
Programmiersprachen C 64

I
n der Sendereihe »Computerzeit«
befaßt sich die nächste Sendung
mit dem Thema »Programmier­
sprachen«. Im ersten Programm am

5. März 1986 um 16 Uhr 55 Minuten
strahlt die ARD diesen Beitrag aus.
Der folgende Artikel soll eine Er­
gänzung zu dieser Sendung darstel­
len.

Jede Verständigung, ob zwischen
zwei Menschen oder zwischen ei­
nem Menschen und seinem Compu­
ter, erfolgt über Sprache. In der
Kommunikation zwischen Men­
schen sind Deutsch, Englisch oder
Chinesisch übliche Sprachen — je
nachdem, aus welchem Land die
Gesprächspartner stammen. In der
Kommunikation von Computer und
Mensch sind Sprachen wie Basic,
Pascal, Cobol oder C bekannt und
wichtig.

Die verschiedensten Program­
miersprachen wurden im Laufe der
Zeit entwickelt. Je nach Problemstel-

Programmiersprachen
lung und Computertyp benötigten
die Programmierer bestimmte Be­
fehle (zum Beispiel maschinennahe
Befehle, Grafikbefehle, doppelge­
naue Arithmetikbefehle für exakte,
numerische Berechnungen), unter­
schiedliche Datentypen oder ver­
schiedene Programmstrukturen
(das Blockkonzept in Pascal, Ver­
bundtypen in Ada). Die Forscher
und Programmentwickler haben
daraufhin die passenden Program­
miersprachen entworfen. Denn ein
Computer mit kleinem Speicher
muß anders programmiert werden
als ein Großrechner. Zum Commo­
dore 64 wird deshalb standardmä­
ßig der Basic-Interpreter mitgelie­
fert. Programmpakete auf größeren
Computern wird man dagegen nicht
in Basic, sondern eher in Pascal
oder C entwickeln, weil der struktu­
rierte Programmaufbau eines Pas­
cal-Programms oder die Schnellig­
keit eines C-Programms gefragt
sind.

In diesem Artikel sollen die be­
kanntesten Programmiersprachen
kurz vorgestellt und charakterisiert
werden. Besonders ausführlich wer­
den die höheren Programmierspra­
chen besprochen, die für den C 64
zu haben sind. Für die bekannten
Programmiersprachen wie Lisp,
Ada, Cobol oder Modula, die für
den C 64 zuviel Speicherplatz benö­

Nur mit dem richtigen Werkzeug kann man optimal
arbeiten. Was dem Handwerker die Arbeitsgeräte

sind, das sind dem Programmierer Service­
programme — und Programmiersprachen.

tigen, werden ihre typischen Eigen­
schaften und Vorzüge erklärt.

Auch im »Gespräch« zwischen Ma-
schineund Mensch kommt es darauf
an, woher die beiden Gesprächs­
partner stammen. Nicht alle Compu­
ter verstehen die verschiedenen
Programmiersprachen gleich gut.

Wie sag ich's
dem Computer?

Ein Mensch arbeitet mit einem
Computer, damit dieser ihm Arbeit
abnimmt oder bestimmte Probleme
löst. Solche Aufgaben teilt man dem
Computer in Form von Programmen
mit. Und von der Art des Problems
hängt ab, wie der Anwender die
Aufgabe formuliert. Niemand kann
auf allen Gebieten gleich gut sein.
Und genauso ist nicht jede Program­
miersprache für alle Gebiete gleich
gut geeignet. Es wurden Sprachen
entwickelt, mit denen vor allem ge­
rechnet werden sollte (Fortran, Ba­
sic). Andere sind für computerunge­

übte Kaufleute geeignet (Cobol).
Pascal wiederum erzieht durch das
Blockkonzept und den logischen
und konsistenten Aufbau der Spra­
che dazu, Probleme (vor dem Pro­
grammieren) gründlich zu analysie­
ren und einen strukturierten Denk­
ansatz zur Problemlösung zu su­
chen. Da Pascal außerdem noch
sehr leistungsfähig ist, wird diese
Sprache oft als Lernsprache für In­
formatiker und zur Entwicklung um­
fangreicher Programmsysteme ein­
gesetzt. Im Zug der Künstlichen
Intelligenz-Forschung (KI) wurden
schließlich spezielle Programmier­
sprachen entwickelt, um selbstler­
nende und sogar intelligente Pro­
gramme zu schreiben. Die Stan­
dardsprachen in der KI sind Lisp
und Prolog. Ada ist eine Sprache,
die in letzter Zeit immer häufiger
auftaucht. Sie wurde entworfen, um
bei der Entwicklung sehr großer
Programmsysteme Sicherheit und
die Freiheit von Programmierfeh­
lern zu ermöglichen. Zuerst sollen

130 ^a? Ausgabe 3/März 1986

C 64 Programmiersprachen

nun die wichtigsten Programmier­
sprachen, die auf Großrechnern
verfügbar sind, ganz kurz skizziert
werden. Damit man sieht: auch au­
ßerhalb der C 64-Welt wird pro­
grammiert — und nicht schlecht.

