Programmiersprachen

C o4

befaBt sich die nachste Sendung

mit dem Thema »Programmier-
sprachen«. Im ersten Programm am
5, Marz 1986 um 16 Uhr 55 Minuten
strahlt die ARD diesen Beitrag aus.
Der folgende Artikel soll eine Er-
gédnzung zu dieser Sendung darstel-
len.

Jede Verstandigung, ob zwischen
zwel Menschen oder zwischen ei-
nem Menschen und seinem Compu-
ter, erfolgt iiber Sprache. In der
Kommunikation zwischen Men-
schen sind Deutsch, Englisch oder
Chinesisch iibliche Sprachen — je
nachdem, aus welchem Land die
Gesprachspartner stammen. In der
Kommunikation von Computer und
Mensch sind Sprachen wie Basic,
Pascal, Cobol oder C bekannt und
wichtig.

Die verschiedensten Program-
miersprachen wurden im Laufe der
Zeit entwickelt. Je nach Problemstel-

| n der Sendereihe »Computerzeit«

|

(UTTTTTTTRT PR

|

lung und Computertyp benétigten
die Programmierer bestimmte Be-
fehle (zum Beispiel maschinennahe
Befehle, Grafikbefehle, doppelge-
naue Arithmetikbefehle fiir exakte,
numerische Berechnungen), unter-
schiedliche Datentypen oder ver-
schiedene Programmstrukturen
(das Blockkonzept in Pascal, Ver-
bundtypen in Ada). Die Forscher
und Programmentwickler haben
daraufhin die passenden Program-
miersprachen entworfen. Denn ein
Computer mit kleinem Speicher
muB anders programmiert werden
als ein GroRrechner. Zum Commo-
dore 64 wird deshalb standardma-
Rig der Basic-Interpreter mitgelie-
fert. Programmpakete auf gréferen
Computern wird man dagegen nicht
in Basic, sondern eher in Pascal
oder C entwickeln, weil der struktu-
rierte Programmaufbau eines Pas-
cal-Programms oder die Schnellig-
keit eines C-Programms gefragt
sind.

In diesem Artikel sollen die be-
kanntesten Programmiersprachen
kurz vorgestellt und charakterisiert
werden. Besonders ausfiihrlich wer-
den die hoheren Programmierspra-
chen besprochen, die fiir den C 64
zu haben sind. Fiir die bekannten
Programmiersprachen wie Lisp,
Ada, Cobol oder Modula, die fiir
den C 64 zuviel Speicherplatz beno-

130 (34547

Nur mit dem richtigen Werkzeug kann man optimal
arbeiten. Was dem Handwerker die Arbeitsgeriite
sind, das sind dem Programmierer Service-
programme — und Programmiersprachen.

tigen, werden ihre typischen Eigen-
schaften und Vorziige erklart.

Auch im»Gesprache«zwischen Ma-
schineund Mensch kommt es darauf
an, woher die beiden Gesprachs-
partner stammen. Nicht alle Compu-
ter verstehen die verschiedenen
Programmiersprachen gleich gut.

Wie sag ich’s
dem Computer?

Ein Mensch arbeitet mit einem
Computer, damit dieser ihm Arbeit
abnimmt oder bestimmte Probleme
16st. Solche Aufgaben teilt man dem
Computer in Form von Programmen
mit. Und von der Art des Problems
hangt ab, wie der Anwender die
Aufgabe formuliert. Niemand kann
auf allen Gebieten gleich gut sein.
Und genauso ist nicht jede Program-
miersprache fiir alle Gebiete gleich
gut geeignet. Es wurden Sprachen
entwickelt, mit denen vor allem ge-
rechnet werden sollte (Fortran, Ba-
sic). Andere sind fiir computerunge-

iibte Kaufleute geeignet (Cobol).
Pascal wiederum erzieht durch das
Blockkonzept und den logischen
und konsistenten Aufbau der Spra-
che dazu, Probleme (vor dem Pro-
grammieren) griindlich zu analysie-
ren und einen strukturierten Denk-
ansatz zur Problemlésung zu su-
chen. Da Pascal auBerdem noch
sehr leistungsfdhig ist, wird diese
Sprache oft als Lernsprache fiir In-
formatiker und zur Entwicklung um-
fangreicher Programmsysteme ein-
gesetzt, Im Zug der Kiinstlichen
Intelligenz-Forschung (KI) wurden
schlieBlich spezielle Programmier-
sprachen entwickelt, um selbstler-
nende und sogar intelligente Pro-
gramme zu schreiben. Die Stan-
dardsprachen in der KI sind Lisp
und Prolog. Ada ist eine Sprache,
die in letzter Zeit immer haufiger
auftaucht. Sie wurde entworfen, um
bei der Entwicklung sehr groBer
Programmsysteme Sicherheit und
die Freiheit von Programmierfeh-
lern zu ermoglichen. Zuerst sollen

Ausgabe 3/Mérz 1986

Programmiersprachen

nun die wichtigsten Programmier-
sprachen, die auf GroRrechnern
verfiigbar sind, ganz kurz skizziert
werden. Damit man sieht: auch au-
Berhalb der C 64-Welt wird pro-
grammiert — und nicht schlecht.

