64’er Exira

C 64

64'er Extra 6

Das 64‘er Extra bringt ge-
ballte Information iiber lhren
C 64 zum Heraustrennen und
Sammeln.

In dieser sechsten Ausgabe
finden Sie den zweiten Teil ei-
ner Ubersicht iber alle ROM-
Routinen des C 64. Statt ziel-
los in ROM-Listings zu bldt-
tern, finden Sie hier im Klar-
text die Funkfionsbeschrei-
bung aller irgendwie nutzba- .
ren Routinen.

POS SBISE
*** POS: Ruft die Kernal-Routine PLOT auf, um sich die Cursorposition zu verschaffen, und ladt
sie dann in FAC1 mittels:

SNBET $B3A2
Wandelt das Byte in Y in FLPT in FAC1 um (0..255).

ERRDIP $B3AG
Priift, ob der Befehl nicht im Direktmodus eingegeben wurde; ein Wert von $FF in CURLIN+3 ($3A)
zeigt Direktmodus an. Ist das der Fall, erfolgt die Meldung ?ILLEGAL DIRECT ERROR, Wird von Rou-
tinen aufgerufen, die nicht im Direktmodus zu verwenden sind, wie zum Beispiel GET.

DEF SB3B3
** * DEF: Erzeugt Funktionsdefinition; sucht die Funktionsvariable oder stellt sie auf. Ein Aufruf von
FN setzt den Zeiger innerhalb CHRGET auf den Anfang der FN-Definition im Basic-Text, und der
dort vorgefundene Ausdruck wird ausgewertel; anschlieBend wird der Zeiger wieder zuriickge-
stellt. Die dafiir notwendige Information ist mit der in GETFNM aufgestellten Funkti
speichert.

GETFNM $B3E1
Praft die Syntax von FN; sucht oder stellt Variable mit dem Funktionsnamen auf und I8t (DEFPNT)
($4E) darauf zeigen (muB numerisch sein, keine Zeichenkettenvariable).

