
64'er Extra C 64

64'er Extra 6
Das 64'er Extra bringt ge­

ballte Information iiber lhren
C 64 zum Herau$trennen und
Sammeln.

In dieser sechsten Ausgabe
finden Sie den zweiten Teil ei­
ner Übersicht über alle ROM-
Routinen des C 64. Statt ziel­
los in ROM-Listings zu blät­
tern, finden Sie hier im Klar­
text die Funktionsbeschrei­
bung aller irgendwie nutzba­
ren Routinen.

POS SB39E
* * * POS: Ruft die Kernal-Routine PLOT auf, um sich die Cursorposition zu verschaffen, und lädt
sie dann in FAC1 mittels:

SNGET $B3A2
Wandelt das Byte in Y in FLPT in FAC1 um (0...255).

ERRDIP $B3A6
Prüft, ob der Befehl nicht im Direktmodus eingegeben wurde; ein Wert von $FF in CURLIN+3 ($3A)
zeigt Direktmodus an. Ist das der Fall, erfolgt die Meldung ?ILLEGAL DIRECT ERROR. Wird von Rou­
tinen aufgerufen, die nicht im Direktmodus zu verwenden sind, wie zum Beispiel GET.

DEF $B3B3
• • * DEF: ErzeugtFunktionsdefinition;suchtdieFunktionsvariableoderstelltsieauf. EinAufrufvon
FN setzt den Zeiger innerhalb CHRGET auf den Anfang der FN-Definition im BasicText, und der
dort vorgefundene Ausdruck wird ausgewertet; anschließend wird der Zeiger wieder zurückge­
stellt. Die dafür notwendige Information ist mit der in GETFNM aufgestellten Funktionsvariablen ge­
speichert.

GETFNM SB3E1
Prüft die Syntax von FN; sucht oder stellt Variable mit dem Funktionsnamen auf und läßt (DEFPNT)
($4E) darauf zeigen (muß numerisch sein, keine Zeichenkettenvariable).

FNDOER SB3F4
Wertet Funktion aus: Berechnet den Klammerausdruck in der Anweisung mit dem Funktionsaufruf
und legt das Ergebnis in FAC1 ab; anschließend erfolgt die Auswertung des Funktionsausdrucks
(siehe DEF).

STRD SB465
• •• STR$-Funktion: Berechnet Ausdruck und verwandelt das Ergebnis in eine ASCII-
Zeichenkette.

STRINI SB475
Schafft im Zeichenkettenbereich Platz zum Einfügen einer Zeichenkette: A enthält die Länge und
(FAC1+3) zeigt auf die Zeichenkette (zum Beispiel im Eingabepuffer). Beim Verlassen enthält $61
bis $63 den Descriptor der neuen Zeichenkette. CHR$, LEFT$ und so weiter arbeiten sämtlich mit
dieser Routine.

STRLIT $B487
Kopiert eine Zeichenkette in den Zeichenkettenbereich am oberen Speicherende; beim Eintritt in
die Routine zeigt (A/Y) auf die Zeichenkette. Sucht nach » “«oder einem Nullbyte als Endmarkie­
rung, um die Länge zu bestimmen. Beim Verlassen enthalten $61, $62, $63 den Descriptor.

GETSPA $B4F4
Weist im dynamischen Zeichenkettenbereich am oberen Speicherende Platz für eine Zeichenkette
zu: die Länge ist in A festgehalten. Führt eine Garbage Collection durch, wenn der Platz erschöpft
ist. Aufgerufen von STRINI.

GARBA2 $B526
Führt Garbage Collection aus; sammelt die gültigen Zeichenketten und entfernt überflüssige aus
dem Zeichenkettenbereich. Bei einer großen Zahl von Zeichenketten wird die Routine für Garbage
Collection langsam.

DVARS SB606
Sucht Variablen und Felder nach der nächsten, durch die Garbage Collection zu sichernde Zeichen­
kette ab.