Programmiersprachen
einer anderen Welt

Ada wurde entwickelt, um eine zu-
verlassige und »sichere« (einfache
Uberpriifbarkeit auf Bugs) Sprache
zu schaffen, die vor allem im militari-
schen Bereich eingesetzt werden
kann. Besondere Features von Ada
sind Prozesse, die quasiparallel ab-
laufen und Module, das sind Pro-
grammbausteine, in denen logische
Programmteile so zusammengefal3t
werden konnen, daB Variablenwer-
te von auBerhalb des Moduls nicht
verandert werden kénnen. Fehler
durch versehentliches Uberschrei-
ben werden so ausgeschlossen. Der
Ada-Compiler braucht sehr viel
Platz. Daher ist eine vollstandige
Version dieser Sprache auf Heim-
computern nicht zu haben.

Algol 60 (algorithmic language)
wurde Anfang der 60er Jahre fiir
den technisch-wissenschaftlichen
Bereich entwickelt. Als erste hchere
Programmiersprache lieR sie struk-
turierte Programmierung zu. Algol
verfiigt iiber eine Blockstruktur.
Spriinge, Laufanweisungen und Pro-
zeduren stehen zur Verfigung. Al-
gol wird heute kaum noch zum Pro-
grammieren eingesetzt. Algol spielt
in der Geschichte der Program-
miersprachen eine ganz wichtige
Rolle, weil sie die Grundlagen einer
ganzen Klasse von Programmier-
sprachen liefert: der blockstruktu-
rierten Sprachen wie Pascal. Auch
die Entwicklung von Ada wurde von
diesem Prinzip entscheidend beein-
fluf3t.

APL (A Programming Language)
wurde an der Harvard-Universitat
als vereinfachte Beschreibungs-
sprache fiir mathematischen Struk-
turen und Operationen entwicklelt.
APL verfiigt nicht iiber die klassi-
schen Daten-und Programmstruktu-
ren, sondern verwendet Felder als
grundlegende Datenstruktur und
spezielle Feld-Operationen zur Ver-
arbeitung der Daten. Der Befehls-
vorrat von APL besteht aus einer
Vielzahl von mathematischen und
logischen Operationen. Bedingte
Anweisungen und Schleifen sowie
Sprachelemente zu Listenverarbei-
tung fehlen dagegen. APL ist mehr
von wissenschaftlichem Interesse.
In der kommerziellen Programmie-

Ausgabe 3/Méirz 1986

rung ist diese Sprache nicht ver-
breitet.

Cobol (COmmon Business Orien-
ted Language) wurde speziell fiir
kaufménnische und wirtschaftliche
Aufgaben entwickelt. Diese Pro-
grammiersprache wurde aus der
englischen Umgangssprache ent-
wickelt. Mit vielen Worten be-
schreibt ein Cobol-Programm, was
getan werden soll. Die Programme
sind selbstdokumentierend, daher
sind die Programme relativ leicht
lesbar.

Fortran wurde 1956 entwickelt und
wird vor allem im technisch-wissen-
lichen Bereich noch immer sehr
haufig verwendet. Statistische Aus-
wertungen fiir Diplomarbeiten oder
andere numerische Berechnungen
werden vorwiegend in Fortran pro-
grammiert. Die bekanntesten
Statistik-Programmpakete wurden
in Fortran implementiert, ebenso ei-
ne groe Anzahl von Software-Pake-
ten. Basic kann als eine abgemager-
te Version von Fortran angesehen
werden, in der diejenigen Pro-
grammkonzepte gestrichen wur-
den, die platzaufwendig sind.

Lisp ist die bekannteste Sprache
im Bereich der Kiinstlichen Intelli-
genz. Lisp ist eine listenorientierte,
»funktionale« Programmiersprache,
die seit etwa 1960 entwickelt und im-
mer weiter modifiziert wurde. Vor
einigen Jahren wurden spezielle
Computer fiir Lisp gebaut, die so-
genannten Lisp-Maschinen. Eine
Lisp-Maschine ist ein Ein-Mann-
Computer mit einem sehr groBen
Speicher, der nur Lisp versteht.
Lisp-Programme laufen rekursiv ab
und benétigen daher viel Platz. Re-
kursive Funktionen rufen sich selbst
direkt oder indirekt auf (Funktion A
ruft Funktion B auf, die wieder Funk-
tion A aufruft). Durch die Verwen-
dung von Rekursion kénnen be-
stimmte Probleme leicht program-
miert werden. Aber die Realisie-
rung rekursiver Funktionen auf dem
Computer ist sehr aufwendig und
daher nicht in allen Programmier-
sprachen verfiigbar.

Lisp-Maschinen werden in For-
schungsinstituten der Universititen
und der Industrie zur Entwicklung
von Expertensystemen eingesetzt.
Da Programm und Daten dieselbe
Struktur haben, kénnen Lisp-Pro-
gramme sich selbst verdndern das
heift, sie kdnnen lernen! Daher hat
Lisp in der Kiinstlichen Intelligenz
eine fiihrende Rolle bei der Pro-
grammentwicklung sogenannter
vintelligenter« Programmsysteme
eingenommen.

Ihr Computer kann mehr als Sie

glauben, wenn Sie seine Fahigkei-
ten durch eine neue Programmier-
sprache erweitern. Sicher haben
Sie sich schon iiber das dirftige
Basic des C 64 geargert. Vielleicht
haben Sie sich deshalb schon ein-
mal iiberlegt, auf eine andere Pro-
grammiersprache umzusteigen.

Erweitern Sie die Féhig-
keiten lhres C 64!

