
Programmiersprachen C 64

I
mmer mehr Software-Häuser ge­
hen dazu über, Software in C zu
programmieren, ja sogar kom­
plexe Betriebssysteme wie Unix und

Gem wurden in dieser Sprache ent­
wickelt. Was ist nun der Grund da­
für, daß Programmierer sich für C
entscheiden und Pascal, Forth, Co-
bol oder Maschinensprache links
liegen lassen?

Häufige Meinungen der Verfech­
ter von C sind:

Basic ist für professionelle Pro­
gramme untragbar, da es einfach zu
langsam und nicht genügend lei­
stungsfähig ist.

Pascal besitzt eine viel zu strenge
Syntax und ist — einmal abgesehen
von Turbo-Pascal — eher ein theore­
tisches Lehrobjekt als eine verwert­
bare Programmiersprache

Assemblerprogramme sind auf
Computer mit anderen Mikropro­
zessoren kaum übertragbar und
schwierig zu schreiben.

Lisp und Prolog sind die »Grals­
sprachen« der Künstlichen Intelli­
genz (KI) und für »normale« Pro­
gramme nur beschränkt verwend­
bar.

C ist schnell, flexibel,
universell

C besitzt keinen dieser Nachteile,
bietet aber dem Programmierer ei­
ne ganze Reihe von Vorzügen: C ist
gleichzeitig eine Hochsprache und
eine niedrige, maschinennahe Spra­
che! Paradox? Nicht unbedingt, C
beweist ja, daß das möglich ist. So
gibt es umfangreiche Kontrollstruk­
turen wie IF-ELSE, WHILE, DO-
WHILE und SWITCH-CASE und
komplexe Datentypen ähnlich den
Records in Pascal; gleichzeitig kann
man aber auch Systemprogramme
schreiben, die direkt auf die Hard-
und Firmware des Computers zu­
rückgreifen — und zwar in einem
Umfang, wie es sonst nur in Maschi­
nensprache möglich ist. Ein weite­
rer entscheidender Vorteil ist die
Schnelligkeit der erzeugten Pro­
gramme. Die C-Compiler produzie­
ren entweder mnemonischen Quell­
code für Maschinenprogramme
oder gleich fertigen Maschinenco­
de. Dieser Code ist sehr schnell und
fast so kompakt, als wenn das Pro­
gramm gleich in Maschinensprache
geschrieben worden wäre.

Für Softwarehäuser wohl aus­
schlaggebend ist die praktisch voll­
ständige Portabilität der C-Program-
me. So kann ein Programmierer fast
ohne Schwierigkeiten C-Software,
die auf einem Commodore ent­
wickelt wurde, auf einen IBM-PC,

C — die Sprache
der Profis

Wenn man Proarammierer fragt, welche Computer­
sprache in Zukunft die größte Bedeutung hanen
wird, beschränken sich immer mehr von ihnen

darauf, einen Buchstaben zu nennen: C.

Atari 520-ST oder gar auf Computer
der 50000 Mark-Klasse übertragen.

C wurde aus CPL und BCPL ent­
wickelt. Zuerst gab es CPL, die
Combined Programming Language,
ein Sprachenmonster, das so um­
fangreich war, daß sich die Pro­
grammierer darin nicht mehr aus­
kannten. Der Programmierer Martin
Richards von der Universität Cam­
bridge entschloß sich aus diesem
Grund, alles irgendwie Entbehrli­
che von CPL wegzulassen und schuf
damit BCPL, die Basic Combined
ProgrammingLanguage. Vielenwar
auch BCPL noch zu umfangreich,
und so entwickelte Ken Thompson
von den US-amerikanischen Bell-
Laboratories »B«, den direkten Vor­
fahren von C. B war eine äußerst
knappe Sprache, die sich aber sehr
gut zur Systemprogrammierung,
dem geplanten Einsatzgebiet, eig­
nete. Doch B war schon wieder zu
spezialisiert. Und so erinnerte sich
Thompsons Kollege Smith an BCPL
und entwickelte C.

Das erste C-Programm
Schauen wir uns ein einfaches C-

Programm an:
main ()

printf("So sieht ein C-Programm
aus!");

»Main« ist der Name der Haupt­
funktion, der einzigen benutzerdefi­
nierten Funktion in diesem Minipro­
gramm. In Klammern kann nach
dem Namen ein Parameter überge­
ben werden, mit dem die Funktion
rechnen kann. Vergleichbar in Basic
wäre der Befehl PRINT SIN(3). Hier
fungiert die 3 als Parameter, damit
diese trigonometrische Funktion
weiß, wovon sie den Sinus berech­
nen soll. Da das C-Programm keinen
Parameter benötigt, folgen dem
Funktionsnamen leere Klammern.