iablen ge-

PREAM SB761
Holt Zeiger fir Zeichenketten-Descriptor nach $50,851 und die Lange nach A (auch nach X).
LEN SB77C
** LEN: FlieBke
LEN1 5B782
Ermittelt Lenge der Zeichenkette, setzt das Ergebnis in ¥, schaltet von Zeichenketten-Modus
auf Zahlen-Modus. Aufgerufen von LEN, VAL,
ASC SB78B
*** ASC: Holt das erste Zeichen einer Zeichenkette und wandelt es in einen FlieBkommawert
in FAC1 um., Eine Zeichenkette der Linge O erzeugt den Fehler ?SYNTAX ERROR.
GTBYTC $B79B
Liest einen Ausdruck aus dem Basic-Text und wertet ihn aus; muB einen 1-Byte-Wert liefern, der
dann in X und FAC1+4 abgelegt wird.
VAL SB7AD
*** VAL Wandelt Wert in FlieBkommazahl in FAC1 um.
GETNUM SBTEB
Liest die Parameter fir WAIT und POKE aus dem Basic-Text; setzt den ersten (2-Byte-Ganz-
zahl) in $14,%15 und den zweiten in X ein.
GETADR SBTF7
Verwandelt FAC1 in 2-Byte-Ganzzahl (Bereich 0...65535) in $14,815 und Y/A.
PEEK $B80D
** PEEK: Beim Einfritt enthélt FAC1 die Adresse, die gelesen werden soll, im FligBkomma,
Beim Verlassen steht der abgelesene Wert in Y.
POKE $B824
*** POKE: Holt zwei Parameter aus dem Text und fihrt POKE aus.
WAIT $882D
*** WAIT: Holt zwei Parameter aus dem Text, und eventuell noch einen dritten, der als O be-
trachtet wird, wenn nicht vorhanden. Tritt in eine WAIT-Schieife ein.
FADDH $BB49
Addiert 0,5 zum Inhalt des FAC1; dient zum Runden.
FSUB $B850
FlieBkomma-Subtraktion: FAC1 wird ersetzt durch den MFLPT-Wert, auf den (A/Y) zeigt, minus
FACH.
FSUBT $B853
*** FlieBkomma-Subtraktion: FAC1 wird ersetzt durch (FAC2 minus FAC1).
FADD 58867
FlieBkomma-Addition: FAC1 wird ersetzt durch den MFLPT-Wert, auf den (A/Y) zeigt, plus FAC1.
FADDT $B8GF
FlieBkomma-Addition: FAC1 wird ersetzt durch (FACZ2 plus FAC1). Enthélt beim Eintritt den Ex-
ponenten von FAC1, zum Beispiel Inhalt von $61: addiert »0« schneller.
COMPLT $B947
Ersatzt FAC1 durch sein Zweierkomplement.
OVERR SB9TE
Gibt die Meldung ?O0VERFLOW ERROR und anschlieBend READY aus.
MULSHF $8983
Multipliziert mit einem Byte.
FONE $B9BC
Tabelle von Konstanten im MFLPT-Format: zuerst eine »1¢, dann ein Byte vom Wert 3, dann
Konstante zur Berechnung von LOG, dann SQR(0.5),8QR(2)—0.5 und LOG(2).
LOG SBIEA
*** LOG: Berechnet vom Inhalt des FAC1 den Logarithmus zur Basis e.
FMULT $BA28
FlieBkomma-Multiplikation: FAC1 wird ersetzt durch den MFLPT-Wert, auf den (AY/Y) zeigt, mal
FACH,
FMULTT $BA30
*** FlieBpunkt-Multiplikation: FAC1 wird ersetzt durch FAC1 mal FAC2.
MLTPLY $SBAS9
Multipliziert FAC1 mit einem Byte und speichert das Ergebnis in $26..$2A.
CONUPK SBABC
Ladt FAC2 mit dem MFLPT-Wert bei (A/Y), isoliert das Vorzeichenbit, speichert es separat und bildet
s0 das FLPT-Format. Beim Verlassen enthdlt A das erste Byte von FAC1.

tdesF

Zeichenkettenlinge, plaziert in FACT.

FNDOER SB3F4 MULDIV $BAB7
Wertet Funktion aus: Berechnet den Kl druck in der A y mit dem Funktionsaufruf Prift Akkumulatoren fir Multiplikation und Division: Ist FAC2 »0«, wird FAC1 »0« gesetzt; ist die
und legt das Ergebnis in FAC1 ab; anschlieBend erfolgt die Auswerlung des Fur druck der Exponenten zu grof, erfolgt die Meldung ?OVERFLOW ERROR, wenn zu klein, wird
(siehe DEF). das Ergebnis ohne Unterlaufmeldung auf O gesetzt.
STRD $B465 MUL1D $BAE2
*** STRS$-Funktion: Berechnet Ausdruck und wverwandelt das Ergebnis in eine ASCII- Multipliziert FAC1 mit 10 und setzt das Ergebnis in FAC1.
Zeichenkette. TENC $BAF9
STRINI 5B475 10 im MFLPT-Format,
Schafft im Zeichenkettenbereich Platz zum Einfiigen einer Zeichenkette: A enthélt die Linge und DIV10 $BAFE
(FAC1+ 3) zeigt auf die Zeichenkette (zum Beispiel im Eingabeputfer). Beim Verlassen enthalt $61 Dividiert FAC1 durch 10 und legt das Ergebnis in FAC1 ab.
bis $63 den Descriptor der neuen Zeichenkette. CHRS$, LEFTS und so weiter arbeiten samtlich mit FDIVF $BBO7

dieser Routine.
STRLIT SB487
Kopiert eine Zeichenkette in den Zeichenkettenbereich am oberen Speicherende; beim Eintritt in
die Routine zeigt (A/Y) auf die Zeichenkette. Sucht nach » * « oder einem Nullbyte als Endmarkie-
rung, um die Linge zu bestimmen. Beim Verlassen enthalten $61, $62, $63 den Descriptor.
GETSPA SB4F4
Weistim dynamischen Zeichenkettenbereich am oberen Speicherende Platz fir eine Zeichenk

FlieBkormma-Division: FAC1 wird ersetzt durch FAC2 dividiert durch denjenigen MFLPT-Wert, auf
den (A7Y) zeigt, beim Einsprung enthélt X das Vorzeichen des Resultats.