Aber da beginnen die Probleme
erst. Denn inzwischen gibt es auf
dem Markt eine groRe Auswahl an
Sprachen fiir den C 64. Ob nun eine
Sprache auch das leistet, was man
sich erhofft hat, merkt man aber
erst, wenn man ein wenig damit pro-
grammiert hat. Hat man die falsche
Sprache erwischt, ist der Frust groB
und man kehrt zum guten alten Basic
zuriick.

Wir wollen Thnen bei der Ent-
scheidung weiterhelfen, welche
Programmiersprache fiir Thren
Zweck die richtige ist, denn jede
Sprache hat natiirlich ihre Starken
und Schwachen. Im folgenden stel-
len wir Thnen eine Auswahl der
wichtigsten Programmiersprachen
vor, die es fiir den C 64 gibt. In die-
ser Ausgabe finden Sie ilibrigens
zum Thema Programmiersprachen
aufdem C 64 einen Pascal-Kurs (Teil
1) fiir Basic-Programmierer, eine Be-
schreibung der Sprache C und ei-
nen Bericht iiber die Sprache Pro-
log auf dem C 64,

Pascal

Die Sprache Pascal wurde von
dem Schweizer Professor Nikolaus
Wirth ins Leben gerufen. Sein Anlie-
gen war es damals, besonders das
strukturierte Programmieren und
Denken zu férdern. »Spaghetti-Co-
de«, wie es von Basic-Programmen
her bekannt ist, gibt es in Pascal
nicht. Eine strenge Strukturierung
sorgt dafiir, daB die Programme im-
mer iibersichtlich und gut lesbar
sind. Aber nicht nur der Programm-
text ist sauber gegliedert. Auch fiir
die Variablen gibt es Strukturen.
Bevor man sich an den Computer
setzt, sollte das Programm bereits
griindlich durchdacht sein: Welche
Variablen brauche ich, wie kann ich
diese gliedern, und nach welchen
Grundgedanken soll das Programm
strukturiert sein? Erst wenn dies al-
les klar ist, geht es ans Ausformulie-
ren der einzelnen Routinen. Dieses
Konzept hat durchaus seine Vorteile.
Es treten weniger Fehler auf, da ja
bereits eine Menge Uberlegung in

3:¥4p 131

Programmiersprachen

C 64

das Programm eingeflossen ist. Das
ist auch deshalb wichtig, weil Pascal
eine Compilersprache ist, das heift
der Programmtext muB vor der Aus-
fiihrung von einem Compiler erst
einmal in ein Maschinenprogramm
libersetzt werden. Bei vielen Feh-
lern kann durchaus das Austesten zu
einer langwierigen Prozedur ausar-
ten. Andererseits wird die Ausfiih-
rung der Programme durch das
Compilieren beschleunigt. Pascal-
Programme sind deshalb in der Re-
gel schneller als Basic-Programme.

Wie sieht nun die Strukturierung in Pascal
aus? Ein Pascal-Programm besteht
aus dem Hauptprogramm, das im-
mer am SchluB des Textes definiert
wird und beliebig vielen Prozedu-
ren und Funktionen, die man am
ehesten mit den Unterprogrammen
in Basic vergleichen kann. Zeilen-
nummern gibt es in Pascal nicht. Die
Prozeduren und Funktionen werden
mit ihrem Namen aufgerufen. Den
argsten Feind jeder Strukturierung,
den GOTO-Befehl, gibt es zwar
in Pascal auch, er gilt aber als ver-
pont. Durch die Struktur-Anweisung
REPEAT .. UNTIL, WHILE ... DO,
CASE, FOR-Schleifen und IF ..
THEN .. ELSE-Entscheidungen
kann man sehr gut ochne GOTO aus-
kommen.

Bei den Daten ist der Pascal-Pro-
grammierer gezwungen, sich genau
zu liberlegen, welche Variablen von
welchem Typ er bendtigt. Dies muf
dem Compiler in Variablen- und
Typendeklarationen mitgeteilt wer-
den. Neben den von Basic her be-
kannten Typen Integer, FlieRfkom-
ma und Zeichen gibt es in Pascal
noch mehr Datentypen. Der Typ
Boolean bezeichnet eine logische
Variable, die nur die Werte fiir True
und False annehmen kann. Der Typ
SET ist fiir Mengen gedacht. In Men-
gen gibt es keine Reihenfolge der
Elemente, wie zum Beispiel in einem
Array, aber man kann zum Beispiel
abfragen, ob ein bestimmter Wert in
einer Menge enthalten ist. Daneben
gibt es noch die strukturierten Da-
tentypen Array und Record. Beiden
Arrays handelt es sich um ein- oder
mehrdimensionale Felder, wie wir
sie von Basic her kennen. Ganz neu
fiir den Basic-Programmierer diirfte
aber der Typ Record sein. Damit
kénnen Variable verschiedenen
Typs zu einer VerbundVariablen zu-
sammengefat werden. So kénnen
Daten sehr iibersichtlich organisiert
werden. Doch damit sind die Moég-
lichkeiten von Pascal noch nicht aus-
geschopft. Der Typ Zeiger erlaubt
ganz andere Dateistrukturen. Ein
Zeiger ist eine Variable, die die

132 3:54p

Adresse einer anderen Variablen
enthalt. Damit lassen sich verkettete
Listen aufbauen, wobei jedes Ele-
ment der Liste einen Zeiger auf das
néchste Element der Liste enthlt.
Durch Andern der Zeiger kann man
beliebig Elemente einsortieren, an-
hidngen oder wieder aus der Liste
streichen. Eine &hnlich {flexible
Struktur ist die Baumstruktur, die
auch mit Zeigern realisiert werden
kann.

