
Kurs; Strukturiertes Programmieren C 64

Programmieren 
Sie strukturiert!

0eil 2)
lm ersten Teil haben wir uns mit Se­
quenzen, Schleifen und Verzweigungen 
beschäftigt, das heißt mit Steuerbau­
steinen, die festlegen, wie das Pro­
gramm jeweils fließt. Heute geht es 
um einen anderen Bausteintyp, um 
die Unterprogramm-Bausteine.

Jede Programmiersprache, und sei sie noch so reichhaltig, kann 
immer nur eine begrenzte Anzahl von Befehlen zur Verfügung 
stellen. Und so kommen wir beim Programmieren immer wieder an 

den Punkt, wo ein Befehl, den man eigentlich brauchte, nicht vorhan­
den ist.

Kein Grund zur Resignation. Was man nicht hat, verschafft man 
sich. Es gibt zwei Möglichkeiten, sich neue Befehle zu verschaffen: 
Entweder man besorgt sie sich, oder man macht sie sich selber.

Wie man sich Befehle besorgen kann? Nun ja, man sammelt sie 
zum Beispiel aus Zeitschriften, man studiert Programme anderer 
Leute, oder man kauft sich eine Befehlesammlung, wie zum Beispiel 
Macro Basic, und stellt sich darausjeweils die Befehlsmenge zusam­
men, die man gerade braucht.

Was man sich nicht versorgen kann, muß man sich, wie gesagt, sel­
ber machen. Wie, darum geht es im folgenden.

Neue Befehle erstellt man mit Hilfe von Unterprogramm-Baustei­
nen. Basic stellt zwar solche Bausteine zur Verfügung (die Subrouti­
nen und die Funktionen), aber diese sind, vom Standpunkt des struk­
turierten Programmierens aus, doch sehr verbesserungsbedürftig. 
Wir wollen sehen, wo Verbesserungen möglich sind und wie sie aus­
sehen können.

Wie im ersten Teil wollen wir auch dabei die Programmiersprache 
Comal als Wegweiser benutzen. Diese Sprache ist, wie schon dort 
angemerkt wurde, besonders gut durchdacht, besonders men­
schenfreundlich ausgestaltet. Und sie stellt uns Unterprogramm- 
Bausteine zur Verfügung, die es dem Programmierer ausgespro­
chen leicht machen, neue Befehle zu erfinden und einzusetzen. Die­
se Unterprogrammstruktur wollen wir in Basic so weit wie möglich 
imitieren. Im übrigen werden wir uns, wo notwendig, auch von ande­
ren Programmiersprachen, wie zum Beispiel Ada, anregen lassen.
Befehlstypen

Es gibt in Programmiersprachen viele verschiedene Arten von Be­
fehlen. Wenn wir zum Beispiel sagen »PREIS=25.99«, dann haben wir 
einen Zuweisungsbefehl benutzt. Schleifen und Verzweigungen ge­
hören zu den Steuerbefehlen, wir haben sie in der letzten Folge be­
handelt. Im heutigen Zusammenhang interessieren uns die beiden 
folgenden Typen: die Handlungsbefehle und die Funktionen.
Handlungsbefehle

»PRINT NAME$« ist ein Handlungsbefehl. Er bringt den Computer 
dazu, eine Druckhand/ungauszuführen. »POKE 1024,1« bewirkt, daß 
der Computer in die erste Bildschirmspeicherzelle des C 64 die Zahl 
1 steckt, so daß ein »A« in der linken oberen Ecke des Bildschirms er­
scheint. »SAVE "programm",8« veranlaßt den Computer dazu, das 
Programm, das im Speicher ist, auf Diskette zu schreiben.

Handlungsbefehle benutzt man, wenn man will, daß der Computer 
eine bestimmte Handlung ausführt.
Funktionen

Funktionen sind Befehle, die man als spezialisierte Handlungsbe­
fehle ansehen kann. Ihre spezielle Aufgabe ist es, solche Handlun­
gen durchzuführen, die Daten zum Ergebnis haben. Praktisch ge­

sprochen: Funktionen sind Befehle, die Daten erzeugen. Die Funk­
tion »INT(25.99)« erzeugt die Zahl »25«, die Funktion »MID$ ("Zeit- 
schrift",5,3)« den Text »sch«.

