computing Bausatz.

schon konnen.

Home-Computer:

als 10 Peripheriegerate erméglichen
ein wirklichkeitsnahes Arbeiten mit
selbst programmierbaren Simulations-
geréten. fischertechnik computing -
iiber ein passendes Interface/Software-
Paket kompatibel zu vielen géngigen
Home-Computern.

BravcH Huse & Partuer

. fischertechnik computing bringtnochmehrLebeninden

Die Bausatze Plotter/Scanner und

Trainingsroboter und der fischertechnik computing

Info-Telefon 074 43-12-311 oder Coupon
bitte an: fischer-werke, Weinhalde 14-18,
D-7244 Tumlingen/Waldachtal, A3/86
MHame

Strafie

PLZ/Ont
fischertechnik=x

Technik. Mit Zukunft. :;\%

Z¥ap 139

