Kurs: Strukturiertes Programmieren

C 64

Programmieren
Sie strukturiert!

i

quenzen, Schleifen und Verzweigungen
beschiiftigt, das heiBt mit Steverbau-
steinen, die festlegen, wie das Pro-
gramm jeweils flieBt. Heute geht es
um einen anderen Bausteintyp, um
die Unterprogramm-Bausteine.

Jede Programmiersprache, und sei sie noch so reichhaltig, kann
immer nur eine begrenzte Anzahl von Befehlen zur Verfiigung
stellen. Und so kommen wir beim Programmieren immer wieder an
den Punkt, wo ein Befehl, den man eigentlich brauchte, nicht vorhan-
den ist.

Kein Grund zur Resignation. Was man nicht hat, verschafft man
sich. Es gibt zwei Moglichkeiten, sich neue Befehle zu verschaffen:
Entweder man besorgt sie sich, oder man macht sie sich selber.

Wie man sich Befehle besorgen kann? Nun ja, man sammelt sie
zum Beispiel aus Zeitschriften, man studiert Programme anderer
Leute, oder man kauft sich eine Befehlesammlung, wie zum Beispiel
Macro Basic, und stellt sich daraus jeweils die Befehlsmenge zusam-
men, die man gerade braucht,

Was man sich nicht versorgen kann, muB man sich, wie gesagt, sel-
ber machen. Wie, darum geht es im folgenden.

Neue Befehle erstellt man mit Hilfe von Unterprogramm-Baustei-
nen. Basic stellt zwar solche Bausteine zur Verfiigung (die Subrouti-
nen und die Funktionen), aber diese sind, vom Standpunkt des struk-
turierten Programmierens aus, doch sehr verbesserungsbediirftig.
Wir wollen sehen, wo Verbesserungen méglich sind und wie sie aus-
sehen konnen.

Wie im ersten Teil wollen wir auch dabei die Programmiersprache
Comal als Wegweiser benutzen. Diese Sprache ist, wie schon dort
angemerkt wurde, besonders gut durchdacht, besonders men-
schenfreundlich ausgestaltet. Und sie stellt uns Unterprogramm-
Bausteine zur Verfiigung, die es dem Programmierer ausgespro-
chen leicht machen, neue Befehle zu erfinden und einzusetzen. Die-
se Unterprogrammstruktur wollen wir in Basic so weit wie moglich
imitieren. Im ibrigen werden wir uns, wo notwendig, auch von ande-
ren Programmiersprachen, wie zum Beispiel Ada, anregen lassen.

Befehlstypen

Es gibt in Programmiersprachen viele verschiedene Arten von Be-
fehlen. Wenn wir zum Beispiel sagen »PREIS = 25.99«, dann haben wir
einen Zuweisungsbefehl benutzt. Schleifen und Verzweigungen ge-
héren zu den Steuerbefehlen, wir haben sie in der letzten Folge be-
handelt. Im heutigen Zusammenhang interessieren uns die beiden
folgenden Typen: die Handlungsbefehle und die Funktionen.

Handlungsbefehle

»PRINT NAME$« ist ein Handlungsbefehl. Er bringt den Computer
dazu, eine Druckhandlung auszufiinren. sPOKE 1024,1« bewirkt, da
der Computer in die erste Bildschirmspeicherzelle des C 64 die Zahl
1 steckt, so daf? ein»A« in der linken oberen Ecke des Bildschirms er-
scheint, »SAVE "programm",8« veranlat den Computer dazu, das
Programm, das im Speicher ist, auf Diskette zu schreiben.

Handlungsbefehle benutzt man, wenn man will, daB der Computer
eine bestimmte Handlung ausfiihrt.

Funktionen

Funktionen sind Befehle, die man als spezialisierte Handlungsbe-
fehle ansehen kann. Ihre spezielle Aufgabe ist es, solche Handlun-
gen durchzufithren, die Daten zum Ergebnis haben. Praktisch ge-

156 Z:¥4p

sprochen: Funktionen sind Befehle, die Daten erzeugen. Die Funk-
tion »INT(25.99)« erzeugt die Zahl »25«, die Funktion »MID$ ("'Zeit-
schrift",5,3)« den Text »sche,

Zu den speziellen Eigenschaften von Funktionen gehért, daf man
ihnen das erzeugte Datum abnehmen muf. Wahrend es bei Hand-
lungsbefehlen geniigt, einfach den Befehl auszusprechen, zum Bei-
spiel »RESTOREYg, reicht dies bei Funktionen nicht aus. »INT(25.99)«
mag zwar méglicherweise dazu fithren, daf der Computer die not-
wendigen Handlungen durchfithrt (Dezimalpunkt finden, Bruchteil
abschneiden), aber er streikt spétestens dann, wenn er nicht weiB,
was er mit dem erzeugten Zahlenwert anfangen soll. Wenn man eine
Funktion verwendet, muf man also dem Computer gleichzeitig auch
sagen, was mit dem erzeugten Datum zu geschehen hat, Beispiele:
PRINT INT(25.99) oder GANZZAHL=INT(25.99) oder IF
INT(25.99)< 100 THEN...