Wem diese Datentypen noch nicht
reichen, der kann sich in Pascal
noch eigene Typen definieren. Man
kann beispielsweise den Typ Farbe
deklarieren, der die Werte Rot,
Griin oder Blau annehmen kann.

Sie sehen also, daB sich mit Pascal
ganz neue Moglichkeiten auftun.
Aber wie macht man aus dem C 64
eine Pascalmaschine? Es gibt inzwi-
schen mehrere Pascal-Compiler,
wir wollen uns hier aber auf die Ver-
sionen beschrdnken, bei denen
nicht zu viele Abstriche vom Stan-
dard-Sprachumfang gemacht wur-
den.

Pascal auf dem C 64

Da kommen in Frage: Das KMMM
Pascal, Oxford Pascal sowie Schtac
Pascal, das in einer erweiterten Ver-
sion auch von Data Becker als Profi
Pascal vertrieben wird.

Oxford Pascal (Computer Plus Soft
GmbH, Bahnstr, 22-26, 4220 Dinsla-
ken, 199 Mark) unterstiitzt den vollen
Sprachumfang und hat noch einige
Extras zu bieten. So gibt es Grafik-
und Soundbefehle, die von den
Moglichkeiten des C 64 Gebrauch
machen. Es ist sogar méglich, den
Bildschirm in einen Grafikbereich
und ein Textfenster zu unterteilen.
Allerdings wird die Ausfithrung der
Programme durch den dabei ver-
wendeten Programmiertrick deut-
lich langsamer. Das Entwickeln von
kleineren Programmen ist mit Ox-
ford Pascal sehr angenehm. Editor
und Compiler befinden sich im
Speicher des Computers, so daB
man ohne Diskettenoperationen
gleich austesten kann. Erst bei lan-
geren Programmen muB3 dann von
Diskette compiliert werden.

Gegeniiber Standard-Pascal wur-
de KMMM Pascal um einige Funk-
tionen erweitert. Es gibt zum Bei-
spiel einen Zufallsgenerator, POKE
und PEEK, und erweiterte Moglich-
keiten zur Stringverarbeitung, die
vom Standard etwas stiefmiitterlich
behandelt wird.

Da das Nachladen mit der langsa-
men 1541-Floppy leicht zur Cedulds-
probe werden kann, hat Data
Becker bei seinem Profi Pascal (Da-
ta Becker, Merowingerstr. 30, 4000
Diisseldorf, 198 Mark) Routinen ein-
gebaut, die das Nachladen um den
Faktor drei beschleunigen. Nach
dem Laden erscheint ein Menii, von
dem aus der Editor, der Compiler
und andere Funktionen angewdhlt
werden konnen. Die notwendigen
Programmteile werden dann nach-
geladen. Profi Pascal enthélt zusatz-
lich zum vollen Sprachumfang viele
zusatzliche Funktionen. Soist der di-
rekte Zugriff auf den Speicher des
Computers moglich und der Typ
String erlaubt bequeme Manipula-
tionen von Zeichenketten. Um auch
mit relativen Dateien effizient arbei-
ten zu konnen, was in Standard Pas-
cal tiberhaupt nicht moglich ist, wer-
den die Disketten mit einem eige-
nen Dateisystem organisiert. Da-
durch kénnen beliebige Datensatze
mitten in einem File gelesen wer-
den. Daneben bietet Profi Pascal die
Moglichkeit, Assembler-Routinen
direkt in das Pascal-Programm ein-

zubauen.
Forth

Ein vollig anderes Konzept als Pas-
cal liegt der Sprache Forth zugrun-
de. In Forth dreht sich alles um das
Stack-Prinzip. Der Stack ist ein Spei-
cher, der nach dem »Liast In First Out
(LIFO)-Prinzip« arbeitet. Das heift:
der letzte Wert, der auf den Stack
geschrieben wurde, kann als erster
wieder vom Stack heruntergeholt
werden. Samtliche Rechenoperatio-
nen in Forth werden iiber den Stack
abgewickelt. Wer schon einmal mit
Taschenrechnern der Firma Hew-
lett-Packard gearbeitet hat, kennt
das dabei verwendete Prinzip der
umgekehrt polnischen Notation
(UPN).

Eine weitere Eigenschaft von
Forth ist es, da3 der Sprachumfang
beliebig erweitert werden kann.
Aus bereits bestehenden Forth-Be-

fehlen kénnen neue Befehle kombi- -

niert werden, die dann in Zukunft
zur Verfiigung stehen. Es ist sogar
so, da® der groRte Teil von Forth in
Forth selbst geschrieben wurde.
Nur ganz wenige elementare Befeh-

Ausgabe 3/Marz 1986

C 64

Programmiersprachen

le sind in Assembler geschrieben,
der Rest wurde aus diesen wenigen
Worten aufgebaut. Durch dieses
Baukasten-Prinzip kann sich jeder
»sein« Forth selbst zusammenbauen.