Programmiersprachen
einer anderen Welt

Ada wurde entwickelt, um eine zu­
verlässige und »sichere« (einfache
Überprüfbarkeit auf Bugs) Sprache
zu schaffen, die vor allem im militäri­
schen Bereich eingesetzt werden
kann. Besondere Features von Ada
sind Prozesse, die quasiparallel ab­
laufen und Module, das sind Pro­
grammbausteine, in denen logische
Programmteile so zusammengefaßt
werden können, daß Variablenwer-
te von außerhalb des Moduls nicht
verändert werden können. Fehler
durch versehentliches Überschrei­
ben werden so ausgeschlossen. Der
Ada-Compiler braucht sehr viel
Platz. Daher ist eine vollständige
Version dieser Sprache auf Heim­
computern nicht zu haben.

Algol 60 (algorithmic language)
wurde Anfang der 60er Jahre für
den technisch-wissenschaftlichen
Bereich entwickelt. Als erste höhere
Programmiersprache ließ sie struk­
turierte Programmierung zu. Algol
verfügt über eine Blockstruktur.
Sprünge, Laufanweisungen und Pro­
zeduren stehen zur Verfügung. Al­
gol wird heute kaum noch zum Pro­
grammieren eingesetzt. Algol spielt
in der Geschichte der Program­
miersprachen eine ganz wichtige
Rolle, weil sie die Grundlagen einer
ganzen Klasse von Programmier­
sprachen liefert: der blockstruktu­
rierten Sprachen wie Pascal. Auch
die Entwicklung von Ada wurde von
diesem Prinzip entscheidend beein­
flußt.

APL (A Programming Language)
wurde an der Harvard-Universität
als vereinfachte Beschreibungs­
sprache für mathematischen Struk­
turen und Operationen entwicklelt.
APL verfügt nicht über die klassi­
schen Daten- und Programmstruktu­
ren, sondern verwendet Felder als
grundlegende Datenstruktur und
spezielle Feld-Operationen zur Ver­
arbeitung der Daten. Der Befehls­
vorrat von APL besteht aus einer
Vielzahl von mathematischen und
logischen Operationen. Bedingte
Anweisungen und Schleifen sowie
Sprachelemente zu Listenverarbei­
tung fehlen dagegen. APL ist mehr
von wissenschaftlichem Interesse.
In der kommerziellen Programmie­

rung ist diese Sprache nicht ver­
breitet.

Cobol (COmmon Business Orien­
ted Language) wurde speziell für
kaufmännische und wirtschaftliche
Aufgaben entwickelt. Diese Pro­
grammiersprache wurde aus der
englischen Umgangssprache ent­
wickelt. Mit vielen Worten be­
schreibt ein Cobol-Programm, was
getan werden soll. Die Programme
sind selbstdokumentierend, daher
sind die Programme relativ leicht
lesbar.

Fortranwurde 1956entwickeltund
wird vor allem im technisch-wissen-
lichen Bereich noch immer sehr
häufig verwendet. Statistische Aus­
wertungen für Diplomarbeiten oder
andere numerische Berechnungen
werden vorwiegend in Fortran pro­
grammiert. Die bekanntesten
Statistik-Programmpakete wurden
in Fortran implementiert, ebenso ei­
ne große Anzahl von Software-Pake­
ten. Basic kann als eine abgemager­
te Version von Fortran angesehen
werden, in der diejenigen Pro­
grammkonzepte gestrichen wur­
den, die platzaufwendig sind.

Lisp ist die bekannteste Sprache
im Bereich der Künstlichen Intelli­
genz. Lisp ist eine listenorientierte,
»funktionale« Programmiersprache,
die seit etwa 1960 entwickelt und im­
mer weiter modifiziert wurde. Vor
einigen Jahren wurden spezielle
Computer für Lisp gebaut, die so­
genannten Lisp-Maschinen. Eine
Lisp-Maschine ist ein Ein-Mann-
Computer mit einem sehr großen
Speicher, der nur Lisp versteht.
Lisp-Programme laufen rekursiv ab
und benötigen daher viel Platz. Re­
kursive Funktionen rufen sich selbst
direkt oder indirekt auf (Funktion A
ruft Funktion B auf, die wieder Funk­
tion A aufruft). Durch die Verwen­
dung von Rekursion können be­
stimmte Probleme leicht program­
miert werden. Aber die Realisie­
rung rekursiver Funktionen auf dem
Computer ist sehr aufwendig und
daher nicht in allen Programmier­
sprachen verfügbar.

Lisp-Maschinen werden in For­
schungsinstituten der Universitäten
und der Industrie zur Entwicklung
von Expertensystemen eingesetzt.
Da Programm und Daten dieselbe
Struktur haben, können Lisp-Pro-
gramme sich selbst verändern das
heißt, sie können lernen! Daher hat
Lisp in der Künstlichen Intelligenz
eine führende Rolle bei der Pro­
grammentwicklung sogenannter
»intelligenter« Programmsysteme
eingenommen.

Ihr Computer kann mehr als Sie

glauben, wenn Sie seine Fähigkei­
ten durch eine neue Programmier­
sprache erweitern. Sicher haben
Sie sich schon über das dürftige
Basic des C 64 geärgert. Vielleicht
haben Sie sich deshalb schon ein­
mal überlegt, auf eine andere Pro­
grammiersprache umzusteigen.

Erweitern Sie die Fähig­
keiten Ihres C 64!