CAT $B63D
Verknüpft zwei Zeichenketten.

MOVINS $B67A
Verschiebt Zeichenkette in den Zeichenkettenbereich oben im Speicher; beim Eintritt zeigt ($6F)
auf den Descriptor der betreffenden Zeichenkette.

ERESTR SB6A3
VerwirftZeichenkette: Beim Eintritt zeigt (FAC1+3) auf den Zeichenketten-Descriptor; beim Verlas­
sen finden sich neue Zeichenkettenlänge und Zeiger in INDEX1.

FRETMS $B60B
Löscht den Descriptor-Stapel.

CHRD $B6EC
* * * CHR$: Stellt eine Zeichenkette der Länge 1 auf.

LEFTD SB700
• * * LEFT$.

RIGHTD SB72C
• * * RIGHT$.

MIDD SB737
• •• MID$.

PREAM SB761
Holt Zeiger für Zeichenketten-Descriptor nach $50,$51 und die Länge nach A (auch nach X).

LEN $B77C
• * LEN: Fließkommawert des Parameters Zeichenkettenlänge, plaziert in FAC1.

LEN1 $B782
Ermittelt Länge der Zeichenkette, setzt das Ergebnis in Y, schaltet von Zeichenketten-Modus
auf Zahlen-Modus. Aufgerufen von LEN, VAL.

ASC $B78B
• * * ASC: Holt das erste Zeichen einer Zeichenkette und wandelt es in einen Fließkommawert
in FAC1 um. Eine Zeichenkette der Länge 0 erzeugt den Fehler 7SYNTAX ERROR.

GTBYTC $B79B
Liest einen Ausdruck aus dem Basic-Text und wertet ihn aus; muß einen 1-Byte-Wert liefern, der
dann in X und FAC1+4 abgelegt wird.

VAL SB7AD
• * * VAL: Wandelt Wert in Fließkommazahl in FAC1 um.

GETNUM SB7EB
Liest die Parameter für WAIT und POKE aus dem Basic-Text; setzt den ersten (2-Byte-Ganz-
zahl) in $14,$15 und den zweiten in X ein.

GETADR $B7F7
Verwandelt FAC1 in 2-Byte-Ganzzahl (Bereich 0...65535) in $14,$15 und Y/A.

PEEK SB80D
" * PEEK: Beim Eintritt enthält FAC1 die Adresse, die gelesen werden soll, im Fließkomma.
Beim Verlassen steht der abgelesene Wert in Y.

POKE SB824
• * ’ POKE: Holt zwei Parameter aus dem Text und führt POKE aus.

WAIT $B82D
* * * WAIT: Holt zwei Parameter aus dem Text, und eventuell noch einen dritten, der als 0 be­
trachtet wird, wenn nicht vorhanden. Tritt in eine WAIT-Schleife ein.

FADDH $B849
Addiert 0,5 zum Inhalt des FAC1; dient zum Runden.

FSUB SB850
Fließkomma-Subtraktion: FAC1 wird ersetzt durch den MFLPT-Wert, auf den (A/Y) zeigt, minus
FAC1.

FSUBT $B853
• * * Fließkomma-Subtraktion: FAC1 wird ersetzt durch (FAC2 minus FAC1).

FADD SB867
Fließkomma-Addition: FAC1 wird ersetzt durch den MFLPT-Wert, auf den (A'Y) zeigt, plus FAC1.

FADDT $B86F
Fließkomma-Addition: FAC1 wird ersetzt durch (FAC2 plus FAC1). Enthält beim Eintritt den Ex­
ponenten von FAC1, zum Beispiel Inhalt von $61: addiert »0« schneller.

COMPLT SB947
Ersetzt FAC1 durch sein Zweierkomplement.

OVERR $B97E
Gibt die Meldung 7OVERFLOW ERROR und anschließend READY aus.

MULSHF $B983
Multipliziert mit einem Byte.