Wie arbeitet man nun mit Forth? Forth ar-
beitet wahlweise mit Interpreter
oder Compiler. Nach dem Start ist
zundchst der Interpreter aktiv. Er
bearbeitet ein Programm, dhnlich
wie der Basic-Interpreter des C 64.
Er holt sich immer das nachste Wort
und versucht es auszufithren. Das
kostet natiirlich Zeit, und deshalb
gibt es noch den Forth-Compiler.
Durch einen Doppelpunkt erfahrt
das Forth-System, daB der folgende
Text nicht interpretiert, sondern
compiliert werden soll. Der Compi-
ler macht daraus ein neues Forth-
Befehlswort und trégt dieses in sei-
ne Liste ein. Von nun an steht das
neue Wortdem Interpreter und dem
Compiler zur Verfiigung. Compilier-
te Worte machen Forth zu einer sehr
schnellen Programmiersprache, die
etwa zehnmal so schnell wie Basic
ist,

Um Ordnung in den Programmab-
lauf zu bringen, gibt es in Forth die
Kontrollstrukturen IF.ELSE..ENDIF,
DO.LOOP, BEGIN.UNTIL, BEGIN..
WHILE.REPEAT und BEGIN..
AGAIN. Ein GOTO gibt es in Forth
iiberhaupt nicht.

Natiirlich gibt es auch fiir Forth ei-
nen Standard, sozusagen eine Mini-
malausstattung fiir Forth-Systeme.
Dieser Standard wurde von der
Forth Interest Group geschaffen und
heiBt deshalb FIG-Forth. Die mei-
sten Versionen fiir den C 64 enthal-
ten allerdings weit mehr Befehle als
der Standard, da sich Forth ja sehr
leicht erweitern laBt. Wir wollen
Ihnen einige Forth-Systeme fiir den
C 64 vorstellen.

Das »64 Forth« erfiillt die Anforde-
rungen des FIG Standards. Dariiber
hinaus bietet es eine Menge zuséatzli-
cher, anden C 64 angepaBter Worte.
Es stehen mehr als 500 Befehle zur
Verfiigung. Diese sind auf mehrere
Vokabulare verteilt, die man einzeln
aktivieren kann. Es gibt die Berei-
che FORTH, EDITOR, ASSEMBLER
und SYSTEM. Das FORTH-Vokabu-
lar enthalt alle Worte, die man zum
Programmieren braucht. Zum Ein-
geben groBerer Programme dient
das EDITORVokabular. Mit SYS-
TEM stehen dem Anwender Befeh-
le des Betriebssystemes zur Verfii-
gung. Wenn es mal ganz schnell ge-
hen soll, kann man mit ASSEMBLER
Maschinenroutinen in die Forth-
Programme einbauen.

Grafik und Sound mit Forth
Die Grafik- und Soundmdoglichkei-

Ausgabe 3/Marz 1986

ten des C 64 werden von 64 Forth un-
terstiitzt. Sogar ein Sprite-Editor ist
enthalten. Der Full Screen Editor ist
eine angenehme Verbesserung des
Standards, der nur zeilenweise Ein-
gabe erlaubt.

Das »Super Forth 64« (Forth Syste-
me, Angelika Flesch, Schiitzenstr. 3,
Titisee Neustadt, 398 Mark) enthalt
nicht nur den FIG-Standard, son-
dern insgesamt iber 700 Worte. Je
nach Bedarf kann man sich die Be-
fehle zusammenstellen. Der Um-
gang mit Grafik und Musik wird
durch die Befehle vereinfacht. Auch
hier gibt es einen Sprite-Editor und
als Krénung noch die sogenannte
Turtlegrafik (siehe Logo). Das Rech-
nen mit FlieBkommagzahlen, das in
Forth normalerweise nicht vorgese-
hen ist, wird durch ein eigenes Be-
fehlspaket unterstiitzt. Die Steue-
rung von Interrupts, die man von
Hochsprachen eigentlich gar nicht
kennt, erlaubt Effekte wie einen ge-
teilten Bildschirm oder parallel zum
Programm laufende Soundeffekte.
In einem Trace-Modus kdnnen Pro-
gramme griindlich getestet werden.

Das »M & T-Forth« (Happy Softwa-
re, Markt & Technik Verlag AG,
Hans-Pinsel-Str. 2, 8013 Haar, 98
Mark) fiir den C 64 umfafBt nur etwa
280 Befehle, allerdings werden auf
Diskette noch einige Forth-Program-
me mitgeliefert, die als Worte einge-
baut werden kdnnen. Sprites, Grafik
und Sound werden unterstiitzt, und
der FIG-Standard ist voll enthalten.
Damit ist die Kompatibilitat zum Stan-
dard gegeben.

Logo

Die Sprache Logo wurde vor al-
lem durch die Turtle-Grafik (Com-
modore Handler, 159 Mark) be-
kannt. Dabei bewegt sich ein klei-
nes Dreileck, die Turtle (zu deutsch
Schildkréte) nach den Anweisungen
des Programmierers liber den Bild-
schirm und hinterlaRt ihre Spuren in
Form von Linien. Zur Steuerung gibt
es die Befehle FORWARD, BACK,
RIGHTTURN und LEFTTURN. Als
Argumente werden die Lange der
Strecke und bei den Turns ein Win-
kel angegeben. Mittels SETX und
SETY oder SETXY kann man die
Turtle auf definierte Ausgangspunk-
te setzen. Der Standort der Turtle
kann durch XCOR und YCOR abge-
fragt werden. Durch diese Art der
Grafiksteuerung lassen sich auf ein-
fache Weise die tollsten Grafiken er-
zeugen. Aber Logo besteht nicht nur
aus der Turtle-Grafik. Ein Logo-Pro-
gramm ist aus mehreren Einzelpro-
grammen aufgebaut, also ein ahnli-