Aber da beginnen die Probleme
erst. Denn inzwischen gibt es auf
dem Markt eine große Auswahl an
Sprachen für den C 64. Ob nun eine
Sprache auch das leistet, was man
sich erhofft hat, merkt man aber
erst, wenn man ein wenig damit pro­
grammiert hat. Hat man die falsche
Sprache erwischt, ist der Frust groß
und man kehrt zum guten alten Basic
zurück.

Wir wollen Ihnen bei der Ent­
scheidung weiterhelfen, welche
Programmiersprache für Ihren
Zweck die richtige ist, denn jede
Sprache hat natürlich ihre Stärken
und Schwächen. Im folgenden stel­
len wir Ihnen eine Auswahl der
wichtigsten Programmiersprachen
vor, die es für den C 64 gibt. In die­
ser Ausgabe finden Sie übrigens
zum Thema Programmiersprachen
auf dem C 64 einen Pascal-Kurs CTeil
1) für Basic-Programmierer, eine Be­
schreibung der Sprache C und ei­
nen Bericht über die Sprache Pro­
log auf dem C 64.

Pascal

Die Sprache Pascal wurde von
dem Schweizer Professor Nikolaus
Wirth ins Leben gerufen. Sein Anlie­
gen war es damals, besonders das
strukturierte Programmieren und
Denken zu fördern. »Spaghetti-Co-
de«, wie es von Basic-Programmen
her bekannt ist, gibt es in Pascal
nicht. Eine strenge Strukturierung
sorgt dafür, daß die Programme im­
mer übersichtlich und gut lesbar
sind. Aber nicht nur der Programm­
text ist sauber gegliedert. Auch für
die Variablen gibt es Strukturen.
Bevor man sich an den Computer
setzt, sollte das Programm bereits
gründlich durchdacht sein: Welche
Variablen brauche ich, wie kann ich
diese gliedern, und nach welchen
Grundgedanken soll das Programm
strukturiert sein? Erst wenn dies al­
les klar ist, geht es ans Ausformulie­
ren der einzelnen Routinen. Dieses
Konzept hat durchaus seine Vorteile.
Es treten weniger Fehler auf, da ja
bereits eine Menge Überlegung in

Ausgabe 3/März 1986 131

Programmiersprachen C 64

das Programm eingeflossen ist. Das
ist auch deshalb wichtig, weil Pascal
eine Compilersprache ist, das heißt
der Programmtext muß vor der Aus­
führung von einem Compiler erst
einmal in ein Maschinenprogramm
übersetzt werden. Bei vielen Feh­
lern kann durchaus das Austesten zu
einer langwierigen Prozedur ausar­
ten. Andererseits wird die Ausfüh­
rung der Programme durch das
Compilieren beschleunigt. Pascal-
Programme sind deshalb in der Re­
gel schneller als Basic-Programme.

Wie sieht nun die Strukturierung in Pascal
aus? Ein Pascal-Programm besteht
aus dem Hauptprogramm, das im­
mer am Schluß des Textes definiert
wird und beliebig vielen Prozedu­
ren und Funktionen, die man am
ehesten mit den Unterprogrammen
in Basic vergleichen kann. Zeilen­
nummern gibt es in Pascal nicht. Die
Prozeduren und Funktionen werden
mit ihrem Namen aufgerufen. Den
ärgsten Feind jeder Strukturierung,
den GOTO-Befehl, gibt es zwar
in Pascal auch, er gilt aber als ver­
pönt. Durch die Struktur-Anweisung
REPEAT ... UNTIL, WHILE ... DO,
CASE, FOR-Schleifen und IF ...
THEN ... ELSE-Entscheidungen
kann man sehr gut ohne GOTO aus­
kommen.

Bei den Daten ist der Pascal-Pro­
grammierergezwungen, sich genau
zu überlegen, welche Variablen von
welchem Typ er benötigt. Dies muß
dem Compiler in Variablen- und
Typendeklarationen mitgeteilt wer­
den. Neben den von Basic her be­
kannten Typen Integer, Fließkom­
ma und Zeichen gibt es in Pascal
noch mehr Datentypen. Der Typ
Boolean bezeichnet eine logische
Variable, die nur die Werte für True
und False annehmen kann. Der Typ
SET ist für Mengen gedacht. In Men­
gen gibt es keine Reihenfolge der
Elemente, wie zum Beispiel in einem
Array, aber man kann zum Beispiel
abfragen, ob ein bestimmter Wert in
einer Menge enthalten ist. Daneben
gibt es noch die strukturierten Da­
tentypen Array und Record. Bei den
Arrays handelt es sich um ein- oder
mehrdimensionale Felder, wie wir
sie von Basic her kennen. Ganz neu
für den Basic-Programmierer dürfte
aber der Typ Record sein. Damit
können Variable verschiedenen
Typs zu einer Verbund-Variablen zu­
sammengefaßt werden. So können
Daten sehr übersichtlich organisiert
werden. Doch damit sind die Mög­
lichkeiten von Pascal noch nicht aus­
geschöpft. Der Typ Zeiger erlaubt
ganz andere Dateistrukturen. Ein
Zeiger ist eine Variable, die die

Adresse einer anderen Variablen
enthält. Damit lassen sich verkettete
Listen aufbauen, wobei jedes Ele­
ment der Liste einen Zeiger auf das
nächste Element der Liste enthält.
Durch Ändern der Zeiger kann man
beliebig Elemente einsortieren, an­
hängen oder wieder aus der Liste
streichen. Eine ähnlich flexible
Struktur ist die Baumstruktur, die
auch mit Zeigern realisiert werden
kann.