FONE $B9BC
Tabelle von Konstanten im MFLPT-Format: zuerst eine »1«. dann ein Byte vom Wert 3, dann
Konstante zur Berechnung von LOG, dann SQR(0.5),SQR(2),-0.5 und LOG(2).

LOG $B9EA
• ’ * LOG: Berechnet vom Inhalt des FAC1 den Logarithmus zur Basis e.

FMULT $BA28
Fließkomma-Multiplikation: FAC1 wird ersetzt durch den MFLPT-Wert, auf den (ÄY/Y) zeigt, mal
FAC1.

FMULTT $BA30
• * ’ Fließpunkt-Multiplikation: FAC1 wird ersetzt durch FAC1 mal FAC2.

MLTPLY SBA59
Multipliziert FAC1 mit einem Byte und speichert das Ergebnis in $26...$2A.

CONUPK SBA8C
Lädt FAC2 mit dem MFLPT-Wert bei (A/Y), isoliert das Vorzeichenbit, speichert es separat und bildet
so das FLPT-Format. Beim Verlassen enthält A das erste Byte von FAC1.

MULDIV SBAB7
Prüft Akkumulatoren für Multiplikation und Division: Ist FAC2 »0«, wird FAC1 »0« gesetzt; ist die
Summe der Exponenten zu groß, erfolgt die Meldung 7OVERFLOW ERROR, wenn zu klein, wird
das Ergebnis ohne Unterlaufmeldung auf 0 gesetzt.

MUL10 SBAE2
Multipliziert FAC1 mit 10 und setzt das Ergebnis in FAC1.

TENC $BAF9
10 im MFLPT-Format.

DIV10 $BAFE
Dividiert FAC1 durch 10 und legt das Ergebnis in FAC1 ab.

FDIVF SBB07
Fließkomma-Division: FAC1 wird ersetzt durch FAC2 dividiert durch denjenigen MFLPT-Wert, auf
den (A/Y) zeigt; beim Einsprung enthält X das Vorzeichen des Resultats.

FDIV $BBOF
Fließkomma-Division: FAC1 wird ersetztdurch den MFLPT-Wert, auf den (A^ zeigt, dividiert durch
FAC1.

FDIVT SBB14
• • * Fließkomma-Division: FAC1 wird ersetzt durch (FAC2 dividiert durch FAC1).

MOVFM $BBA2
Lädt FAC2 mit dem MFLPT-Wert bei (A/Y), holt das Vorzeichenbit heraus, speichert es separat und
bildet so das FLPT-Format.

M0V2F $BBC7
Verwandelt FAC1 in MFLPT-Format und speichert das Resultat in $5C bis $60, TEMPFP2.

MOV1F SBBCA
Verwandelt FAC1 in MFLPT-Format und speichert das Resultat in $57 bis $5B, TEMPFP1.

MOVVF SBBDO
Verwandelt FAC1 in MFLPT-Format und speichert das Resultat an der Adresse, auf die ($49) zeigt.

MOVMF SBBD4
Verwandelt FAC1 in MFLPT-Format und speichert das Resultat an der Adresse, auf die (A/Y) zeigt.

MOVFA SBBFC
Kopiert FAC2 in FAC1.

MOVAF SBCOC
Rundet FAC1 durch Aufruf von ROUND und kopiert das Ergebnis in FAC2.

ROUND SBC1B
Rundet FAC1.

SIGN SBC2B
Ermittelt das Vorzeichen von FAC1: beim Verlassen ist A=0, wenn der Wert in FAC1 null ist, A=1,
wenn er positiv ist und A=$FF, wenn er negativ ist.

SGN $BC39
• * * SGN-Funktion: Ruft SIGN auf und verwandelt dann A in Fließkommaform in FAC1.

ABS $BC58
* * * ABS-Funktion: Verwandelt FAC1 in ABS(FAC1).