ches Baukastenprinzip wie bei
Forth. Es ist moglich, ein Programm
in viele Teilaufgaben aufzuteilen
und diese Bausteine dann zum ei-
gentlichen Programm zusammenzu-
fiigen. Die Entwicklung eines Pro-
gramms wird so tiberschaubar und
strukturiert. Wie in Pascal kann sich
iibrigens ein Logo-Programm selbst
aufrufen, und zwar mehrfach (Re-
kursion). Mit Rekursionen lassen
sich viele Probleme auBerst elegant
16sen. Ein anderes Element von
Logo ist die Programmierung mit Li-
sten. Eine Liste wird einfach durch
eckige Klammern definiert. Durch
verschiedene Listenbefehle konnen
diese kombiniert, verglichen und
bearbeitet werden. Listenelemente
oder Teile konnen aus der Liste her-
ausgenommen und zu neuen Listen
oder Wortern kombiniert werden.
Mit den Listen kénnen zum Beispiel
Dateiverwaltungen recht einfach
programmiert werden.

Die von Commodore selbst ver-
triebene Logo-Version fiir den C 64
bietet auch einige Kommandos fiir
den Soundchip, um Tonhthe, Ton-
dauver und die Hiillkurve der
Sounds zu bestimmen. Der Umgang
mit Sprites wird ebenfalls erleich-
tert. Mit dem Sprite-Editor kénnen
Sprites entworfen werden, ohne
sich, wie in Basic, mit Adressen und
Hexadezimal-Zahlen herumschla-
gen zu miissen. Die Sprites kénnen
auf Diskette gespeichert und von
dort wieder eingelesen werden.

Leider verbraucht Logo eine Un-
menge an Speicherplatz im C 64.
Das liegt daran, daf? alle Befehle,
auch die selbstdefinierten, im Spei-
cher vorhanden sein miissen. Fiir
das eigentliche Programm bleibt da
oft wenig Platz.

Prolog

Der Name Prolog bedeutet PRO-
grammieren in LOGic. Damit ist
schon gesagt, welches Konzept hin-
ter der Programmiersprache Prolog
steht: eine mathematische Methode
der formalen Logik, die fiir automa-
tisches Beweisen entwickelt wurde,
Um zu beschreiben, wie Prolog ar-
beitet, mu3 man etwas weiter ausho-
len. Prolog-Programme »sagen«
dem Computer nicht, was er tun soll.
Sie beschreiben das, was der Com-
puter »wissen« muf3, um Probleme zu
losen. Diese Probleme werden vom
Benutzer in Form von Fragen an den
Computer gestellt. Prolog ist erst
seit kurzem fir den C 64 verfiigbar
(Brainware GmbH, Kirchgasse 24,
6200 Wiesbaden, 289 Mark). Diese

354p 133

Programmiersprachen

C 64

Version ist in dieser Ausgabe im
Test. Prolog wurde dort (auch fiir
Basic-Anhanger) beschrieben.

Comal

Wenn Sie bisher mit Basic einiger-
mafen gut zurechtgekommen sind,
sollte Thnen der Umstieg auf Comal
eigentlich leichtfallen. Die Sprache
ist stark an Basic angelehnt. Das
heiBt aber nicht, daf die Schwachen
von Basic mit ibernommen wurden.
Auch bei Pascal wurden einige An-
leihen gemacht, vor allem, was die
Strukturierung betrifft. Von Logo
wurde die Turtle-Grafik entliehen.
Comal ist sozusagen eine Mischung
der besten Elemente aus verschie-
denen anderen Sprachen. Heraus-
gekommen ist dabei eine leistungs-
fahige Sprache, die noch einen ent-
scheidenden Vorteil hat: Einige
ComalVersionen (V.0.14) werden
namlich umsonst abgegeben (Co-
mal 0.14, Interpool, c/o Prof. Leu-
schner, 7487 Gammetingen-Bron-
nen, 20 Mark, Comal 2.0, D. Belz,
2270 Utersum, 198 Mark), und es
wird sogar dazu ermutigt, Comal zu
kopieren und weiterzugeben!

PROMAL

Comal 14Bt sich weder als Compi-
ler- noch als Interpretersprache be-
zeichnen. Die Wahrheit liegt irgend-
wo in der Mitte. Im Direktmodus
kann man mit dem Interpreter arbei-
ten. Das Erstellen eines Programms
lauft dagegen in drei Phasen ab. Die
erste ist die Eingabe des Pro-
gramms. Dabei tritt der sogenannte
Syntax-Checker in Aktion. Er liber-
priift die eingegebenen Zeilen
gleich auf syntaktische Fehler und
gibt gegebenenfalls Fehlermeldun-
gen aus. Das kann eine Menge an
Fehlersuche ersparen. Im zweiten
Durchgang wird das Programm
nach Variablen und angesprunge-
nen Zeilen durchsucht. Die Ergeb-
nisse werden in einer Liste eingetra-

gen, in der das Comal-System dann
beim Programmlauf, der dritten
Phase, nachschlagen kann. Das geht
natiirlich schneller als in Basic, wo
der Interpreter den ganzen Pro-
grammtext durchsuchen muf3, wenn
er eine angesprungene Zeile sucht.
Auch auf Variablen hat Comal durch
die Liste eine schnelleren Zugriff als
der Basic-Interpreter. Die Anwei-
sungen werden aber in Comal nicht
compiliert, sondern nach wie vor in-
terpretiert. Von einer echten Compi-
lersprache kann also nicht gespro-
chen werden.