Zu den speziellen Eigenschaften von Funktionen gehört, daß man 
ihnen das erzeugte Datum abnehmen muß. Während es bei Hand­
lungsbefehlen genügt, einfach den Befehl auszusprechen, zum Bei­
spiel »RESTORE«, reicht dies bei Funktionen nicht aus. »INT(25.99)« 
mag zwar möglicherweise dazu führen, daß der Computer die not­
wendigen Handlungen durchführt (Dezimalpunkt finden, Bruchteil 
abschneiden), aber er streikt spätestens dann, wenn er nicht weiß, 
was er mit dem erzeugten Zahlenwert anfangen soll. Wenn man eine 
Funktion verwendet, muß man also dem Computer gleichzeitig auch 
sagen, was mit dem erzeugten Datum zu geschehen hat. Beispiele: 
PRINT INT(25.99) oder GANZZAHL = INT(25.99) oder IF 
INT(25.99)<100 THEN...

Das ist natürlich kein Nachteil; es hat vielmehr den Vorteil, daß 
man Funktionen wie Zahlen (beziehungsweise Texte) einsetzen kann. 
Funktionsbefehle, kann man auch sagen, werden immer in Aus­
drücken aufgerufen. Lassen Sie uns nun sehen, wie man Handlungs­
befehle und Funktionen herstellt, die nicht in der Programmierspra­
che vorhanden sind.

Comal: Prozeduren und Funktionen
Comal stellt zwei Bausteintypen für selbstgemachte Befehle zur 

Verfügung, die einander sehr ähnlich sind: Prozeduren und Funktio­
nen. Beide haben prinzipiell dieselbe Struktur. Für Handlungsbefeh­
le benutzen wir die Prozedurstruktur, für selbstgestrickte Befehle 
vom Typ Funktion die Funktionsstruktur.
Beispiel 1: Bildschirm löschen

In einigen Programmiersprachen gibt es den Handlungsbefehl 
PAGE, der den Bildschirm löscht (und also eine neue Bildschirmseite 
anfängt). Für die Definition dieses Befehls benutzen wir folgenden 
Prozedurbaustein:

9000 PROC page
9010 PRINT CHR$(147),
9020 ENDPROC page
Wenn diese Prozedur in einem Comal-Programm enthalten ist, 

dann steht damit in diesem Programm der Befehl PAGE zur Verfü­
gung. Das heißt, immer wenn der Bildschirm gelöscht werden soll, 
geben wir einfach den Namen der Prozedür, also PAGE, ein:

0010 page
0020 ...
Eine neue Funktion zu definieren, ist ebenso einfach. Sie unter­

scheidet sich in ihrem Aufbau von einer Prozedur nur durch den zu­
sätzlichen Befehl RETURN (der übrigens nichts mit dem gleichnami­
gen Befehl in Basic zu tun hat!).
Beispiel 2: Wo befindet sich der Cursor?

Die Funktion CURSORZEILE soll die Nummer der Zeile ausgeben, 
in der sich der Cursor gerade befindet:

9000 FUNC cursorzeile
9010 zeile: = PEEK(214)+l
9020 RETURN zeile
9030 ENDFUNC cursorzeile
Die Speicherzelle 214 enthält beim Commodore 64 die Nummer 

der Zeile, in der sich der Cursor gerade befindet. Der Wert 1 wird 
addiert, damit die erste Zeile auch tatsächlich die erste ist und nicht 
etwa die nullte.

Der Befehl »RETURN zeile« (9020) weist die Funktion an, den Wert 
der Variablen ZEILE »zurückzugeben« (to return the value) und die 
Funktion zu verlassen. Dies ist der Wert, den die gesamte Funktion 
zur Verfügung stellt; den Sie also erhalten, wenn Sie sagen:

PRINTcursorzeile
Wenn also die Funktion CURSORZEILE in einem Comal-Pro­

gramm steht, dann steht damit in diesem Programm der neue Befehl 
CURSORZEILE zur freien Verfügung. Beispiel:

Nehmen wir an, Sie drucken einen längeren Text auf dem Bild­
schirm aus. Sie wollen, daß immer nur 20 Zeilen gedruckt werden; 
danach soll der Bildschirm gelöscht werden und der Text wieder in 
der ersten Zeile beginnen. Sie könnten schreiben:

0100 IF cursorzeile > 20 THEN page
In dieser Zeile sind also zwei selbstdefinierte Befehle verwendet, 

der Handlungsbefehl PAGE und der Funktionsbefehl CURSOR­
ZEILE.