FCOMP $BC5B
Vergleicht FAC1 mit dem MFLPT-Wert bei (A/Y); beim Verlassen ist A=0, wenn die Werte gleich
sind, A=1, wenn FAC1 >MFLPT, und A=$FF, wenn FAC1 <MFLPT.

88 ^a? Ausgabe 2/Februar 1986

C 64 64er Extra

«NT SBC9B
Verwandelt FAC1 in 4-Byte-Ganzzahl und speichert das Ergebnis, höchstes Byte zuerst, in
(FAC1 + 1) (FAC+4).

INT SBCCC
INT-Funktion: Rundet FAC1 ab. beläßt das Resultat jedoch in FLPT-Form in FAC1.

FIN SBCF3
Wandelt eine ASCII-Zeichenkette, zum Beispiel *—99,375< in eine Zahl in FAC1 um. Beim Eintritt
zeigt TXTPTR auf den Anfang. Die Umwandlung erfolgt dann durch JSR CHRGET/JSR FIN.

AAOD SBD7E
Addiert den Inhalt von A zu FAC1.

STCONS $B0B3
3 Konstante in MFLPT-Form: 99999999.9,999999999,1OOOOOOOOO. Verwendet bei Zeichen­
kettenumwandlungen.

INPRT SBDC2
Druckt IN gefolgt von der aktuellen Zeltennummer in CURLIN ($39, $3A).

LINPRT SBDCO
Gibt die Ganzzahl in AÄ aus; Bereich 0...65535.

FOUT SBDDD
Verwandelt den lnhaltvon FAC1 in eine ASCII-Zeiohenkette, die mit der Adresse $0100 beginnt und
mit einem Null-Byte endet. Beim Verlassen enthalt (A/Y) die Startadresse, so daß STROUT die Zei­
chenkette ausgeben kann.

FOUTIM SBE68
Verwandelt Tl in ASCII-Zeichenkette, die mit der Adresse $0100 beginnt und mit einem Null-Byte
endet.

TICONS SBF11
Konstanten zur Umwandlung von Zeichenketten und Tl sowie der Wert 0,5 in MFLPT-Form, danach
15 weitere Konstanten C4-Byte-Ganzzahlen).

SOR SBF71
• • • SOR: FAC1 wird durch die Quadratwurzel aus FAC1 ersetzt.

FPWRT SBF7B
• • Führt Potenzberechnungen aus: FAC1 wird ersetzt durch FAC2 hoch FAC1. Beim Eintritt muß
A den Inhalt von FAC2 (das heißt von $69) speichern, damit Potenzen von 0 korrekt sind.

NEGOP SBFB4
Macht FAC1 negativ.

EXCONS SBFBF
Tabelle von 8 Konstanten zur Auswertung von EXP-Reihen.

EXP SBFED
• • • EXP-Funktion: FAC1 wird durch e hoch FAC1 ersetzt.

POLYX SE059
Routine zur Reihenberechnung. Beim Eintritt zeigt A/Y auf den Zähler am Anfang der Konstantenta­
belle, die zur Berechnung der Potenzreihe herangezogen wird.

RMULC SEO8D
11879546.4 im MFLPT-Format: multiplikative Konstante zur Auswertung von RND.

RAODC SE092
3.92767778 E-8 lm MFLPT-Format: additive Konstante zur Auswertung von RND.

RND SE097
• • • RND: Setzt in FAC1 je nach seinem Vorzeichen auf folgende Weise eine Zahl:

RNDO SE09E
Wenn 0, wird FAC1 von den Registern derCIA-Timer geladen: eine einfache Art, einen neuen Keim
für Zufallszahlen zu setzen.

OSETNR SEOBE
Wenn > 0. wird dte tn ($88...$8C gespeicherte) durch vorhergehende Aufrufe erzeugte Zufallszahl
mit RMULC multipliziert und RADDC hinzugezählt; das Ergebnis steht in FAC1.