FDIV SBBOF
FlieBkomma-Division: FAC1 wird ersetzt durch den MFLPT-Wert, auf den (AY) zeigt, dividiert durch
FAC1.

FDIVT 58814

“ws EEan
F

Division: FAC1 wird ersetzt durch (FAC2 dividiert durch FAC1).

zu; die Linge ist in A festgehalten. Fihrt sine Garbage Collection durch, wenn der Platz erschopft
ist. Aufgerufen von STRINI.

GARBA2 $B526
Fuhrt Garbage Collection aus; sammeit die giltigen Zeichenketten und entfernt dberflissige aus
dem Zeichenkettenbereich. Bei einer groBen Zahl von Zeichenketten wird die Routine fiir Garbage
Collection langsam.

DVARS SB606
Sucht Variablen und Felder nach der ndchsten, durch die Garbage Collection zu sichernde Zeichen-
kette ab.

CAT $B63D
Verknipft zwei Zeichenketten.

MOVINS SBE7A
Verschiebt Zeichenkeltte in den Zeichenkettenbereich oben im Speicher; beim Eintritt zeigt ($6F)
auf den Descriptor der betreffenden Zeichenkette.

ERESTR $B6A3
Verwirft Zeichenkette: Beim Eintritt zeigt (FAC1+ 3) auf den Zeichenketten-Descriptor; beim Verlas-
sen finden sich neue Zeichenkettenlidnge und Zeiger in INDEX1.

FRETMS $BGDB
Loscht den Descriptor-Stapel.

CHRD SBGEC
*** CHRS: Stellt eine Zeichenkette der Linge 1 auf.

LEFTD $B700
*** LEFTS.

RIGHTD $B72C
*** RIGHTS.

MIDD $B737
“*t MIDS.

88 :kup

MOVFM SBBAZ
Ladt FAC2 mit dem MFLPT-Wert bei (A/Y), holt das Vorzeichenbit heraus, speichert es separat und
bildet so das FLPT-Format.
MOV2F SBBCT
Verwandelt FAC1 in MFLPT-Format und speichert das Resultat in $5C bis $60, TEMPFP2.
MOV1F SBBCA
Verwandelt FAC1 in MFLPT-Format und speichert das Resultat in $57 bis $5B, TEMPFP1.
MOVVF $BBDO
Verwandelt FAC1 in MFLPT-Format und speichert das Resultat an der Adresse, auf die ($49) zeigt.
MOVMF SBBD4
Verwandelt FAC1 in MFLPT-Format und speichert das Resultat an der Adresse, auf die (A/Y) zeigt.
MOVFA SBBFC
Kopiert FAC2 in FAC1.
MOVAF SBCOC
Rundet FAC1 durch Aufruf von ROUND und kopiert das Ergebnis in FAC2.
ROUND $BC1B
Rundet FAC1.
SIGN SBC2B
Ermittelt das Vorzeichen von FACT: beim Verlassen ist A=0, wenn dar Wert in FAC1 null ist, A=1,
wenn er positiv ist und A=$FF, wenn er negativ ist.
SGN SBC39
*** SGN-Funktion: Ruft SIGN auf und verwandelt dann A in FlieBkommaform in FAG1.
ABS $BCS8
*** ABS-Funktion: Verwandelt FAC1 in ABS(FAC1).
FCOMP SBCSB
Vergleicht FAC1 mit dem MFLPT-Wert bei (A/Y); beim Verlassen ist A=0, wenn die Werte gleich
sind, A=1, wenn FAC1 >MFLPT, und A=3%FF, wenn FAC1 <MFLPT.