Wie schon erwahnt, ist die Syntax
von Comal stark an Basic orientiert.
Aber dennoch wird ein Comal-Pro-
gramm anders aufgebaut sein als
ein Basic-Programm. Die an Pascal
erinnernden Kontroll-Strukturen
wie CASE, REPEAT.UNTIL und
WHILE werden durch die (auch
dem Basic-Programmierer gelaufi-
gen) Strukturen IF. THEN..ELSE und
FOR.NEXT-Schleifen erganzt. Mit
LOOP.EXIT.ENDLOQOP kénnen
auch Endlosschleifen konstruiert
werden. Der GOTO-Befehl existiert
in Comal zwar auch, sollte aber nur
in Ausnahmefdllen angewendet
werden. Inzwischen gibt es mehre-

Adchtung C-Programmierer aufgepaBBt!

Jetzt gibt es Small-C, ein komplettes Entwicklungssystem im CP/M-
Modus fir den Commodore 128 PC. Mit Editor, Compiler, Linker und

vielen weiteren Utilities.

Alle Programme sind in Small-C geschrieben, der Quellcode wird
mitgeliefert. So kbnnen Sie das Entwicklungssystem nach eigenen
Wiinschen und Erfordernissen erweitern und modifizieren.

Das Programmpaket enthalt:
® Small-C-Compiler

® Small-Mac: Assembler und Utilities
® SmallTools: Editor und Text-Tools

Hardware-Anforderungen:

C128/C 128 D, Diskettenlaufwerk 1571, 80-Zeichen-Monitor.

Bestell-Nr. MS 483 (5/4 -Diskette)

Fir nur DM 148 . 132165 1490,

*inkl. MwSt., unverbindliche Preisempfehlung.

Markt&Technik

128er-Software

Hans-Pinsel-StraBe 2, 8013 Haar bei Miinchen
Schweiz: Markt & Technik Vertriebs AG, Kollerstrasse 3, CH-6300 Zug
ich lagsges. mbH, Alser StraBe 24, A-1091 Wien h

o : Ueb Media Vi

134 3:¥ap

128er-Software

Small-C

Entwicklungssystem

C-Compiler
8080-/7 80-Makro-Assembler - Linker/Loader
Bibliotheksverwalter - Editor/Text-Tools

Fiir Commodore 128 (128 D)
Floppy 1571-Format

Markt&Technik

Dr. Dobb's Journal
J.E. Hendrix

T T e

Ausgabe 3/Mérz 1986

C 64

Programmiersprachen

re Comalversionen fiir den C 64. Da
sind zum einen alle Versionen, de-
ren Versionsnummern mit einem
Nuller beginnen, zum Beispiel Co-
mal V.0.14. Diese Versionen kénnen
gegen einen geringen Unkostenbei-
trag bezogen werden und beliebig
weiterkopiert werden. Daneben
gibt es noch kommerzielle Comal-
Systeme, wie Comal 2.0. Diese ent-
halten einen groReren Befehlssatz
als die Public Domain-Versionen.

Promal

Promal ist eine stark strukturierte
Sprache wie Pascal. Dennoch kann
es von der Geschwindigkeit mit
Forth mithalten und ist auch &hnlich
maschinennah. Die Strukturierung
erfolgt dabei durch Einriickungen
im Programmtext, die das Pro-
gramm ¢gleichzeitig ibersichtlich
machen. Die iiblichen Kontrollstruk-
turen IF.ELSE, FOR (ohne Next),
CHOOQOSE (entspricht in etwa CASE
in Pascal, REPEAT. UNTIL und WHI-
LE) gibt es in Promal natiirlich auch.
Fiir zeitkritische Anwendungen
kann man Maschinenroutinen aufru-
fen und dabei gleich Parameter
iibergeben, unter anderem auch
iiber die drei Register des 6510-Pro-
zessors. In den meisten Fallen wird
man aber ohne Assembler auskom-
men, da Promal schon von Haus aus
sehr schnell ist. Dies liegt unter an-
derem auch an den sehr schnellen
Arithmetikroutinen, die die Routi-
nen des Basic-Interpreters bei wei-
tem {iibertreffen und dabei noch
eine groBere Genauigkeit haben.
Aus den vier Grundrechenarten,
die Promal beherrscht, kann man
komplexere Berechnungen wie Ex-
ponential- oder Winkelfunktionen
selbst programmieren und hat die
Ergebnisse noch schneller als in
Basic!

Das Promal-System besteht aus
drei Teilen: dem Executer, dem
Editor und dem Compiler. Der Exe-
cuter ist ein komfortabler Komman-
do-Interpreter, von dem aus auch
der Editor und der Compiler gestar-
tet werden. Den Editor kdnnte man
_schon fast als Textverarbeitung be-
zeichnen. Er ist selbst in Promal ge-
schrieben — ein weiterer Hinweis
auf die Leistungsfdhigkeit von Pro-
mal (Systems Management Associa-
tes, 3700 Computer Drive, Dept. GP,
Raleigh, North Carolina 27609). Das
Promal PM-200 kostet etwa 150 Mark
($ 49,95), die EntwicklerVersion mit
zusitzlichen Run-time-Programmen
kostet etwa 300 Mark ($ 99,95). Fiir
etwa 37 Mark ($ 12,50) gibt es die
Demo-Version PM-200.