RND1 SE0D3
Wenn < 0, wird FAC1 mit vermischten Bytes von sich selbst geladen, daher ist RND(-We) Konstant
und also wiederholbar. In allen diesen drei Fällen wird FAC1 in $88...$8C gespeichert.

RNDRNG SEOE5
, Zwingt FAC1 in den Bereich 0...1,0 und C gespeichert.

BIOERR SE0F9
Fehlerbehandlung für bestimmte Basic-Aufrufe des Kernel (erforderlich zur Verarbeitung von CMB,
LOAD, SAVE), falls bei der Rückkehr von der Kernal-Routine das Fehlerfteg C gesetzt ist. .

BCHOUT SE1OC
Gibt Zeichen mittels CHROUT aus; Fehlermeldung bei Versagen.

BCHIN SE112
Nimmt Zeichen mittels CHRIN herein; Fehlermeldung bei Versagen.

BCKOUT SE118
Richtet mittels CHKOUT eine Ausgabedatei ein; Fehlermeldung bei Versagen.

BCKIN SE11E
Richtet mittels CHKIN eine Eingabedatei ein; Fehlermeldung bei Versagen.

ßGETIN SE124
Holt Zeichen mittels GETIN; Fehlermeldung bei Versagen.

SYS SE12A
• • • SYS: Lädt A, X. Y, SR aus $3OC..., ruft MC-Routine an der Adresse auf, die in der Anweisung
als Argument angegeben ist. Lädt bet der Rückkehrvon der Routine alle Registerinhalte aus $30C...
zurück.

SAVET SE156
■ ■ • SAVE: Sichert ein Basic-Programm: läßt A auf die Adresse in Seite Null zeigen, die ihrerseits
auf die Startadresse zeigt; setzt (XA0 auf $2D,$2E = Programmende Anschließend wird über ei­
nen Vektor bei $FFD8 die Kernal-Routine SAVE aufgerufen.

VERFYT SE165
• • ■ VERIFY: Setzt das Flag in A auf 1. um die Verity-Operation anzuzeigen; tritt in LOADT ein und
prüft auf F6hler.

LOADT SE168
* * • LOAD: Holt die Parameter aus dem Basic-Text und stellt sie auf; ruft dle Kemal-Routine LOAD
über einen Vektor bei $FFD5 auf.

LOAOR SE16F
Lädt vom bereits angesprochenen Gerät ins RAM ab der Basic-Adresse in ($2B).

LDFIN SE195
Beendet das Laden. Nach Aufruf von LOAD im Direktmodus wird der Zeiger auf das obere Ende
von Basic ($2D) auf die Adresse des letzten geladenen Bytes gesetzt. Nach einem Aufruf aus ei­
nem Programm heraus unterbleibt dies, so daß die Variabtenliste bewahrt ist. Dann wird der Zeiger
in CHRGET zurückgesetzt und ein Basic-Warmstart durchgeführt, um das neue Programm zu star­
ten.

OPENT SE1BE
* *' OPEN: Liest die Parameter aus dem Text und stellt sie durch entsprechende Kemel-Aufrufe
auf. Ruft über den Vektor bei $FFC0 die Kemal-Routine OPEN auf.

CLOSET SE1C7
• •' CLOSE: Liest dle Parameter aus dem Text und stellt sie auf. Ruft über den Vektor bei $FFC3
die Kernel-Routine CLOSE auf.

SLPARA SE1D4
Holt die Parameter für LOAD, SAVE und VERIFY aus dem Basic-Text; setzt die Standardwerte, wenn
Angaben fehlen. Richtet durch einen Aufruf von SETLFS über den Vektor bei $FFBA eine Datei ein.

COMBYT SE200
Prüft auf ein Komma, wertet den folgenden 1-Byte-Parameter aus und setzt ihn in X.

CMMERR SE20E
Prüft auf Komma, dem irgendwas außer dem Anweisungsende folgt: andernfalls 7SYNTAX ERROR.