»printf« ist schon die erste Funk­
tion, die Sie verwenden, obwohl Sie

gar nicht wissen, wie sie funktio­
niert: C kennt keinerlei Ein- oder
Ausgabebefehle, die WRITE und
READ in Pascal oder INPUT und
PRINT in Basic vergleichbar wären!
Solche Funktionen müssen dem
Compiler durch Bibliotheken zur
Verfügung gestellt werden. Diese
Bibliotheken sind Dateien, die schon
beim Kauf eines Compilers mitgelie­
fert werden. Meistens sind diese
wichtigen Funktionen unter dem Na­
men STDIO auf der Programmdis­
kette zu finden. STDIO steht für
»Standard Input/Output«. Mit
#include STDIO.H und #mclude
STDIO.LIB können Sie dem Compi­
ler mitteilen, daß er diese Dateien in
den Programmcode einbinden soll.

»printf« erlaubt die formatierte
Ausgabe von Daten, hier einer
Stringkonstanten. Die C-Programme
selbst werden von geschweiften
Klammern umgeben. Innerhalb der
Klammern stehen alle Variablende­
finitionen und Programmbefehle
der Funktion.

Listing la zeigt, auf welche Weise
Variablen definiert werden können.
Hier werden zuerst zwei Integerva­
riable als »zahl« und »zahly« bezeich­
net, eine Zeichenvariable wird
»buchstabe« genannt. Den beiden
numerischen Variablen wird gleich­
zeitig der Wert 5 zugewiesen. In Ba­
sic würde diese Zeile etwas anderes
bedeuten: Der Computer prüft, ob
»zahly« den Wert 5 hat. Trifft dies zu,
so wird »zahlx« auf logisch Eins (—1)
gesetzt, ansonsten auf logisch Null
(0). Also aufpassen, solche Stolper­
fallen gibt es immer wieder!

Wenn Sie das Programm compi-
lieren, meldet der C-Compiler kei­
nen Fehler; starten Sie aber den Ob­
jektcode, dürften Sie ziemlich über­
rascht sein: Statt zweier Zahlen und
des Buchstaben »T« erscheint eine
Reihe sinnloser Grafikzeichen! Das
liegt daran, daß bei einem forma­
tierten Ausdruck (printf heißt »print
formated«, »drucke formatiert«) eine
Stringkonstante zur Beschreibung

136 ^a,> Ausgabe 3/März 1986

C 64 Programmiersprachen

des Formats angegeben werden
muß, wie zum Beispiel bei PRINT
USING in Basic eine Reihe von Dop­
pelkreuzen. Ändern wir also die
Zeile ab:
printf(" %d %d\t%c\n ", zahlx,
zahly,buchstabe);

Wenn Sie jetzt das Programm neu
übersetzen, erhalten Sie die er­
wünschte Ausgabe:
5 5 T

Was aber bedeuten nun die komi­
schen Prozentzeichen und umge­
kehrten Divisionsstriche in unserem
Print-Befehl? Sie bestimmen das
Ausgabeformat (Tabelle 1).
Steuerbefehle

Kaum ein Programm wird von An­
fang bis Ende der Reihe nach abge­
arbeitet; vielmehr ist es immer wie­
der nötig, bestimmte Werte zu prü­
fen und ausgehend vom Resultat
Entscheidungen zu fällen. C bietet
eine ganze Reihe solcher Steuerbe­
fehle, allen voran das aus vielen
Sprachen wohlbekannte If-Then-
Else. In C kann man das folgender­
maßen formulieren:
main ()

int a;
a=3;
if (a = = 3) printf("A hat den Wert
3\n");

)
Zum Vergleichen zweier Varia­

blen gibt es alle Operatoren, die
auch aus Basic bekannt sind. Sie se­
hen nur etwas anders aus: = = be­
deutet gleich, < kleiner, > größer,
< = kleiner oder gleich, > = größer
oder gleich, ! = ungleich.

Nach dem IF kann immer nur ein
Befehl ausgeführt werden. Hier ist
es die Funktion »printf«. Mehrere Be­
fehle müssen mit geschweiften
Klammern zu einer Verbundanwei­
sung zusammengefaßt werden:
if (a = = 3) [printf ("A ist 3<W';
printf("Und A ist nicht 5! ")j

Auch ein Befehl, der ausgeführt
wird, wenn die Bedingung nicht zu­
trifft, kann angegeben werden:
if (a = 3) printf("A ist 3! ")
else printf("A ist nicht 3! ");

Komplizierte IF-ELSE-Konstruktio-
nen lassen sich oft durch SWITCH
UND CASE ersetzen (Listing lb).