Lassen Sie uns nun anschauen, wie dasselbe in Basic aussieht.
Basic: Subroutinen und Funktionen

Basic stellt ebenfalls zwei Bausteintypen für selbstdefinierte Befeh­
le zur Verfügung, einmal die Subroutinen, zum andern die Funktio­
nen. Im Gegensatz zu Comal sind die beiden Bausteintypen aller­
dings völlig verschieden aufgebaut. Die Subroutinenstruktur kann 
für selbstgemachte Handlungsbefehle, die Funktionsstruktur für 
Funktionsbefehle eingesetzt werden.

156 i^ Ausgabe 2/Februar 1986



Kurs: Strukturiertes Programmieren C 64

Eine Subroutine, die den Bildschirm löscht, könnte so aussehen: 
1000 printchr$(147);
1020 return
Eine Funktion, die die Zeile abfragt, in der sich der Cursor gerade 

befindet, wird so definiert:
100 deffncz(x)=peek(214) +1
Die Programmzeile, die bewirkt, daß nur 20 Zeilen gedruckt und 

danach der Bildschirm freigemacht wird, sähe so aus:
500 iffncz(0) > = 20thengosubl000
Zu beachten ist dabei, daß in Basic (anders als in Comal) die Funk­

tion definiert sein muß, bevor sie aufgerufen werden kann. Funk­
tionsdefinitionen findet man deshalb häufig zu Beginn von Basic- 
Programmen.

Ein Vergleich zwischen der Comal- und der Basic-Definition unse­
rer selbstdefinierten Befehle macht sehr deutlich, um wieviel men­
schenfreundlicher Comal ist, einmal beim Codieren, vor allem aber 
beim Lesen eines Programms. Bei Comal benutzen wir einfach den 
Namen einer Prozedur oder einer Funktion, wenn diese abgearbei­
tet werden soll, und wenn wir die Namen geschickt gewählt haben, 
verstehen wir auf Anhieb, was das Programm jeweils tut. Eine Basic- 
Zeile hingegen erschließt sich nur nach langem Studium des Pro­
gramms, falls überhaupt: Um FNCZ(0) zu verstehen, muß die Defini­
tion dieser Funktion gesucht werden; wenn man wissen will, was 
GOSUB1000 bewirkt, muß man zur Zeile 1000 gehen und das dortige 
Unterprogramm analysieren.

Basic hat es also bitter nötig, menschenfreundlicher gemacht zu 
werden. Lassen Sie uns dies in Angriff nehmen. Zwar können wir na­
türlich die Basic-Version, die auf dem Commodore 64 installiert ist, 
nicht ändern, aber wir können dasselbe tun, was wir in Teil I getan 
haben: Wir können Bausteinstrukturen entwickeln, die denen, die 
wir in Comal finden, nachempfunden sind, und uns auf diese Weise 
sowohl das Codieren wie das Lesen unserer Basic-Programme er­
leichtern.
Prozeduren in Basic: Grundprinzipien

Neben den Grundprinzipien, die für alle Bausteine gelten (insbe­
sondere, daßjeder Bausteinblock nur einen Eingang und einen Aus­
gang hat — vergleiche Teil 1), wollen wir zusätzlich folgendes beach­
ten:
1. Eine Prozedur muß, wenn sie lesbar und verstehbar sein soll, über­
schaubar bleiben. Das bedeutet, sie darf eine gewisse Länge nicht 
überschreiten. Wenn irgend möglich, soll sie auf einer Seite Platz fin­
den.

Das ist ein relatives Maß. Wer Listings nur gedruckt studiert, könn­
te als Maßstab die Druckseite festlegen; wer Programme auf dem 
Bildschirm verstehen will (und das ist zum Beispiel, wenn man Fehler 
verbessert, der Normalfall), wird diesen zum Maßstab machen. Wer 
einen 80-Zeichen-Bildschirm besitzt, kann mehr unterbringen als 
wer nur 40 Zeichen zur Verfügung hat. Da wir als C 64-Benutzer uns 
mit 40 Zeichen begnügen müssen, soll dies unser Maß sein: Prozedu­
ren sollen möglichst auf einen C 64-Bildschirm passen.