OCPARA SE219
Holt die Parameter für OPEN/CLOSE-Aufrufe aus dem Basic-Text; setzt die Standardwerte, wenn
Angaben fehlen,

COS SE26
■ • • COS: FAC1 wird durch COS(FAC1) ersetzt.

SIN SE26 B
• • • SIN: FAC 1 wird durch SIN(FAC1) ersetzt.

TAN SE2B4
• • • TAN: FAC1 wird durch TAN(FAC1) ersetzt.

SE2E0
Tabelle von Konstanten im MFLPT-Format: Pi/2, Pl"2 und Pi"0,25. Danach folgt ein Zähler (5) und
6 MFLPT-Konstanten zur Berechnung von SIN.

ATN SE30E
• ■ • ÄTN: FAC1 wird durch ARCTAN(FAC1) ersetzt.

SE33E
Zähler (11) und Tabelle mit 12 Konstanten im MFLPT-Format zur Berechnung von ATN.

BASSFT SE37B
Basic-Warmstartroutine. Eintritt mitJMP ($A002): Teil (nur) der Interrupt-Sequenz, die infolge einer
BRK-Instruktion oder auf eine Betätigung der Tasten STOP/RESTORE hin abläuft. Schließt alle l/O-
Kanäle, restauriert den Stapelspeicher, gibt die Meldung 7BREAK ERROR aus und springt zu
READY.

INIT SE394
Basic-Katstart. EintrittmitJMP ($A000): TeilderRESET-Sequenz. FührtINTV, INITCZ, INITMSaus,
setzt den Stapelzeiger und springt zu READY.

CHBCPY SE3A2
Routine CHRGET und Keim für RND im ROM für Verlegung ins RAM.

INITCZ SE3BF
Initialisiert Sprunginstruktion für USR und den Standardvektor sowie die Vektoren von $03...$06.
Überträgt CHRGET und Keim für RND in dasRAM; ruftdie Kernel-Routinen MEMBOTund MEMTOP
auf, um die Zeiger für Basic-Anfang und oberes Speicherende ($2B,$37) gemäß den beim Ein­
schalten initialisierten Zeigern bei $282...$285 zu setzen. Setzt in 2048 das Nullbyte für Program­
mende.

INITMS SE422
Gibt die Einschaltmeldung ”• ■ ■ COMMODORE 64 BASIC V2 • • • 64 K RAM SYSTEM" und die
Zahl der freien Bytes (auf dem C64 gewöhnlich 38911) aus.

INITV SE453
Initialisiert die Vektoren für ERROR, MAIN etc an den Adressen $0300...$030B.

CPATCH SE4DA
Korrektur, um die momentane Hintergrundfarbe in das aktuelle Nibble des Farb-RAM zu schrei­
ben; das mindert das Flimmern des Bildschirms. Aufrufen von $EAOB (eine von CLR benutzte
Routine).

IOBASK SE500
Kernel-Routine IO8ASE. Gibt die Basisadresse der CIA in X7Y aus. Verwerndet von der Kernel-
Routine SCNKEY (Tastaturabfrage).

SCRENK SE505
Kernel-Routine SCREEN gibt die Bildschirmeinstellung aus: die Zahl der Spalten (40) in X, die
Zahl der Zeilen (25) in Y.

PLOTK $E50A
Kernel-Routine PLOT. Setzt den Cursor auf X (Zelle), Y (Spalte), oder gibt die aktuellen Werte
für Zeile, Spalte aus.

CINT SE518
Allgemeine Initialisierung von Bildschirm und VIC-Chip: Stellt die Tabellen für die Bildschirmedi-
tierung an den Adressen $D9 bls $F2 auf, initialisiert den VIC-Chip, setzt die Zeichenfarbe auf
hellblau, führt CLR und HOME aus und stellt in $9A dle Standardadresse der l/O-Geräte ein.

HOME SE566
Bringt den Cursor in die Grundpositionn (links oben).