Wem diese Datentypen noch nicht
reichen, der kann sich in Pascal
noch eigene Typen definieren. Man
kann beispielsweise den Typ Farbe
deklarieren, der die Werte Rot,
Grün oder Blau annehmen kann.

Sie sehen also, daß sich mit Pascal
ganz neue Möglichkeiten auftun.
Aber wie macht man aus dem C 64
eine Pascalmaschine? Es gibt inzwi­
schen mehrere Pascal-Compiler,
wir wollen uns hier aber auf die Ver­
sionen beschränken, bei denen
nicht zu viele Abstriche vom Stan-
dard-Sprachumfang gemacht wur­
den.
Pascal auf dem C 64

Da kommen in Frage: Das KMMM
Pascal, Oxford Pascal sowie Schtac
Pascal, das in einer erweiterten Ver­
sion auch von Data Becker als Profi
Pascal vertrieben wird.

Oxford Pascal (Computer Plus Soft
GmbH, Bahnstr. 22-26, 4220 Dinsla­
ken, 199Mark)unterstütztdenvollen
Sprachumfang und hat noch einige
Extras zu bieten. So gibt es Grafik-
und Soundbefehle, die von den
Möglichkeiten des C 64 Gebrauch
machen. Es ist sogar möglich, den
Bildschirm in einen Grafikbereich
und ein Textfenster zu unterteilen.
Allerdings wird die Ausführung der
Programme durch den dabei ver­
wendeten Programmiertrick deut­
lich langsamer. Das Entwickeln von
kleineren Programmen ist mit Ox­
ford Pascal sehr angenehm. Editor
und Compiler befinden sich im
Speicher des Computers, so daß
man ohne Diskettenoperationen
gleich austesten kann. Erst bei län­
geren Programmen muß dann von
Diskette compiliert werden.

Gegenüber Standard-Pascal wur­
de KMMM Pascal um einige Funk­
tionen erweitert. Es gibt zum Bei­
spiel einen Zufallsgenerator, POKE
und PEEK, und erweiterte Möglich­
keiten zur Stringverarbeitung, die
vom Standard etwas stiefmütterlich
behandelt wird.

Da das Nachladen mit der langsa­
men 1541-Floppy leicht zur Gedulds­
probe werden kann, hat Data
Becker bei seinem Profi Pascal (Da­
ta Becker, Merowingerstr. 30, 4000
Düsseldorf, 198 Mark) Routinen ein­
gebaut, die das Nachladen um den
Faktor drei beschleunigen. Nach
dem Laden erscheint ein Menü, von
dem aus der Editor, der Compiler
und andere Funktionen angewählt
werden können. Die notwendigen
Programmteile werden dann nach­
geladen. Profi Pascal enthält zusätz­
lich zum vollen Sprachumfang viele
zusätzliche Funktionen. So ist der di­
rekte Zugriff auf den Speicher des
Computers möglich und der Typ
String erlaubt bequeme Manipula­
tionen von Zeichenketten. Um auch
mit relativen Dateien effizient arbei­
ten zu können, was in Standard Pas­
cal überhaupt nicht möglich ist, wer­
den die Disketten mit einem eige­
nen Dateisystem organisiert. Da­
durch können beliebige Datensätze
mitten in einem File gelesen wer­
den. Daneben bietet Profi Pascal die
Möglichkeit, Assembler-Routinen
direkt in das Pascal-Programm ein­
zubauen.

Forth

Ein völlig anderes Konzept als Pas­
cal liegt der Sprache Forth zugrun­
de. In Forth dreht sich alles um das
Stack-Prinzip. Der Stack ist ein Spei­
cher, der nach dem »Last In First Out
(LIFO)-Prmzip« arbeitet. Das heißt:
der letzte Wert, der auf den Stack
geschrieben wurde, kann als erster
wieder vom Stack heruntergeholt
werden. Sämtliche Rechenoperatio­
nen in Forth werden über den Stack
abgewickelt. Wer schon einmal mit
Taschenrechnern der Firma Hew­
lett-Packard gearbeitet hat, kennt
das dabei verwendete Prinzip der
umgekehrt polnischen Notation
(UPN).

Eine weitere Eigenschaft von
Forth ist es, daß der Sprachumfang
beliebig erweitert werden kann.
Aus bereits bestehenden Forth-Be-
fehlen können neue Befehle kombi­
niert werden, die dann in Zukunft
zur Verfügung stehen. Es ist sogar
so, daß der größte Teil von Forth in
Forth selbst geschrieben wurde.
Nur ganz wenige elementare Befeh-

132 ij'ä? Ausgabe 3/Mätz 1986

C 64 Programmiersprachen

le sind in Assembler geschrieben,
der Rest wurde aus diesen wenigen
Worten aufgebaut. Durch dieses
Baukasten-Prinzip kann sich jeder
»sein« Forth selbst zusammenbauen.