2. Eine Prozedur ist so zu konzipieren, daß sie eine Welt für sich bil­
det. Was in der Außenwelt passiert, darf sie nicht berühren. Was in 
der Welt der Prozedur geschieht, darf nicht nach außen wirken.

Das hat einen sehr praktischen Grund. Veränderungen, die im Pro­
gramm vorgenommen werden, wirken dann immer nur auf einen 
überschaubaren Bereich und bleiben auf diese Weise kontrollier­
bar. Wenn hingegen dieses Prinzip nicht beachtet wird, kann die 
Wirkung einer unbedeutenden Änderung an einer Stelle des Pro­
gramms ein ganzes Programm unbrauchbar machen. Es gibt wohl 
keinen Programmierer, der dazu nicht ein garstig Liedchen beisteu­
ern könnte.

Im übrigen haben Prozeduren dieser Art noch den Vorteil, daß 
man sie bei Bedarf auch in anderen Programmen verwenden kann, 
ohne daß man sie an die Situation des neuen Programms anpassen 
müßte.

3. Eine Prozedur soll zwar eine abgeschlossene Welt sein, das be­
deutet aber nicht, daß nicht Kommunikation zwischen Prozedur und 
Außenwelt stattfinden könnte.

Solche Kommunikation kann zwei Richtungen haben: von der Au­
ßenwelt in die Prozedur und aus der Prozedur in die Außenwelt. Im 
einen Fall verarbeitet die Prozedur Daten, die sie von außen erhält, 
im andern Fall gibt sie Ergebnisse ihres Wirkens der Außenwelt be­
kannt.

Je nach dem Typ der Kommunikation zwischen Prozedur und Au­
ßenwelt können wir die folgenden Typen unterscheiden:

1. Prozeduren ohne Kommunikation mit der Außenwelt
2. Prozeduren, die Information hereinlassen
3. Prozeduren, die Information hinauslassen
4. Prozeduren, dieInformationsowohlherein-undhinauslassen 

4. Damit keine unbeabsichtigte Kommunikation zwischen Prozedur 
und Außenwelt stattfinden kann, müssen wir dafür sorgen, daß Varia­

blen, die in der Welt der Prozedur benutzt werden, nur in dieser Welt 
und sonst nirgendwo bekannt sind. Man nennt solche Variablen »lo­
kal« (im Gegensatz zu »globalen« Variablen, die sowohl in der Außen­
welt wie in der Prozedur gelten).
Prozeduren ohne Kommunikation mit der Außenwelt
Beispiel 3: Linie
Die Prozedur soll eine Linie über den Bildschirm ziehen.

Prozedur ohne Kommunikation
LINIE

Anfang Block
Linie zeichnen

Ende Block

Die Handlung »Linie zeichnen« kann hier sehr einfach mit Hilfe ei­
ner einzeiligen Zählschleife bewerkstelligt werden. In Comal wird 
das so codiert:

9000 PROClinieCLOSED
9010 FOR i # = 1 TO 40 DO PRINT CHR$(192),
9020 ENDPROClinie
Die Zählvariable I # ist eine Integervariable, was in Comal im Ge­

gensatz zu Basic möglich ist und die Geschwindigkeit des Schleifen­
durchlaufs um ein Mehrfaches erhöht.

Diese Variable gilt nur innerhalb der Prozedur, sie ist nur lokal gül­
tig. Dies wird dadurch bewirkt, daß die Prozedur ausdrücklich mit 
dem Befehl CLOSED gegenüber der Außenwelt abgeschottet wird. 
Wenn also woanders im Programm die Variable I # noch einmal auf­
tritt, macht das keine Probleme. Das heißt ein Comal-Programm 
könnte folgenden Schleifenblock enthalten, also 20mal Linie aufru­
fen, ohne daß Schwierigkeiten entstünden:

0100 FOR i# = 1 to 20
0110 linie
0120 ENDFORi#
In Basic ist dies in so einfacher Weise nicht zu lösen. Es gibt keinen 

Befehl, der eine Subroutine abschließen und deren Variablen von 
der Außenwelt abschotten könnte. Wir müssen vielmehr selber da­
für sorgen, daß Variablen lokal sind. Dies können wir dadurch errei­
chen, daß wir bestimmte Variablennamen für Prozeduren reservie­
ren und außerhalb von Prozeduren grundsätzlich nicht verwenden. 
Ich schlage vor, daß wir Variablennamen, die wir in Prozeduren ver­
wenden, mit U beginnen lassen und außerhalb von Prozeduren kei­
ne Namen, die mit U beginnen, benutzen (»U« steht für »Unterpro­
gramm«).