INITVC SE5A0
Initialisiert den VIC-Chip mittels der Wertetabelle bei $ECB9...$ECE6.

GETKBC SE5B4
Holt ein Zeichen aus dem Tastaturpuffer und schiebt die übrigen Zeichen weiter, der Puffer
muß beim Eintritt mindestens 1 Zeichen enthalten (dle Länge des Pufferinhalts ist in $C6 fest­
gehalten). Beim Verlassen enthält A das Zeichen.

INPPRO SE5CA
Liest SHIFT-STOP. RETURN etc und verarbeitet sie.

QTSWC SE684
Kehrt das Anführungszeichen-Flag ($D4) um, wenn A beim Eintritt ein Anführungszeichen ent­
hält.

PRT SE716
Gibt das Zeichen in A zum Bildschirm aus Behandelt die Zeichen für Cursorsteuerung, Bild-
schirmeditierung, zur Einstellung der Farben etc Besorgt außerdem den Übergang zur näch­
sten Zeile und das Scrollen.

CHKCOL SE8CB
Prüft A auf eln Farbcode-Zelchen: Ändert die Farbe in $0286, wenn eines gefunden.

COLTAB SE8DA
Tabelle der 16 Farbcode-Zeichen in der Anordnung Schwarz, Weiß. Rot, Cyan etc

SCROL SE8EA
Srollt den Bildschirm. Ist die oberste Zeile länger als 40 Zeichen, wird um 2 Zeilen gescrollt,
um sie vollständig zu entfernen. Verzögert, wenn die >CTRL<-Taste gedrückt ist: der Test darauf
erfolgt durch direktes Abfragen des CIA-Chips.

CLRIN SE9FF
Löscht die X-te Bildschirmzelle.

DSPP SEA 13
Setzt das Zeichen in A an die Cursorposition auf den Bildschirm; keine Prüfung auf Steuerzei­
chen und so weiter. Die Farbe befindet sich in X.

KEY SEA31
Interrupt-Dienstroutine: Bei unverändertem Vektor in ($0314) verarbeitet diese Routine alle
IRQ-Interrupts. Dte Funktionen von KEY sind: Taktzähle und Speicherstelle $91 mittels der
Kernel-Routine UDTIM aktualisieren; das Cursorblinken aufrechterhalten, falls der Cursor akti­
viert ist (siehe $CC...$CF); den Motor des Bandgeräts gemäß der Flag bei $CO ein- oder aus­
schalten; die Tastatur mittels der Kernel-Routine SCNKEY auf ein neues Zeichen hin überprü­
fen. Schließlich wird noch das Interrupt-Register bei $DC00 im CIA gelöscht, Y,X und A werden
wiederhergestellt und mit RTI erfolgt die Rückkehr zum Hauptprogramm.

SCNKEY SEA87
Kemel-Routine SCNKEY. Prüft auf einen Tastendruck; liest Spalte und Zeile der Tastatur-Matrix,
nimmt die entsprechenden Änderungen vor. falls Tasten wie SHIFT. CTRL etc. gedrückt sind,
wandelt den Matrixwert mittels Tabellen ab $EB81 in den CBM-ASCII-Wert um und plaziert ihn
in Tastaturpuffer, wenn dort noch Platz ist.

SHFOG SEB48
Logische Behandlung der SHIFT- Taste.

KBOTBL SEB81
Tabellen zur Umwandlung der Matrixwerte in CBM-ASCII-Werte; 3 Tabellen für Normal-SHIFT-
und Graphikmodus; eine vierte für die CTRL-Codes findet sich in$EC78...$ECB8. Anfangswer­
te für den VIC-Chip (die Sprite-Farben sind falsch gesetzt).

LDRUN SECE)
LOAO RETURN RUN RETURN für den Tastaturpuffer.

Fortsetzung im nächsten Extra

Ausgabe 2/Februar 1986 ^a? 89

