Programmiersprachen

C 64

hen dazu iiber, Software in C zu

programmieren, ja sogar kom-
plexe Betriebssysteme wie Unix und
Gem wurden in dieser Sprache ent-
wickelt. Was ist nun der Grund da-
fiir, daB Programmierer sich fiir C
entscheiden und Pascal, Forth, Co-
bol oder Maschinensprache links
liegen lassen?

Héufige Meinungen der Verfech-
ter von C sind:

Basic ist fiir professionelle Pro-
gramme untragbar, da es einfach zu
langsam und nicht gentigend lei-
stungsféhig ist.

Pascal besitzt eine viel zu strenge
Syntax und ist — einmal abgesehen
von Turbo-Pascal — eher ein theore-
tisches Lehrobjekt als eine verwert-
bare Programmiersprache

Assemblerprogramme sind auf
Computer mit anderen Mikropro-
zessoren kaum Ubertragbar und
schwierig zu schreiben.

Lisp und Prolog sind die »Grals-
sprachen« der Kiinstlichen Intelli-
genz (KI) und fiir »normale« Pro-
%ramme nur beschrankt verwend-

ar.

C ist schnell, flexibel,
universell

C besitzt keinen dieser Nachteile,
bietet aber dem Programmierer ei-
ne ganze Reihe von Vorziigen: C ist
gleichzeitig eine Hochsprache und
eine niedrige, maschinennahe Spra-
che! Paradox? Nicht unbedingt, C
beweist ja, daP® das méglich ist. So
gibt es umfangreiche Kontrollstruk-
turen wie IF-ELSE, WHILE, DO-
WHILE und SWITCH-CASE und
komplexe Datentypen ahnlich den
Records in Pascal; gleichzeitig kann
man aber auch Systemprogramme
schreiben, die direkt auf die Hard-
und Firmware des Computers zu-
riickgreifen — und zwar in einem
Umfang, wie es sonst nur in Maschi-
nensprache moglich ist. Ein weite-
rer entscheidender Vorteil ist die
Schnelligkeit der erzeugten Pro-
gramme. Die C-Compiler produzie-
ren entweder mnemonischen Quell-
code fiir Maschinenprogramme
oder gleich fertigen Maschinenco-
de. Dieser Code ist sehr schnell und
fast so kompakt, als wenn das Pro-
gramm gleich in Maschinensprache
geschrieben worden ware.

Fir Softwarehauser wohl aus-
schlaggebend ist die praktisch voll-
standige Portabilitdt der C-Program-
me. So kann ein Programmierer fast
ohne Schwierigkeiten C-Software,
die auf einem Commodore ent-
wickelt wurde, auf einen IBM-PC,

136 Z:¥ap

I mmer mehr Software-Hauser ge-

C — die Sprache
der Profis

Wenn man Programmierer fragt, welche Computer-
sprache in Zukunft die groBte Bedeutung haben
wird, beschréiinken sich immer mehr von ihnen

darauf, einen Buchstaben zu nennen: C.

Atari B20-ST oder gar auf Computer
der 50000 Mark-Klasse libertragen.

C wurde aus CPL und BCPL ent-
wickelt. Zuerst gab es CPL, die
Combined Programming Language,
ein Sprachenmonster, das so um-
fangreich war, daB sich die Pro-
grammierer darin nicht mehr aus-
kannten. Der Programmierer Martin
Richards von der Universitat Cam-
bridge entschlof sich aus diesem
GCrund, alles irgendwie Entbehrli-
che von CPL wegzulassen und schuf
damit BCPL, die Basic Combined
Programming Language. Vielen war
auch BCPL noch zu umfangreich,
und so entwickelte Ken Thompson
von den US-amerikanischen Bell-
Laboratories »B«, den direkten Vor-
fahren von C. B war eine auBerst
knappe Sprache, die sich aber sehr
gut zur Systemprogrammierung,
dem geplanten Einsatzgebiet, eig-
nete. Doch B war schon wieder zu
spezialisiert. Und so erinnerte sich
Thompsons Kollege Smith an BCPL
und entwickelte C.

Das erste (-Programm

Schauen wir uns ein einfaches C-
Programm an:
main ()

printf(”So sieht ein C-Programm
ausl!”);

»Main« ist der Name der Haupt-
funktion, der einzigen benutzerdefi-
nierten Funktion in diesem Minipro-
gramm. In Klammern kann nach
dem Namen ein Parameter iiberge-
ben werden, mit dem die Funktion
rechnen kann. Vergleichbar in Basic
ware der Befehl PRINT SIN(3). Hier
fungiert die 3 als Parameter, damit
diese trigonometrische Funktion
weiB, wovon sie den Sinus berech-
nen soll. Da das C-Programm keinen
Parameter bendtigt, folgen dem
Funktionsnamen leere Klammern.