In Basic gibt es weiterhin keinen Prozedurrahmen, der die Proze­
dur deutlich von ihrer Umgebung abgrenzen könnte. Wir brauchen 
jedoch einen, denn wir wollen ja, daß unsere Programme gut lesbar 
sind. Also müssen wir selber einen schaffen.

Den Prozedurkopf wollen wir mit einer REM-Zeile so markieren:
REM PROC: Prozedurname

(Später werden wir noch eine Klammer für Variablen anfügen.)
Als Endemarkierung benutzen wir RETURN. Wir können uns des­

halb damit begnügen, weil wir ja grundsätzlich jeden Baustein, also 
auch Unterprogramme, so bauen, daß Sie nur einen Ausgang haben, 
und diesen immer am Ende des Bausteins. (Vergleiche Teil I).
Wir können nun eine Basic-Prozedur LINIE analog zum Comal- 
Vorbild codieren.

42000 rem proc: linie
42010 for ui=l to 40:print chr$(192);: next
42020 return
Aufgerufen wird eine solche Prozedur in Basic leider nicht einfach 

mit dem Prozedurnamen wie in Comal, sondern viel umständlicher 
mit »GOSUB Zeilennummer«. Ein Programmblock, der 20 Linien 
druckt, würde in Basic also so aussehen:

100 fori=lto20
110 gosub 42000: rem linie
120 next
Da die Schleifenvariable des Hauptprogramms I und die Schlei­

fenvariable der Prozedur UI unterschiedlich sind, kann auch hier 
kein Konflikt entstehen. Aber dafür ist in Basic, wie gesagt, der Pro­
grammierer verantwortlich.

Der Programmierer muß auch für mehr Lesbarkeit sorgen. In Co­
mal informiert der Prozedurname sowohl bei der Definition wie beim 
Aufruf der Prozedur darüber, was die Prozedur tut. In Basic müssen 
wir diese Information selber beisteuern — durch REM- 
Bemerkungen, sowohl im Prozedurkopf (Zeile 42000) als auch da, wo 
die Prozedur mit GOSUB aufgerufen wird (Zeile 110).

Und nocheins: Comal sorgt automatisch für bessere Lesbarkeit, in­
dem es selbständig einrückt und Leerzeichen verlangt. Auch hier 
muß der Basic-Programmierer selber handeln.

Die Prozedur LINIE führt die gewünschten Handlungen durch, oh­
ne daß sie Information von der Außenwelt benötigte. Das ist jedoch

158 ^^ Ausgabe 2/Februar 1986



Kurs: Strukturiertes Programmieren C 64

nur selten der Fall — die meisten Befehle kommen ohne Kommunika­
tion mit der Außenwelt nicht aus.

Prozeduren mit Einwegkommunikation 1:
Information kommt herein
Beispiel 4: Pause

Wenn die Prozedur PAUSE aufgerufen wird, soll das Programm die 
angegebene Anzahl Sekunden pausieren.

Prozedur mit Einwegkommunikation: Info kommt herein 
PAUSE

Anfang Block
Anzahl Schleifen berechnen

Schleifenanfang
nichts tun
Schleifenende

Ende Block

Die Comal-Prozedur:
9000 PROC pause(sekunden) CLOSED
9010 anzahl'schleifen: = sekunden*1050
9020 FOR i=l TO anzahl’schleifen DO NULL
9030 ENDPROCpause
Bei Comal (Version 2.01) läuft der Computer ungefähr 1050mal in ei­

ner Sekunde durch eine leere Zählschleife. Wenn das Programm 4 
Sekunden lang pausieren soll, dann muß man ihn anweisen, 4 x 
1050mal eine solche Schleife zu durchlaufen.