Das ist natiirlich kein Nachteil; es hat vielmehr den Vorteil, daB
man Funktionen wie Zahlen (beziehungsweise Texte) einsetzen kann.
Funktionsbefehle, kann man auch sagen, werden immer in Aus-
driicken aufgerufen. Lassen Sie uns nun sehen, wie man Handlungs-
befehle und Funktionen herstellt, die nicht in der Programmierspra-
che vorhanden sind.

Comal: Prozeduren und Funktionen

Comal stellt zwei Bausteintypen fiir selbstgemachte Befehle zur
Verfiigung, die einander sehr dhnlich sind: Prozeduren und Funktio-
nen. Beide haben prinzipiell dieselbe Siruktur. Fiir Handlungsbefeh-
le benutzen wir die Prozedurstruktur, fiir selbstgestrickte Befehle
vom Typ Funktion die Funktionsstruktur,

Beispiel 1: Bildschirm loschen

In einigen Programmiersprachen gibt es den Handlungsbefehl
PAGE, der den Bildschirm l6scht (und also eine neue Bildschirmseite
anfangt). Fiir die Definition dieses Befehls benutzen wir folgenden
Prozedurbaustein:

9000 PROC page

9010 PRINT CHR$(147),

9020 ENDPROC page

Wenn diese Prozedur in einem Comal-Programm enthalten ist,
dann steht damit in diesem Programm der Befehl PAGE zur Verfii-
gung. Das heiBt, immer wenn der Bildschirm geléscht werden soll,
geben wir einfach den Namen der Prozediir, also PAGE, ein:

0010 page

0020

Eine neue Funktion zu definieren, ist ebenso einfach. Sie unter-
scheidet sich in ihrem Aufbau von einer Prozedur nur durch den zu-
sétzlichen Befehl RETURN (der iibrigens nichts mit dem gleichnami-
gen Befehl in Basic zu tun hat!).

Beispiel 2: Wo befindet sich der Cursor?

Die Funktion CURSORZEILE soll die Nummer der Zeile ausgeben,
in der sich der Cursor gerade befindet:

8000 FUNC cursorzeile

9010 zeile:=PEEK(214)+1

9020 RETURN zeile

9030 ENDFUNC cursorzeile

Die Speicherzelle 214 enthdlt beim Commodore 64 die Nummer
der Zeile, in der sich der Cursor gerade befindet. Der Wert 1 wird
addiert, damit die erste Zeile auch tatsidchlich die erste ist und nicht
etwa die nullte.

Der Befehl sRETURN zeile« (3020) weist die Funktion an, den Wert
der Variablen ZEILE »zuriickzugebens« (to return the value) und die
Funktion zu verlassen. Dies ist der Wert, den die gesamte Funktion
zur Verfiigung stellt; den Sie also erhalten, wenn Sie sagen:

PRINT cursorzeile

Wenn also die Funktion CURSORZEILE in einem Comal-Pro-
gramm steht, dann steht damit in diesem Programm der neue Befehl
CURSORZEILE zur freien Verfiigung. Beispiel:

Nehmen wir an, Sie drucken einen lingeren Text auf dem Bild-
schirm aus. Sie wollen, daB immer nur 20 Zeilen gedruckt werden;
danach soll der Bildschirm geléscht werden und der Text wieder in
der ersten Zeile beginnen. Sie kénnten schreiben:

0100 IF cursorzeile > 20 THEN page

In dieser Zeile sind also zwei selbstdefinierte Befehle verwendet,
der Handlungsbefehl PAGE und der Funktionsbefehl CURSOR-
ZEILE.

Lassen Sie uns nun anschauen, wie dasselbe in Basic aussieht.

Basic: Subroutinen und Funktionen

Basic stellt ebenfalls zwei Bausteintypen fiir selbstdefinierte Befeh-
le zur Verfiigung, einmal die Subroutinen, zum andern die Funktio-
nen. Im Gegensatz zu Comal sind die beiden Bausteintypen aller-
dings vollig verschieden aufgebaut. Die Subroutinenstruktur kann
fir selbstgemachte Handlungsbefehle, die Funktionsstruktur fiir
Funktionsbefehle eingesetzt werden.

Ausgabe 2/Februar 1986

Kurs: Strukturiertes Programmieren

C 64

Eine Subroutine, die den Bildschirm l6scht, kdnnte so aussehen:

1000 printchr$(147);

1020 return

Eine Funktion, die die Zeile abfragt, in der sich der Cursor gerade
befindet, wird so definiert:

100 deffncz(x)=peek(2]14) +1

Die Programmzeile, die bewirkt, daB nur 20 Zeilen gedruckt und
danach der Bildschirm freigemacht wird, sahe so aus:

500 iffncz(0)> =20thengosubl000

Zu beachten ist dabei, daB in Basic (anders als in Comal) die Funk-
tion definiert sein muB, bevor sie aufgerufen werden kann. Funk-
tionsdefinitionen findet man deshalb haufig zu Beginn von Basic-
Programmen.