Ausgabe 2/Februar 1986

C 64

64er Exira

OINT SBC9B
Verwandelt FAC1 in 4-Byte-Ganzzahl und speichert das Ergebnis, hichstes Byte zuerst, in
(FAC1+1) (FAC+4).

INT SBCCC
INT-Funktion: Rundet FAC1 ab, beldBt das Resultat jedoch in FLPT-Form in FAC1.

FIN SBCF3
Wandelt eine ASCIl-Zeichenkette, zum Beispiel »—99.37 5« in eine Zahl in FAC1 um. Beim Eintritt
zeigt TXTPTR auf den Anfang. Die Umwandlung erfolgt dann durch JSR CHRGET/AJSRH FIN.

AADD $BD7E
Addiert den Inhalt von A zu FAC1.

STCONS SBDB3
3 Konstante in MFLPT-Form: 99999989.9, 999999999, 1000000000. Verwendet bei Zeichen-
kettenumwandlungen.

INPRT $BDC2 v
Druckt IN gefolgt von der aktuellen Zeilennummer in CURLIN ($39, $3A).

LINPRT $BOCD
Gibt die Ganzzahl in A’Y aus; Bereich 0..65535.

FOUT $BODD
Verwandelt den Inhalt von FAC1 in eine ASCIl-Zeichenkette, die mit der Adresse $0100 beginntund
mit einem Null-Byte endet. Beim Verlassen enthélt (A/Y) die Startadresse, so dai STROUT die Zei-
chenkette ausgeben kann.

FOUTIM SBEGS
Verwandelt Tl in ASCIl-Zeichenkette, die mit der Adresse $0100 beginnt und mit einem Null-Byte
endet.

TICONS $BF11
Konstanten zur U dlung von Zeich und Tl sowie der Wert 0,5 in MFLPT-Form, danach
15 weitere Konstanten C4-Byte-Ganzzahlen).

SOR SBF71
*** SQR: FAC1 wird durch die Quadratwurzel aus FAC1 ersetzt.

FPWRAT $BF7B

** Fihrt Potenzberechnungen aus: FAC1 wird ersetzt durch FAC2 hoch FAC1. Beim Eintritt muB
A den Inhalt von FACZ (das heiBt von $69) speichern, damit Potenzen von O korrekt sind.
NEGOP SBFB4
Macht FAC1 negativ.
EXCONS SBFBF
Tabelle von B Konstanten zur Auswertung von EXP-Reihen.
EXP SBFED
*** EXP-Funktion: FAC1 wird durch e hoch FAC1 ersetzt.
POLYX SE059
Routine zur Reihenberechnung. Beim Eintritt zeigt A’Y auf den Zdhler am Anfang der Konstantenta-
belle, die zur Berechnung der Potenzreihe herangezogen wird.
RMULC SE0BD
11879546.4 im MFLPT-Format: multiplikative Konstante zur Auswertung von RND.
RADDC SED92
3.92767778 E-8 im MFLPT-Format: additive Konstante zur Auswertung von RND.
RND SE097
*** AND: Setztin FAC1 je nach seinem Vorzeichen auf folgende Weise eine Zahl:
RNDO SE0SE
Wenn 0, wird FAC1 von den Registern der ClATimer geladen: eine einfache Art, einen neuen Keim
for Zufallszahlen zu setzen.
OSETNR SEOBE
Wenn >0, wird die in ($88...58C gespeicherte) durch vorhergehende Aufrufe erzeugte Zufallszahl

OCPARA SE219
Holt die Parameter fir OPEN/CLOSE-Aufrufe aus dem Basic-Text; setzt die Standardwerte, wenn
Angaben fehlen.