Wieviel Sekunden die Pause dauern soll, muß der Prozedur natür­
lich mitgeteilt werden. Dies geschieht durch die Variable SEKUN­
DEN, die dem Prozedurnamen in Klammern folgt. Eine solche Varia­
ble in Klammern schlägt gleichsam ein Loch in die Mauer, welche 
die Prozedur umgibt, und schafft einen Eingang, durch den eine In­
formation in das Innere der Prozedur gelangen kann.

Der Variablename SEKUNDEN gilt übrigens nur innerhalb der 
Prozedur, ist also lokal.

Wenn man im Prcgramm eine Pause von 4 Sekunden Länge benö­
tigt, gibt man folgenden Befehl ein:

pause (4)
Man kann natürlich statt der Zahl auch einen Variablennamen benut­
zen, zum Beispiel

pause (anzahl'sekunden)
Ja, man kann sogar denselben Variablennamen benutzen wie in der 
Prozedurdefinition:

pause (sekunden)
Für Comal handelt es sich trotzdem um zwei verschiedene Varia­
blennamen, der eine ist in der Außenwelt zuhause, der andere gilt 
nur lokal, das heißt in der Welt der Prozedur.

In Basic müssen wir da wieder vorsichtig und selber um die »Loka­
lität« der Prozedurvariablen besorgt sein, indem wir, wie verabre­
det, U vor dem Variablennamen schreiben. Den Prozedurkopf er­
weitern wir jetzt, wie angekündigt, um eine Klammer für Variablen.

43000 rem proc: pause (usek: in)
43010 uanzahl = usek*950
43020 for ui=l to uanzahl: next
43030 return
In Basic läuft der Commodore 64 nur 950mal in der Sekunde durch 

eine leere Zählschleife — deshalb die Zahl 950 im Basic-Programm.
Das (englische) Wort »IN« vor dem Namen der Variablen USEK soll 

andeuten, daß sie einen Wert von außen erhält und diesen in die Pro­
zedur hineinnimmt. Nachher werden wir für die Gegenrichtung das 
Wort »OUT« benutzen. Die Anregung, lN und OUT in dieser Weise zu 
benutzen, kommt übrigens aus der Programmiersprache Ada, die 
sich an dieser Stelle noch menschenfreundlicher als Comal gibt.

Wie geben wir nun unseren Pausenbefehl in Basic ein? In Comal 
konnten wir den Befehlsnamen schreiben und in Klammern die An­
zahl der Sekunden nennen: PAUSE(4). Der Wert »4« wird von Comal 
automatisch der Prozedur übermittelt. In Basic müssen wir wieder 
selber tätig werden und den Wert »4« der Subroutine eigenhändig 
mitteilen. Wir tun dies so:

usek = 4: gosub 43000: rem pause
An dieser Stelle wird nun vielleicht auch klar, warum es sinnvoll ist, 

im Kopf der Basic-Prozedur »USEK: UN« anzugeben: Dies erinnert 
uns daran, daß wir beim Aufruf der Prozedur nicht vergessen dürfen, 
der Variablen USEK: einen Wert zuzuweisen.

Anmerkung: Zur guten Lesbarkeit von Comal-Programmen trägt 
auch die Möglichkeit bei, lange Variablennamen zu benutzen (sie 
können bis zu 78 Zeichen lang sein!). Basic kann Variablennamen nur 
bis zur Länge von 2 Zeichen verstehen. ZEIT und ZETTEL zum Bei­
spiel kann es nicht unterscheiden, denn beide beginnen mit ZE. 
Trotzdem sind wir nicht auf zwei Zeichen beschränkt, längere Na­
men werden akzeptiert, nur müssen wir, wie immer bei Basic, selber

denken und deshalb aufpassen, daß keine unserer Variablen in den 
ersten beiden Zeichen übereinstimmen. Und auf noch etwas müssen 
wir achten: Ein Variablenname darf kein Basic-Befehlswort enthal­
ten; der Name KORREKT zum Beispiel erzeugt einen Syntaxfehler, 
weil er QR enthält. Man kann Basic überlisten, indem man den Na­
men so schreibt: KO RREKT; er trägt dann immer noch zur besseren 
Verständlichkeit des Programms bei, und der Computer macht keine 
Zicken. Es gibt noch einen Trick, um Basic zu überlisten. Schreiben 
Sie »KO«, tippen Sie dann irgendein Grafikzeichen ein, zum Beispiel 
Shift-O, und anschließend »RREKT«. Wenn Sie die Zeile wieder listen, 
ist das Grafikzeichen unsichtbar, obwohl es noch immer vorhanden 
ist und das »O« vom »R« trennt. Aber Vorsicht: Wenn Sie (zum Beispiel 
nach einer Veränderung der Zeile) noch einmal RETURN drücken, 
verschwindet das Grafikzeichen wieder, und Basic hat Sie überlistet!