Wie arbeitet man nun mit Forth? Forth ar­
beitet wahlweise mit Interpreter
oder Compiler. Nach dem Start ist
zunächst der Interpreter aktiv. Er
bearbeitet ein Programm, ähnlich
wie der Basic-Interpreter des C 64.
Er holt sich immer das nächste Wort
und versucht es auszuführen. Das
kostet natürlich Zeit, und deshalb
gibt es noch den Forth-Compiler.
Durch einen Doppelpunkt erfährt
das Forth-System, daß der folgende
Text nicht interpretiert, sondern
compiliert werden soll. Der Compi­
ler macht daraus ein neues Forth-
Befehlswort und trägt dieses in sei­
ne Liste ein. Von nun an steht das
neue Wort dem Interpreter und dem
Compiler zur Verfügung. Compilier-
te Worte machen Forth zu einer sehr
schnellen Programmiersprache, die
etwa zehnmal so schnell wie Basic
ist.

Um Ordnung in den Programmab­
lauf zu bringen, gibt es in Forth die
Kontrollstrukturen IF..ELSE..ENDIF,
DO..LOOP, BEGIN..UNTIL, BEGIN..
WHILE..REPEAT und BEGIN..
AGAIN. Ein GOTO gibt es in Forth
überhaupt nicht.

Natürlich gibt es auch für Forth ei­
nen Standard, sozusagen eine Mini­
malausstattung für Forth-Systeme.
Dieser Standard wurde von der
Forth Interest Group geschaffen und
heißt deshalb FIG-Forth. Die mei­
sten Versionen für den C 64 enthal­
ten allerdings weit mehr Befehle als
der Standard, da sich Forth ja sehr
leicht erweitern läßt. Wir wollen
Ihnen einige Forth-Systeme für den
C 64 vorstellen.

Das »64 Forth« erfüllt die Anforde­
rungen des FIG Standards. Darüber
hinaus bietet es eine Menge zusätzli­
cher, an den C 64 angepaßter Worte.
Es stehen mehr als 500 Befehle zur
Verfügung. Diese sind auf mehrere
Vokabulare verteilt, die man einzeln
aktivieren kann. Es gibt die Berei­
che FORTH, EDITOR, ASSEMBLER
und SYSTEM. Das FORTH-Vokabu-
lar enthält alle Worte, die man zum
Programmieren braucht. Zum Ein­
geben größerer Programme dient
das EDITOR-Vokabular. Mit SYS­
TEM stehen dem Anwender Befeh­
le des Betriebssystemes zur Verfü-

4 gung. Wenn es mal ganz schnell ge­
hen soll, kann man mit ASSEMBLER
Maschinenroutinen in die Forth-
Programme einbauen.
Grafik und Sound mit Forth

Die Grafik- und Soundmöglichkei­

ten des C 64 werden von 64 Forth un­
terstützt. Sogar ein Sprite-Editor ist
enthalten. Der Full Screen Editor ist
eine angenehme Verbesserung des
Standards, der nur zeilenweise Ein­
gabe erlaubt.

Das »Super Forth 64« (Forth Syste­
me, Angelika Flesch, Schützenstr. 3,
Titisee Neustadt, 398 Mark) enthält
nicht nur den FIG-Standard, son­
dern insgesamt über 700 Worte. Je
nach Bedarf kann man sich die Be­
fehle zusammenstellen. Der Um­
gang mit Grafik und Musik wird
durch die Befehle vereinfacht. Auch
hier gibt es einen Sprite-Editor und
als Krönung noch die sogenannte
Turtlegrafik (siehe Logo). Das Rech­
nen mit Fließkommazahlen, das in
Forth normalerweise nicht vorgese­
hen ist, wird durch ein eigenes Be­
fehlspaket unterstützt. Die Steue­
rung von Interrupts, die man von
Hochsprachen eigentlich gar nicht
kennt, erlaubt Effekte wie einen ge­
teilten Bildschirm oder parallel zum
Programm laufende Soundeffekte.
In einem Trace-Modus können Pro­
gramme gründlich getestet werden.

Das »M & T-Forth« (Happy Softwa­
re, Markt & Technik Verlag AG,
Hans-Pinsel-Str. 2, 8013 Haar, 98
Mark) für den C 64 umfaßt nur etwa
280 Befehle, allerdings werden auf
Diskette noch einige Forth-Program-
me mitgeliefert, die als Worte einge­
baut werden können. Sprites, Grafik
und Sound werden unterstützt, und
der FIG-Standard ist voll enthalten.
Damit ist die Kompatibilität zum Stan­
dard gegeben.

bgo

Die Sprache Logo wurde vor al­
lem durch die Turtle-Grafik (Com­
modore Händler, 159 Mark) be­
kannt. Dabei bewegt sich ein klei­
nes Dreieck, die Turtle (zu deutsch
Schildkröte) nach den Anweisungen
des Programmierers über den Bild­
schirm und hinterläßt ihre Spuren in
Form von Linien. Zur Steuerung gibt
es die Befehle FORWARD, BACK,
RIGHTTURN und LEFTTURN. Als
Argumente werden die Länge der
Strecke und bei den Turns ein Win­
kel angegeben. Mittels SETX und
SETY oder SETXY kann man die
Turtle auf definierte Ausgangspunk­
te setzen. Der Standort der Turtle
kann durch XCOR und YCOR abge­
fragt werden. Durch diese Art der
Grafiksteuerung lassen sich auf ein­
fache Weise die tollsten Grafiken er­
zeugen. Aber Logo besteht nicht nur
aus der Turtle-Grafik. Ein Logo-Pro­
gramm ist aus mehreren Einzelpro­
grammen aufgebaut, also ein ähnli-