»printf« ist schon die erste Funk-
tion, die Sie verwenden, obwohl Sie

gar nicht wissen, wie sie funktio-
niert: C kennt keinerlei Ein- oder
Ausgabebefehle, die WRITE und
READ in Pascal oder INPUT und
PRINT in Basic vergleichbar wéaren!
Solche Funktionen miissen dem
Compiler durch Bibliotheken zur
Verfiigung gestellt werden. Diese
Bibliotheken sind Dateien, die schon
beim Kauf eines Compilers mitgelie-
fert werden. Meistens sind diese
wichtigen Funktionen unter dem Na-
men STDIO auf der Programmdis-
kette zu finden. STDIO steht fiir
»Standard Input/Outpute, Mit
#include STDIOH und #include
STDIO.LIB kénnen Sie dem Compi-
ler mitteilen, daB er diese Dateien in
den Programmcode einbinden soll.

wprintfe erlaubt die formatierte
Ausgabe von Daten, hier einer
Stringkonstanten. Die C-Programme
selbst werden von geschweiften
Klammern umgeben. Innerhalb der
Klammern stehen alle Variablende-
finitionen und Programmbefehle
der Funktion.

Listing la zeigt, auf welche Weise
Variablen definiert werden kénnen.
Hier werden zuerst zwei Integerva-
riable als »zahl« und »zahly« bezeich-
net, eine Zeichenvariable wird
»buchstabe« genannt. Den beiden
numerischen Variablen wird gleich-
zeitig der Wert 5 zugewiesen. In Ba-
sicwiirde diese Zeile etwas anderes
bedeuten: Der Computer priift, ob
vzahly« den Wert 5 hat. Trifft dies zu,
so wird »zahlx« auf logisch Eins (—1)
gesetzt, ansonsten auf logisch Null
(0). Also aufpassen, solche Stolper-
fallen gibt es immer wieder!

Wenn Sie das Programm compi-
lieren, meldet der C-Compiler kei-
nen Fehler; starten Sie aber den Ob-
jektcode, diirften Sie ziemlich iiber-
rascht sein: Statt zweier Zahlen und
des Buchstaben »T« erscheint eine
Reihe sinnloser Grafikzeichen! Das
liegt daran, daB bei einem forma-
tierten Ausdruck (printf heit »print
formateds, »drucke formatiert«) eine
Stringkonstante zur Beschreibung

Ausgabe 3/Mérz 1986

C 64

Programmiersprachen

des Formats angegeben werden
mubB3, wie zum Beispiel bei PRINT
USING in Basic eine Reihe von Dop-
pelkreuzen. Andern wir also die
Zelle ab:

printf(”%d %d\t%c\n"”,zahlx,
zahly,buchstabe);

Wenn Sie jetzt das Programm neu
iibersetzen, erhalten Sie die er-
wiinschte Ausgabe:

5.5 T

Was aber bedeuten nun die komi-
schen Prozentzeichen und umge-
kehrten Divisionsstriche in unserem
Print-Befehl? Sie bestimmen das
Ausgabeformat (Tabelle 1).
Steverbefehle

Kaum ein Programm wird von An-
fang bis Ende der Reihe nach abge-
arbeitet; vielmehr ist es immer wie-
der nétig, bestimmte Werte zu prii-
fen und ausgehend vom Resultat
Entscheidungen zu fallen. C bietet
eine ganze Reihe solcher Steuerbe-
fehle, allen voran das aus vielen
Sprachen wohlbekannte IfThen-
Else. In C kann man das folgender-
makRen formulieren:
main ()

{

int g;

a=3;

if (a = = 3) printf(”A hat den Wert

3\n");

Zum Vergleichen zweier Varia-
blen gibt es alle Operatoren, die
auch aus Basic bekannt sind. Sie se-
hen nur etwas anders aus: = = be-
deutet gleich, < kleiner, > gréRer,
< = kleiner oder gleich, > = groRer
oder gleich, != ungleich.

Nach dem IF kann immer nur ein
Befehl ausgefiihrt werden. Hier ist
esdie Funktion »printf«. Mehrere Be-
fehle miissen mit geschweiften
Klammern zu einer Verbundanwei-
sung zusammengefalt werden:
if (a==3) [printf (”A ist 31\n";
printf(”Und A ist nicht 5! ")}

Auch ein Befehl, der ausgefiihrt
wird, wenn die Bedingung nicht zu-
trifft, kann angegeben werden:
if (a = 3) printf(”A ist 3!”)
else printf(”A ist nicht 3!”);

Komplizierte IF-ELSE-Konstruktio-
nen lassen sich oft durch SWITCH
UND CASE ersetzen (Listing 1b).