Prozeduren mit Einwegkommunikation 2: Information geht hinaus 
Beispiel 5: Zufallswort

Wenn der Befehl ZUFALLSWORT’ERZEUGEN eingegeben wird, 
soll ein Wort hergestellt werden, das aus zufällig ausgewählten Buch­
staben besteht. Die Wortlänge soll (ebenfalls zufällig) zwischen 1 und 
10 Zeichen betragen. Das Wort soll in der Variablen TEXT$ gespei­
chert und an die Außenwelt gegeben werden. Wörter, die entstehen 
könnten: LM, LVBFPSNL, KEKN, YN,RGUY, etc. (Man benutzt derarti­
ge Befehle manchmal, um Sortierprogramme zu testen.)

Prozedur mit Einwegkommunikation: Info geht hinaus 
ZUFALLSWORT'ERZEUGEN

Anfang Block
Variable initialisieren
Wortlänge bestimmen
Wort erzeugen

Ende Block

Die Comal-Prozedur:
9000 PROC zufallswort'erzeugen(REF text$) CLOSED
9010 text$:=""
9020 wortlaenge: = RND(l,10)
9030 FOR i # = 1 TO wortlaenge
9040 ascii = RND(65,90)
9050 text$=text$ + CHR$(ascii)
9060 ENDFORi#
9070 ENDPROC zufallswort’erzeugen
(Übrigens läßt Comal uns hier eigentlich im Stich. Was wir bräuch- 

ten, wäre ein Prozedurtyp, der nur Information hinausläßt. Den aber 
gibt's nicht. Aber es gibt einen, der Information herein- und wieder 
hinausläßt. Den haben wir hier ersatzweise benutzt. Wir ignorieren 
halt die hereinkommende Information. Das Fenster für den Informa­
tionsgegenverkehr wird durch den Zusatz REF geöffnet, der also be­
wirkt, daß über die Variable TEXT$ Information nicht nur herein­
kommt, sondern auch wieder hinausgeht.)

Aufgerufen wird die Prozedur, wie bekannt (die Klammer enthält 
die Variable WORT$, die außerhalb der Prozedur gilt und nach dem 
Aufruf das erzeugte Zufallswort aufnimmt):

zufallswort'erzeugen(wort$)
Nach dem Aufruf enthält die Variable WORT$ also das erzeugte 

Zufallswort, zum Beispiel KEKN, so daß Sie nun also sagen könnten: 
PRINT WORT$.
Die Basic-Prozedur sieht so aus:

30000 rem proc: zufallswort erzeugen (utext$: out)
30010 utext$=""
30020 ulaenge = int(rnd(l)*10 +1)
30030 for iu=l to ulaenge
30040 ua = int(rnd(l)*(90-65) + 65)
30050 utext$ = utext$ + chr$(ua)
30060 next
30070 return
Den Befehl ZUFALLSWORT’ERZEUGEN ruft man so im Basic- 

Programm auf:
gosub 30000:wo rt$=utext$:

Das heißt nach der Rückkehr aus der Subroutine müssen Sie der 
Variablen WO RT$ den in der Prozedur hergestellten Inhalt, das er­
zeugte Zufallswort, mit eigener Hand zuweisen. Erst dann können Sie 
sagen: PRINT WO RT$.
Bisher wurden Prozeduren ohne Kommunikation sowie mit Einweg­
kommunikation (nur Eingabe oder nur Ausgabe) beschrieben. Na­
türlich gibt es auch Prozeduren mit Zweiwegkommunikation, also mit 
Ein- und Ausgabe. Auch die Zahl der Variablen ist prinzipiell nicht 
beschränkt. Doch darüber mehr in der übernächsten Ausgabe.

(Burkhard Leuschner/gk)

160 ^ Ausgabe 2/Februar 1986