ches Baukastenprinzip wie bei
Forth. Es ist möglich, ein Programm
in viele Teilaufgaben aufzuteilen
und diese Bausteine dann zum ei­
gentlichen Programm zusammenzu­
fügen. Die Entwicklung eines Pro­
gramms wird so überschaubar und
strukturiert. Wie in Pascal kann sich
übrigens ein Logo-Programm selbst
aufrufen, und zwar mehrfach (Re­
kursion). Mit Rekursionen lassen
sich viele Probleme äußerst elegant
lösen. Ein anderes Element von
Logo ist die Programmierung mit Li­
sten. Eine Liste wird einfach durch
eckige Klammern definiert. Durch
verschiedene Listenbefehle können
diese kombiniert, verglichen und
bearbeitet werden. Listenelemente
oder Teile können aus der Liste her­
ausgenommen und zu neuen Listen
oder Wörtern kombiniert werden.
Mit den Listen können zum Beispiel
Dateiverwaltungen recht einfach
programmiert werden.

Die von Commodore selbst ver­
triebene Logo-Version für den C 64
bietet auch einige Kommandos für
den Soundchip, um Tonhöhe, Ton­
dauer und die Hüllkurve der
Sounds zu bestimmen. Der Umgang
mit Sprites wird ebenfalls erleich­
tert. Mit dem Sprite-Editor können
Sprites entworfen werden, ohne
sich, wie in Basic, mit Adressen und
Hexadezimal-Zahlen herumschla­
gen zu müssen. Die Sprites können
auf Diskette gespeichert und von
dort wieder eingelesen werden.

Leider verbraucht Logo eine Un­
menge an Speicherplatz im C 64.
Das liegt daran, daß alle Befehle,
auch die selbstdefinierten, im Spei­
cher vorhanden sein müssen. Für
das eigentliche Programm bleibt da
oft wenig Platz.

Prolog

Der Name Prolog bedeutet PRO-
grammieren in LOGic. Damit ist
schon gesagt, welches Konzept hin­
ter der Programmiersprache Prolog
steht: eine mathematische Methode
der formalen Logik, die für automa­
tisches Beweisen entwickelt wurde.
Um zu beschreiben, wie Prolog ar­
beitet, muß man etwas weiter ausho­
len. Prolog-Programme »sagen«
dem Computer nicht, was er tun soll.
Sie beschreiben das, was der Com­
puter »wissen« muß, um Probleme zu
lösen. Diese Probleme werden vom
Benutzer in Form von Fragen an den
Computer gestellt. Prolog ist erst
seit kurzem für den C 64 verfügbar
(Brainware GmbH, Kirchgasse 24,
6200 Wiesbaden, 289 Mark). Diese

Ausgabe 3/März 1986 ^a? 133

Programmiersprachen C 64

Version ist in dieser Ausgabe im
Test. Prolog wurde dort (auch für
Basic-Anhänger) beschrieben.

Comal

Wenn Sie bisher mit Basic einiger­
maßen gut zurechtgekommen sind,
sollte Ihnen der Umstieg auf Comal
eigentlich leichtfallen. Die Sprache
ist stark an Basic angelehnt. Das
heißt aber nicht, daß die Schwächen
von Basic mit übernommen wurden.
Auch bei Pascal wurden einige An­
leihen gemacht, vor allem, was die
Strukturierung betrifft. Von Logo
wurde die Turtle-Grafik entliehen.
Comal ist sozusagen eine Mischung
der besten Elemente aus verschie­
denen anderen Sprachen. Heraus­
gekommen ist dabei eine leistungs­
fähige Sprache, die noch einen ent­
scheidenden Vorteil hat: Einige
Comal-Versionen (V.0.14) werden
nämlich umsonst abgegeben (Co­
mal 0.14, Interpool, c/o Prof. Leu­
schner, 7487 Gammetingen-Bron-
nen, 20 Mark, Comal 2.0, D. Belz,
2270 Utersum, 198 Mark), und es
wird sogar dazu ermutigt, Comal zu
kopieren und weiterzugeben!

Comal läßt sich weder als Compi­
ler- noch als Interpretersprache be­
zeichnen. Die Wahrheit liegt irgend­
wo in der Mitte. Im Direktmodus
kann man mit dem Interpreter arbei­
ten. Das Erstellen eines Programms
läuft dagegen in drei Phasen ab. Die
erste ist die Eingabe des Pro­
gramms. Dabei tritt der sogenannte
Syntax-Checker in Aktion. Er über­
prüft die eingegebenen Zeilen
gleich auf syntaktische Fehler und
gibt gegebenenfalls Fehlermeldun­
gen aus. Das kann eine Menge an
Fehlersuche ersparen. Im zweiten
Durchgang wird das Programm
nach Variablen und angesprunge­
nen Zeilen durchsucht. Die Ergeb­
nisse werden in einer Liste eingetra­

gen, in der das Comal-System dann
beim Programmlauf, der dritten
Phase, nachschlagen kann. Das geht
natürlich schneller als in Basic, wo
der Interpreter den ganzen Pro­
grammtext durchsuchen muß, wenn
er eine angesprungene Zeile sucht.
Auch aufVariablen hat Comal durch
die Liste eine schnelleren Zugriff als
der Basic-Interpreter. Die Anwei­
sungen werden aber in Comal nicht
compiliert, sondern nach wie vor in­
terpretiert. Von einer echten Compi­
lersprache kann also nicht gespro­
chen werden.