Der SWITCH-Befehl sagt dem
Computer, daß die angegebene Va­
riable (hier »var«) untersucht werden
soll; CÄSE prüft, ob ein bestimmter
Wert zutrifft und führt in diesem Fall
den angegebenen Befehl aus.
BREAK verläßt die SWITCH/CASE-
Anweisung und ist nötig, damit nicht
auch noch die übrigen Möglichkei­
ten durchgeprüft werden, wenn
schon eine Übereinstimmung ge-

•)
main ()

int zahlx,zahly;
char buchstabe;

zahlx=zahly^5;
buchstabe-'T';
printf(zahlx, zahly,buchstabe);

M
Mhl()

int var;
var=3; /* oder 4 oder ein anderer Wert •/
switch(var)

ease 3: | prlntf(.VAR 1st 3!«); break; |
case 4: (prlntf(.VAR 1st 4l.); break; j

default: prlntf(>Veder3noch4!<);

«)
taln()

int loop;
loop^2;
while (loop<255)

printf(' %d = <c\n ', loop, loop);

loop=loop*l;

4)
nain()

I
int loop;
loop-32;
do

printf('M ■ %cXn',loop,loop);

loop=loop*l;

uhlle (loop<255);

I

Listings la bis 1d. Verschiedene
Beispielprogramme in C

%d >DecimaIx, Dezimalzahl
%x .heXadecimal«, Hexzahl
%o »OctaR Oktahahl zur Basis 8
%f »Float«, Fließkommazahl
%e »Exponential», Fließkommazahl in Potenz­

schreibweise
%c “Character», Ausgabe als Buchstabe
%s »String», Ausgabe des Strings, auf den die

Variable zeigt

Tabelle 1. Bedeutung der »Prozent-
Variablen« in C

funden wurde. Trifft keine der Be­
dingungen zu, führt das Programm
den unter DEFAULT stehenden Be­
fehl aus (etwa mit dem ELSE bei IF-
ELSE zu vergleichen). Die Angabe
einer DEFAULT-Bedingung ist optio­
nal; wenn der Computer keine fin­
det, fährt er mit der Programmabar­
beitung normal fort.

FOR- und WHILE-S<hleifen
Auch Schleifen lassen sich auf

mehrere Arten programmieren. Zu­
erst gibt es einmal die FOR-Schleife,
die drei Angaben benötigt:
FOR (Anfangswert; Abbruchbedin­
gung; Wertveränderung)
So läßt sich zum Beispiel der ASCII-
Zeichensatz ausgeben
main ()

int loop;
for (loop=32; loop<255; loop=loop+l)
printf("%d = %cXn",loop,loop);

Die WHILE-Konstruktion benötigt
nur ein Argument und wird so for­
muliert:
WHILE (Bedingung)

Auch mit einem WHILE-Konstrukt
kann man den Zeichensatz darstel­
len. Wie das geht, zeigt Listing lc.

Pascal-Programmierer wissen,
daß es in dieser Sprache neben
WHILE auch noch REPEAT-UNTIL
gibt. Selbstverständlich kann C das
auch. Der Unterschied beider
Schleifenkonstrukte liegt darin, ob
die Abbruchbedingung vor oder
nach der Ausführung der Befehle in
der Schleife geprüft wird: WHILE
testet die Bedingung vor der Schlei­
fe, DO-WHILE erst danach (Listing
ld). Die DO-WHILE-Schleife wird
mindestens einmal durchlaufen,
auch wenn die Bedingung schon vor
dem Eintritt in die Schleife nicht zu­
trifft.

Ein Small-C-Entwicklungssystem
— Editor, Assembler, Linker, Tools
zur Textverarbeitung — wird mit C-
Quellcode für den C 128 und 128 D
von Markt & Technik angeboten.
C auf dem C 64

Der C-Compiler-64 von Data
Becker bietet die Möglichkeit, auch
auf dem C 64 mit dieser Program­
miersprache zu arbeiten. Der Com­
piler erkennt den Kern der C-Spra-
che. Die mitgelieferte Funktionenbi­
bliothek ist nicht sehr umfangreich.
Der Programmierer muß sich die
Funktionen, die er benötigt, zum
größten Teil selbst schreiben. Wenn
man über ein einziges Laufwerk ver­
fügt, ist die Bedienung des C-
Compilers umständlich. Das im Edi­
tor erstellte C-Programm wird auf
die Original-Diskette gespeichert
und dort übersetzt. Um Platz zu
schaffen, muß man daher Sourcefi­
les löschen und später wieder ko­
pieren. Maschinennahe Befehle
können ebenfalls nicht ausgenutzt
werden. (Martin Kortulla/cg)
Info: C-Compiler-64. Data Becker, Merowinger Str. 31,4000
Düsseldorf 1. Tel. (02II) 310010. 298 Mark
Small-C-Entwicklungssystem für C 128 und C 128 D. Markt
& Technik Software Vertrieb. Hans-Pinsel-Str. 2. 8013 Haar
bei München, Tel. (089) 4613-220. 148 Mark

Ausgabe 3/März 1986 137