Ausgabe 3/Marz 1986

C

In letzter Zeit gewinnt die Sprache
C immer mehr an Bedeutung. Be-
sonders in Verbindung mit dem Be-
triebssystem Unix hat C an Bedeu-
tung gewonnen. Fiir den C 64 gibt es
einen C-Compiler von Data Becker,
der fiir 298 Mark fast den gesamten
Sprachumfang bietet. So kann man
auf dem »kleinen« C 64 mit C arbei-
ten. Markt & Technik bietet fiir 148
Mark (brandneu) das Smal-C-Ent-
wicklungssystem mit Quellcode fiir
den C 128. In diesem Heft finden Sie
eine Einfithrung in die Sprache C.
Auch auf den Compiler auf dem C
64 wird dort ndher eingegangen.

Der Vorteil von C liegt hauptsach-
lich daran, da® man mit C maschi-
nennah und damit schnell program-
mieren kann. Viele Anweisungen
berziehen sich auf Programmierme-
thoden, die in Assembler haufig an-
gewandt werden, wie das Rechnen
mit Zeigern, Inkrementieren und
Dekrementieren und das Arbeiten
mit Bitfeldern. Letztere werden aber
auf dem C 64 nicht unterstiitzt. Auch
die Deklaration REGISTER, die eine
Variable direkt in einem Register
des Prozessors plaziert, gibt beim
6510-Prozessor mit seinen drei Regi-
stern keinen Sinn. Dennoch lassen
sich in C auch auf dem Commodore
64 effiziente Programme schreiben.
Ein weiterer Unterschied zu Pascal
sind die Makros, die am Anfang ei-
nes Programms angegeben werden
konnen. Darunter versteht man Be-
fehlsfolgen, die durch Angabe ihres
Namens im Programmtext einge-
setzt werden konnen. Nun werden
Sie vielleicht fragen, worin der Un-
terschied zu Unterprogrammen be-
steht, die ja auch nur eimal definiert
werden und dann immer benutzt
werden kdnnen. Ein Makro hat den
Vorteil, daB der Compiler den Code
fiir das Makro direkt ins Programm
einsetzt. Spriinge und Parameter-
iilbergabe entfallen, was sich in der

Geschwindigkeit auswirkt. Etwas
dhnliches kennt man sonst nur von
Assemblern.

C hat eine eigene Philosophie

Wenn man sich den Befehlsvorrat
von C ansieht, wird man erst einmal
enttauscht sein. Es gibt nur 13 Befeh-
le. Nicht einmal ein Print-Befehl ist
vorhanden. Aber es gehort zur offe-
nen Philosophie von C, daR die be-
nétigten Routinen aus externen Bi-
bliotheken zum Programm dazuge-
bunden werden. Erst dann entsteht
ein lauffahiges Programm. Auf diese
Weise kann C beliebig erweitert
werden und der Speicher wird nicht
mit unnétigen Befehlen belastet.

Beim Erstellen eines C-Pro-
gramms geht man folgendermalen
vor: Zuerst erstellt man den Source-
text mit dem Editor. Dieser Editor ist
in der C 64-Version ein angenehmer
Full-Screen-Editor, bei dem man
sich sogar mit Farben Ubersicht ver-
schaffen kann. Dann betritt der
Compiler die Szene und iibersetzt
das Programm. Um ein lauffahiges
Programm zu erhalten, mul3 man da-
nach den Linker auf das Compilat
loslassen. Dieser bindet die Biblio-
theksfunktionen dazu und stellt alle
Bezlige her, die der Compiler noch
offen gelassen hat. Erst jetzt kann
das Programm getestet werden. Da
die einzelnen Teile des C-Systems
immer erst geladen werden miis-
sen, kann das Ubersetzen eines C-
Programms die Geduld des Anwen-
ders ganz schon auf die Probe stel-
len. Dennoch hat C viele Freunde,
weil C-Programme sehr -effizient
sind.

Was fiir wen?

Jetzt ist es an Thnen zu entschei-
den, welche Sprache fiir Sie die
richtige ist! Wie Sie gesehen haben,
gibt es fast fiir jeden Zweck eine ge-
eignete Programmiersprache.

(Pehlandt/cqg)

Oxford Pascal Computer Plus Soft GmbH, Bahnstr. 22-26, 4220 Dinslaken, 199
Mark

Profi Pascal Data Becker, Merowingerstr. 30, 4000 Diisseldorf, 198 Mark

Schtac Pascal 64 phs EDV-Beratung, Devenstedter Strafe 8, 3000 Hannover 91, 798
Mark

64 Forth Forth Systeme Angelika Flesch, Schiitzenstr. 3, Titisee Neustadt

Super Forth 64 Forth Systeme Flesch

M&T Forth C 64-Software, Markt & Technik Verlag AG, Hans-Pinsel-Str. 2,
8013 Haar, 98 Mark

Logo Commodore Héndler, 159 Mark

Comal 0.14 Interpool, c/o Prof. Leuschner, 7487 Gammetingen-Bronnen, 20
Mark

Comal 2.0 D. Belz, 2270 Utersum, 198 Mark

Promal Systems Management Associates, PO. Box 20023, Raleigh, NC
27619, USA

C Data Becker 298 Mark; Markt & Technik (C 128), 148 Mark

Tabelle 1. Bezugsquellen der Programmiersprachen

2¥de 135