Wie schon erwähnt, ist die Syntax
von Comal stark an Basic orientiert.
Aber dennoch wird ein Comal-Pro-
gramm anders aufgebaut sein als
ein Basic-Programm. Die an Pascal
erinnernden Kontroll-Strukturen
wie CASE, REPEAT..UNTIL und
WHILE werden durch die (auch
dem Basic-Programmierer geläufi­
gen) Strukturen IF..THEN..ELSE und
FOR..NEXT-Schleifen ergänzt. Mit
LOOP..EXIT..ENDLOOP können
auch Endlosschleifen konstruiert
werden. Der GOTO-Befehl existiert
in Comal zwar auch, sollte aber nur
in Ausnahmefällen angewendet
werden. Inzwischen gibt es mehre-

Achtunq C-Proqrammierer aufqepaßt!
Jetzt gibt es Small-C, ein komplettes Entwicklungssystem im CP/M-
Modus für den Commodore128 PC. Mit Editor, Compiler, Linker und
vielen weiteren Utilities.

Alle Programme sind in Small-C geschrieben, der Quellcode wird
mitgeliefert. So können Sie das Entwicklungssystem nach eigenen
Wünschen und Erfordernissen erweitern und modifizieren.

Das Programmpaket enthält:
• Small-C-Compiler
• Small-Mac: Assembler und Utilities
• Small-Tools: Editor und Text-Tools

Hardware-Anforderungen:
C128/C128 D, Diskettenlaufwerk 1571,80-Zeichen-Monitor.

Bestell-Nr. MS 483 (Ö'/T-Diskette)

Für nur DM W8.-(sFr 13z.-/0$ wo,-*)
•inkl. MwSt., unverbindliche Preisempfehlung.

Markt&Technik

U8er-Software
Hans-Pinsel-Straße 2, 8013 Haar bei München

Schweiz: Markt&Technik Vertriebs AG, Kollerstrasse 3, CH-6300 Zug
Österreich: Ueberreuter Media Verlagsges. mbH, Alser StraBe 24, A-1091 Wien

Markt&Technik
128er-Software

Dr. Dobb’s Journal
J.E. Hendrix

SmaU-C
Entwicklungssystem

C-Compiler
8080-/Z80-Makro-Assembler Linker/Loader

Bibliotheksverwalter Editor/Text-Tools

Für Commodore 128 (128 D)
Floppy 1571-Format

134 21^ Ausgabe 3/März 1986

C 64 Programmiersprachen

re Comalversionen für den C 64. Da
sind zum einen alle Versionen, de­
ren Versionsnummern mit einem
Nuller beginnen, zum Beispiel Co­
mal V.0.14. Diese Versionen können
gegen einen geringen Unkostenbei­
trag bezogen werden und beliebig
weiterkopiert werden. Daneben
gibt es noch kommerzielle Comal-
Systeme, wie Comal 2.0. Diese ent­
halten einen größeren Befehlssatz
als die Public Domain-Versionen.

Promal
Promal ist eine stark strukturierte

Sprache wie Pascal. Dennoch kann
es von der Geschwindigkeit mit
Forth mithalten und ist auch ähnlich
maschinennah. Die Strukturierung
erfolgt dabei durch Einrückungen
im Programmtext, die das Pro­
gramm gleichzeitig übersichtlich
machen. Die üblichen Kontrollstruk­
turen IF..ELSE, FOR (ohne Next),
CHOOSE (entspricht in etwa CASE
in Pascal, REPEAT..UNTIL und WHI­
LE) gibt es in Promal natürlich auch.
Für zeitkritische Anwendungen
kann man Maschinenroutinen aufru­
fen und dabei gleich Parameter
übergeben, unter anderem auch
über die drei Register des 6510-Pro-
zessors. In den meisten Fällen wird
man aber ohne Assembler auskom­
men, da Promal schon von Haus aus
sehr schnell ist. Dies liegt unter an­
derem auch an den sehr schnellen
Arithmetikroutinen, die die Routi­
nen des Basic-Interpreters bei wei­
tem übertreffen und dabei noch
eine größere Genauigkeit haben.
Aus den vier Grundrechenarten,
die Promal beherrscht, kann man
komplexere Berechnungen wie Ex­
ponential- oder Winkelfunktionen
selbst programmieren und hat die
Ergebnisse noch schneller als in
Basic!

Das Promal-System besteht aus
drei Teilen: dem Executer, dem
Editor und dem Compiler. Der Exe­
cuter ist ein komfortabler Komman­
do-Interpreter, von dem aus auch
der Editor und der Compiler gestar­
tet werden. Den Editor könnte man

. schon fast als Textverarbeitung be­
zeichnen. Er ist selbst in Promal ge­
schrieben — ein weiterer Hinweis
auf die Leistungsfähigkeit von Pro­
mal (Systems Management Associa­
tes, 3700 Computer Drive, Dept. GR
Raleigh, North Carolina 27609). Das
Promal PM-200 kostet etwa 150 Mark
($ 49,95), die Entwickler-Version mit
zusätzlichen Run-time-Programmen
kostet etwa 300 Mark ($ 99,95). Für
etwa 37 Mark ($ 12,50) gibt es die
Demo-Version PM-200.