COS SE26
*** COS: FAC1 wird durch COS(FAC1) ersetzt.

SIN SE26 B
*** SIN: FAC 1 wird durch SIN(FAC1) ersetzt.

TAN SE2B4
*** TAN: FAC1 wird durch TAN(FAC1) ersetzt.

SE2ED
Tabelle von Konstanten im MFLPT-Format: Pi/2, Pi* 2 und Pi* 0,25. Danach folgt ein Zahler (5) und
6 MFLPT-Konstanten zur Berechnung von SIN.

ATN SE3DE
*** ATN: FAC1 wird durch ARCTAN(FAC1) ersetzt.

SE33E
Zahler {11) und Tabelle mit 12 Konstanten im MFLPT-Format zur Berechnung von ATN.

BASSFT SE378B
Basic-Warmstartroutine. Eintritt mit JMP ($A002): Teil (nur) der Interrupt-Sequenz, die infolge einer
BRK-Instruktion oder auf eine Betatigung der Tasten STOP/RESTORE hin ablauft. SchiieBt alle /O-
Kandle, restauriert den Stapelspeicher, gibt die Meldung 7BREAK ERROR aus und springt zu
READY.

INIT SE394
Basic-Kaltstart. Eintritt mit JMP ($A000): Teil der RESET-Sequenz. FUhrt INTV, INITCZ, INITMS aus,
setzt den Stapelzeiger und springt zu READY.

CHRCPY SE3A2
Routine CHRGET und Keim fir RND im ROM fir Verlegung ins RAM.

INITCZ SE3BF
Initialisiert Sprunginstruktion fir USR und den Standardvektor sowie die Viektoren von $03..$06.
Ubertréigt CHRGET und Keim fiir RNDin das RAM; ruft die Kemnel-Routinen MEMBOT und MEMTOP
auf, um die Zeiger fiir Basic-Anfang und oberes Speicherende ($2B,$37) gemaB den beim Ein-
schalten initialisierten Zeigern bei $282...$285 zu setzen. Setztin 2048 das Nullbyte fir Program-
mende.

INITMS SE422
Gibt die Einschaltmeldung "* * * COMMODORE 64 BASIC V2 *** 64 K RAM SYSTEM" und die
Zahl der freien Bytes {auf dem C64 gewdhnlich 38911} aus.

INITV SE453
Initialisiert die Vektoren fir ERROR, MAIN etc. an den Adressen $0300..$0308B.

CPATCH SE4DA
Korrektur, um die momentane Hintergrundfarbe in das aktuelle Nibble des Farb-RAM zu schrei-
ben; das mindert das Flimmern des Bildschirms. Aufrufen von $EAOB (eine von CLR benutzte
Routine).

|0BASK SE500
Kernel-Routine IOBASE. Gibt die Basisadresse der CIA in XY aus. Verwerndet von der Kernel-
Routine SCNKEY (Tastaturabfrage).

SCRENK SE505
Kernel-Routine SCREEN gibt die Bildschirmeinstellung aus: die Zahl der Spalten (40) in X, die
Zahl der Zeilen (25) in Y.

PLOTK SES0A
Kernel-Routine PLOT. Setzt den Cursor auf X (Zeile), Y (Spalte), oder gibt die aktuellen Werte
fur Zeile, Spalte aus.

CINT SEG‘I

mit RMULC multipliziert und RADDC hinzugezéhit; das Ergebnis steht in FAC1.

AND1 SEOD3
Wenn < 0, wird FAC1 mit vermischten Bytes von sich selbst geladen, daher ist RND{-We) Konstant
und also wiederholbar. In allen diesen drei Fallen wird FAC1 in $88...$8C gespeichert.

RNDRNG SEDES

y Zwingt FAC1 in den Bereich 0..1,0 und C gespeichert.