Der SWITCH-Befehl sagt dem
Computer, daB die angegebene Va-
riable (hier »var«) untersucht werden
soll; CASE priift, ob ein bestimmter
Wert zutrifft und fiithrt in diesem Fall
den angegebenen Befehl aus.
BREAK verlaBt die SWITCH/CASE-
Anweisung und ist nétig, damit nicht
auch noch die librigen Moglichkei-
ten durchgepriift werden, wenn
schon eine Ubereinstimmung ge-

Ausgabe 3/Mirz 1986

a)
main {)

int zahlx,zahly;

char buchstabe;

zahlx=zahly=5;

buchstabes'T';

printf(zahlx, zahly, buchstabe);
]

b)
main{)
|

int var;
var=3; /% oder 4 oder ein anderer Wert ¥/
switch(var)

[

case 3: | printf(»VAR ist 3!«); break; |
case 4: | printf (VAR ist 41«); break; |
default: printf({sWeder 3 noch 4l«);

]

]

q
niai.n()
int loop;

loop=32;
while (loop<255)

printf(" %d = %e\n",loop, loop);
loop=loop+l;
]
!

d)
main()
int loop;
loop=32;
do

{
printf(“%d = %c\n”, locp,loop);
loop=loopHl;

I
while (loop<255);
]

Listings 1a bis 1d. Verschiedene
Beispielprogramme in C

»Decimals, Dezimalzahl

wheXadecimal«, Hexzahl

»Octal«, Oktalzahl zur Basis 8

»Float«, FlieBkommazahl

»Exponentials, FlieBkommazahl in Potenz-
schreibweise

»Character«, Ausgabe als Buchstabe
wString«, Ausgabe des Strings, auf den die
Variable zeigt

£ TRERE

Tabelle 1. Bedeutung der »Prozent-
Variablen« in €

funden wurde. Trifft keine der Be-
dingungen zu, fithrt das Programm
den unter DEFAULT stehenden Be-
fehl aus (etwa mit dem ELSE bei IF-
ELSE zu vergleichen). Die Angabe
einer DEFAULT-Bedingung ist optio-
nal; wenn der Computer keine fin-
det, fahrt er mit der Programmabar-
beitung normal fort.

FOR- und WHILE-Schleifen

Auch Schleifen lassen sich auf
mehrere Arten programmieren. Zu-
erst gibt es einmal die FOR-Schleife,
die drei Angaben bendtigt:
FOR (Anfangswert; Abbruchbedin-
gung; Wertveranderung)
So 14t sich zum Beispiel der ASCII-
Zeichensatz ausgeben
main ()
{
int loop;
for (loop=32; loop <255; loop=loop+l)
printf(”%d = %c\n”, loop,loop);

Die WHILE-Konstruktion bendtigt
nur ein Argument und wird so for-
muliert:

WHILE (Bedingung)

Auch mit einem WHILE-Konstrukt
kann man den Zeichensatz darstel-
len. Wie das geht, zeigt Listing lc.

Pascal-Programmierer wissen,
daB es in dieser Sprache neben
WHILE auch noch REPEAT-UNTIL
gibt. Selbstverstdandlich kann C das
auch. Der Unterschied beider
Schleifenkonstrukte liegt darin, ob
die Abbruchbedingung vor oder
nach der Ausfithrung der Befehle in
der Schleife gepriift wird: WHILE
testet die Bedingung vor der Schlei-
fe, DO-WHILE erst danach (Listing
1d). Die DO-WHILE-Schleife wird
mindestens einmal durchlaufen,
auch wenn die Bedingung schon vor
dem Eintritt in die Schleife nicht zu-
trifft,

Ein Small-C-Entwicklungssystem
— Editor, Assembler, Linker, Tools
zur Textverarbeitung — wird mit C-
Quellcode fiir den C 128 und 128 D
von Markt & Technik angeboten.

C auf dem C 64

Der C-Compiler-64 wvon Data
Becker bietet die Moglichkeit, auch
auf dem C 64 mit dieser Program-
miersprache zu arbeiten. Der Com-
piler erkennt den Kern der C-Spra-
che. Die mitgelieferte Funktionenbi-
bliothek ist nicht sehr umfangreich.
Der Programmierer muf sich die
Funktionen, die er bendétigt, zum
groBten Teil selbst schreiben. Wenn
man iiber ein einziges Laufwerk ver-
fiigt, ist die Bedienung des C-
Compilers umstandlich. Das im Edi-
tor erstellte C-Programm wird auf
die Original-Diskette gespeichert
und dort ilibersetzt. Um Platz zu
schaffen, muB man daher Sourcefi-
les l6schen und spéater wieder ko-
pieren. Maschinennahe Befehle
kénnen ebenfalls nicht ausgenutzt
werden. (Martin Kortulla/cg)
Info: C-Compiler-64, Data Becker, Merowinger Str. 31, 4000
Diisseldorf 1, Tel. (02 11) 310010, 298 Mark
Small-C-Entwicklungssystem fiir C 128 und C 128 D Markt

& Technik Software Vertrieb, Hans-Pinsel-Str. 2, 8013 Haar
bei Miinchen, Tel. (089) 46 13-220, 148 Mark

F¥ap 137