C
In letzter Zeit gewinnt die Sprache

C immer mehr an Bedeutung. Be­
sonders in Verbindung mit dem Be­
triebssystem Unix hat C an Bedeu­
tung gewonnen. Für den C 64 gibt es
einen C-Compiler von Data Becker,
der für 298 Mark fast den gesamten
Sprachumfang bietet. So kann man
auf dem »kleinen« C 64 mit C arbei­
ten. Markt & Technik bietet für 148
Mark (brandneu) das Smal-C-Ent-
wicklungssystem mit Quellcode für
den C 128. In diesem Heft finden Sie
eine Einführung in die Sprache C.
Auch auf den Compiler auf dem C
64 wird dort näher eingegangen.

Der Vorteil von C liegt hauptsäch­
lich daran, daß man mit C maschi­
nennah und damit schnell program­
mieren kann. Viele Anweisungen
beziehen sich auf Programmierme­
thoden, die in Assembler häufig an­
gewandt werden, wie das Rechnen
mit Zeigern, Inkrementieren und
Dekrementieren und das Arbeiten
mit Bitfeldern. Letztere werden aber
auf dem C 64 nicht unterstützt. Auch
die Deklaration REGISTER, die eine
Variable direkt in einem Register
des Prozessors plaziert, gibt beim
6510-Prozessor mit seinen drei Regi­
stern keinen Sinn. Dennoch lassen
sich in C auch auf dem Commodore
64 effiziente Programme schreiben.
Ein weiterer Unterschied zu Pascal
sind die Makros, die am Anfang ei­
nes Programms angegeben werden
können. Darunter versteht man Be­
fehlsfolgen, die durch Angabe ihres
Namens im Programmtext einge­
setzt werden können. Nun werden
Sie vielleicht fragen, worin der Un­
terschied zu Unterprogrammen be­
steht, die ja auch nur eimal definiert
werden und dann immer benutzt
werden können. Ein Makro hat den
Vorteil, daß der Compiler den Code
für das Makro direkt ins Programm
einsetzt. Sprünge und Parameter­
übergabe entfallen, was sich in der

Oxford Pascal Computer Plus Soft GmbH, Bahnstr. 22-26, 4220 Dinslaken, 199
Mark

Profi Pascal Data Becker, Merowingerstr. 30, 4000 Düsseldorf, 198 Mark
Schtac Pascal 64 phs EDV-Beratung, Devenstedter Straße 8, 3000 Hannover 91, 798

Mark
64 Forth Forth Systeme Angelika Flesch, Schützenstr. 3, Titisee Neustadt
Super Forth 64 Forth Systeme Flesch
M&T Forth C 64-Software, Markt & Technik Verlag AG, Hans-Pinsel-Str. 2,

8013 Haar, 98 Mark
Logo Commodore Händler, 159 Mark
Comal 0.14 Interpool, c/o Prof. Leuschner, 7487 Gammetingen-Bronnen, 20

Mark
Comal 2.0 D. Belz, 2270 Utersum, 198 Mark
Promal Systems Management Associates, P.O. Box 20023, Raleigh, NC

27619, USA
C Data Becker 298 Mark; Markt & Technik (C 128), 148 Mark
Tabelle 1. Bezugsquellen der Programmiersprachen

Geschwindigkeit auswirkt. Etwas
ähnliches kennt man sonst nur von
Assemblern.
C hat eine eigene Philosophie

Wenn man sich den Befehlsvorrat
von C ansieht, wird man erst einmal
enttäuscht sein. Es gibt nur 13 Befeh­
le. Nicht einmal ein Print-Befehl ist
vorhanden. Aber es gehört zur offe­
nen Philosophie von C, daß die be­
nötigten Routinen aus externen Bi­
bliotheken zum Programm dazuge­
bunden werden. Erst dann entsteht
ein lauffähiges Programm. Auf diese
Weise kann C beliebig erweitert
werden und der Speicher wird nicht
mit unnötigen Befehlen belastet.

Beim Erstellen eines C-Pro-
gramms geht man folgendermaßen
vor: Zuerst erstellt man den Source­
text mit dem Editor. Dieser Editor ist
in der C 64-Version ein angenehmer
Full-Screen-Editor, bei dem man
sich sogar mit Farben Übersicht ver­
schaffen kann. Dann betritt der
Compiler die Szene und übersetzt
das Programm. Um ein lauffähiges
Programm zu erhalten, muß man da­
nach den Linker auf das Compilat
loslassen. Dieser bindet die Biblio­
theksfunktionen dazu und stellt alle
Bezüge her, die der Compiler noch
offen gelassen hat. Erst jetzt kann
das Programm getestet werden. Da
die einzelnen Teile des C-Systems
immer erst geladen werden müs­
sen, kann das Übersetzen eines C-
Programms die Geduld des Anwen­
ders ganz schön auf die Probe stel­
len. Dennoch hat C viele Freunde,
weil C-Programme sehr effizient
sind.

Was für wen?

Jetzt ist es an Ihnen zu entschei­
den, welche Sprache für Sie die
richtige ist! Wie Sie gesehen haben,
gibt es fast für jeden Zweck eine ge­
eignete Programmiersprache.

(Pehlandt/cg)

Ausgabe 3/März 1986 ik^ 135