BIOERR SEOF9
Fehlerbehandlung fir bestimmte Basic-Aufrufe des Kernel (erforderlich zur Verarbeitung von CMB,
LOAD, SAVE), falls bei der Riickkehr von der Kernal-Routine das Fehlerflag C gesetzt ist. A

BCHOUT SE10C
Gibt Zeichen mittels CHROUT aus; Fehlermeldung bei Versagen.

BCHIN SE112
Nimmt Zeichen mittels CHRIN herein; Fehlermeldung bei Versagen.

BCKOUT SE118
Richtet mittels CHKOUT eine Ausgabedatei ein; Fehlermeldung bei Versagen.

BCKIN SET1E
Richtet mittels CHKIN eine Eingabedatei ein; Fehlermeldung bei Versagen.

BGETIN SE124
Holt Zeichen mittels GETIN; Fehlermeldung bei Versagen.

SYS SE12A
*** 8YS: Ladt A, X, Y, SR aus $30C..., ruft MC-Routine an der Adresse auf, die in der Anweisung
als Argument angegeben ist. Lidt bei der Rickkehr von der Routine alle Registerinhalte aus $30C...
zurick.

SAVET SE156
* * * SAVE: Sichert ein Basic-Programm: |48t A auf die Adresse in Seite Null zeigen, die ihrerseits
auf die Startadresse zeigt; setzt (X/Y) auf $20,$2E = Programmende. AnschlieBend wird tber ei-
nen Vektor bei $FFD8 die Kernal-Routine SAVE aufgerufen.

VERFYT SE165
*** VERIFY: Setzt das Flag in A auf 1, um die Verify-Operation anzuzeigen; tritt in LOADT ein und
prift auf Fehler.

LOADT SE168
* ** LOAD: Holt die Parameter aus dem Basic-Text und stellt sie auf; ruft die Kemnal-Routine LOAD
dber einen Vektor bei $FFDS auf.

LOADR SE16F
Ladt vom bereits angesprochenen Gerdt ins RAM ab der Basic-Adresse in ($2B).

LDFIN SE195
Beendet das Laden. Nach Aufruf von LOAD im Direktmodus wird der Zeiger auf das obere Ende
von Basic ($2D) auf die Adresse des letzten geladenen Bytes gesetzt. Nach einem Aufruf aus ei-
nem Programm heraus unterbleibt dies, so daB die Variablenliste bewahrt ist. Dann wird der Zeiger
in CHRGET zuriickgesetzt und ein Basic-Warmstart durchgefiihrt, um das neue Programm zu star-
ten.

OPENT SE1BE
*** OPEN: Liest die Parameter aus dem Text und stelit sie durch entsprechende Kernel-Aufrufe
auf. Ruft iber den Vektor bei $FFCO die Kernal-Routine OPEN auf.

CLOSET SE1C7
*** CLOSE: Liest die Parameter aus dem Text und stellt sie auf, Ruft Gber den Vektor bei $FFC3
die Kernel-Routine CLOSE aut.

SLPARA SE1D4
Holt die Parameter fir LOAD, SAVE und VERIFY aus dem Basic-Text; setzt die Standardwerte. wenn
Angaben fehlen. Richtet durch einen Aufruf von SETLFS (ber den Vektor bei SFFBA eine Datei ein.

COMBYT SE200
Priift auf ein Komma, wertet den folgenden 1-Byte-Parameter aus und setzt ihn in X.

CMMERR SE20E
Priift auf Komma, dem irgendwas auBer dem Anweisungsende folgt: andernfalls ?SYNTAX ERROR.

Ausgabe 2/Februar 1986

Allg Initialisierung von Bildschirm und VIC-Chip: Stellt die Tabellen fir die Bildschirmedi-
herung an den Adressen $D9 bis $F2 auf, initialisiert den VIC-Chip, setzt die Zeichenfarbe auf
hellblay, fahrt CLR und HOME aus und stellt in $9A die Standardadresse der /O-Geréte ein.

HOME SE566
Bringt den Cursor in die Grundpositionn (links oben).

INITVC SEGAD
Initialisiert den VIC-Chip mittels der Wertetabelle bei $ECB®...5ECEG.

GETKBC SE5B4
Holt ein Zeichen aus dem Tastaturpuffer und schiebt die dbrigen Zeichen weiter. der Puffer
muB beim Eintritt mindestens 1 Zeichen enthalten {die Lange des Pufferinhaits ist in $C6 fest-
gehalten). Beim Verlassen enthélt A das Zeichen.

INPPRO $ESCA
Liest SHIFT-STOP, RETURN etc. und verarbeitet sie.

QTSWC SE684
Kehrt das Anfiihrungszeichen-Flag ($D4) um, wenn A beim Eintritt ein Anfihrungszeichen ent-
halt.

PRT SE716
Gibt das Zeichen in A zum Biidschirm aus. Behandelt die Zeichen fir Cun}orsteuefung. Bild-
schirmeditierung, zur Einstellung der Farben etc. Besorgt auBerdem den Ubergang zur néch-
sten Zeile und das Scrollen.

CHKCOL SEBCE)
Prift A auf ein Farbcode-Zeichen: Andert die Farbe in $0286, wenn eines gefunden,

COLTAB SESDA
Tabelle der 16 Farbcode-Zeichen in der Anordnung Schwarz, Wei, Rot, Cyan etc.

SCROL SEBEA
Srollt den Bildschirm. Ist die oberste Zeile ldnger als 40 Zeichen, wird um 2 Zeilen gescrolit,
um sie volistandig zu entfernen. Verzégert, wenn die »CTRL«Taste gedrickt ist: der Test darauf
erfolgt durch direktes Abfragen des CIA-Chips.

CLRIN SESFF
Léscht die X-te Bildschirmzeile.

DSPP SEA 13
Setzt das Zeichen in A an die Cursorposition auf den Bildschirm; keine Prifung auf Steuerzei-
chen und so weiter. Die Farbe befindet sich in X.

KEY SEA31
Interrupt-Dienstroutine: Bei unverandertem Vektor in ($0314) verarbeitet diese Routine alle
IRQ-Interrupts. Die Funktionen von KEY sind: Taktzahle und Speicherstelle $91 mittels der
Kernel-Routing UDTIM aktualisi ; das Cur halten, falls der Cursor akti-
viert ist (siehe $CC...5CF); den MotOf des Bandgeréts gemaB der Flag bei $CO ein- oder aus-
schalten; die Tastatur mittels der Kemel-Routine SCNKEY auf ein neues Zeichen hin (Uberpri-
fen. SchiieBlich wird noch das Interrupt-Register bei $DC00 im CIA geldscht, Y. X und A werden
wiederhergestelit und mit RTI erfolgt die Riickkehr zum Hauptprogramm.

SCHKEY SEA87
Kernel-Routine SCNKEY. Prift auf einen Tastendruck; liest Spalte und Zeile der Tastatur-Matrix,
nimmt die entsprechenden Anderungen vor, falls Tasten wie SHIFT, CTRL etc. gedriickt sind,
wandelt den Matrixwert mittels Tabellen ab $EB81 in den CBM-ASCII-Wert um und plaziert ihn
in Tastaturpuffer, wenn dort noch Platz ist.

SHFOG SEB48
Logische Behandlung der SHIFT- Taste.

KBOTBL SEBB1
Tabellen zur Umwandiung der Matrixwerte in CBM-ASCIl-Werte; 3 Tabellen fir Normal-SHIFT-
und Graphikmodus; eine vierte fir die CTRL-Codes findet sich inSECT78...3ECBS. Anfangswer-
te fir den VIC-Chip (die Sprite-Farben sind falsch gesetzt).

LDRUN $ECE)
LOAD RETURN RUN RETURN fir den Tastaturpuffer.

Fortsetzung im nédchsten Extra

(F¥3pe 89