Ein Vergleich zwischen der Comal- und der Basic-Definition unse-
rer selbstdefinierten Befehle macht sehr deutlich, um wieviel men-
schenfreundlicher Comal ist, einmal beim Codieren, vor allem aber
beim Lesen eines Programms. Bei Comal benutzen wir einfach den
Namen einer Prozedur oder einer Funktion, wenn diese abgearbei-
tet werden soll, und wenn wir die Namen geschickt gewihlt haben,
verstehen wir auf Anhieb, was das Programm jeweils tut. Eine Basic-
Zeile hingegen erschlieft sich nur nach langem Studium des Pro-
gramms, falls tiberhaupt; Um FNCZ(0) zu verstehen, muB die Defini-
tion dieser Funktion gesucht werden; wenn man wissen will, was
GOSUBI1000 bewirkt, muf man zur Zeile 1000 gehen und das dortige
Unterprogramm analysieren.

Basic hat es also bitter nétig, menschenfreundlicher gemacht zu
werden. Liassen Sie uns dies in Angriff nehmen. Zwar kénnen wir na-
tiirlich die Basic-Version, die auf dem Comimodore 64 installiert ist,
nicht andern, aber wir konnen dasselbe tun, was wir in Teil I getan
haben: Wir kénnen Bausteinstrukturen entwickeln, die denen, die
wir in Comal finden, nachempfunden sind, und uns auf diese Weise
sowohl das Codieren wie das Lesen unserer Basic-Programme er-
leichtern.

Prozeduren in Basic: Grundprinzipien

Neben den Grundprinzipien, die fiir alle Bausteine gelten (insbe-

sondere, daf jeder Bausteinblock nur einen Eingang und einen Aus-
gang hat — vergleiche Teil 1), wollen wir zusétzlich folgendes beach-
ten:
1. Eine Prozedur muf, wenn sie lesbar und verstehbar sein scll, iiber-
schaubar bleiben. Das bedeutet, sie darf eine gewisse Lange nicht
iiberschreiten. Wenn irgend moglich, soll sie auf einer Seite Platz fin-
den.

Das ist ein relatives MaB. Wer Listings nur gedruckt studiert, kénn-
te als MaBstab die Druckseite festlegen; wer Programme auf dem
Bildschirm verstehen will (und das ist zum Beispiel, wenn man Fehler
verbessert, der Normalfall), wird diesen zum MaBstab machen. Wer
einen 80-Zeichen-Bildschirm besitzt, kann mehr unterbringen als
wer nur 40 Zeichen zur Verfiigung hat. Da wir als C 64-Benutzer uns
mit 40 Zeichen begniigen miissen, soll dies unser Map sein: Prozedu-
ren sollen moglichst auf einen C 64-Bildschirm passen.

2. Eine Prozedur ist so zu konzipieren, daB sie eine Welt fiir sich bil-
det. Was in der AuBenwelt passiert, darf sie nicht beriihren. Was in
der Welt der Prozedur geschieht, darf nicht nach auen wirken.

Dashat einen sehr praktischen Grund. Veranderungen, die im Pro-
gramm vorgenommen werden, wirken dann immer nur auf einen
iberschaubaren Bereich und bleiben auf diese Weise kontrollier-
bar. Wenn hingegen dieses Prinzip nicht beachtet wird, kann die
Wirkung einer unbedeutenden Anderung an einer Stelle des Pro-
gramms ein ganzes Programm unbrauchbar machen. Es gibt wohl
keinen Programmierer, der dazu nicht ein garstig Liedchen beisteu-
ern kénnte,

Im iibrigen haben Prozeduren dieser Art noch den Vorteil, daf?
man sie bei Bedarf auch in anderen Programmen verwenden kann,
ohne daPB man sie an die Situation des neuen Programms anpassen
miiBte.

3. Eine Prozedur soll zwar eine abgeschlossene Welt sein, das be-
deutet aber nicht, daB nicht Kommunikation zwischen Prozedur und
AuBenwelt stattfinden konnte.

Solche Kommunikation kann zwei Richtungen haben: von der Au-
Benwelt in die Prozedur und aus der Prozedur in die AuBenwelt. Im
einen Fall verarbeitet die Prozedur Daten, die sie von auBen erhalt,
im andern Fall gibt sie Ergebnisse ihres Wirkens der AuBenwelt be-
kannt.

Je nach dem Typ der Kommunikation zwischen Prozedur und Au-
Benwelt kénnen wir die folgenden Typen unterscheiden:

1. Prozeduren ohne Kommunikation mit der AuBenwelt

2. Prozeduren, die Information hereinlassen

3. Prozeduren, die Information hinauslassen

4. Prozeduren, die Informationsowohl herein-und hinauslassen

4, Damit keine unbeabsichtigte Kommunikation zwischen Prozedur
und AuBenwelt stattfinden kann, miissen wir dafiir sorgen, da? Varia-

158 (54

blen, die in der Welt der Prozedur benutzt werden, nur in dieser Welt
und sonst nirgendwo bekannt sind. Man nennt solche Variablen »lo-
kal«(im Gegensatz zu »globalen« Variablen, die sowohl in der AuBen-
welt wie in der Prozedur gelten).

Prozeduren ohne Kommunikation mit der AuBenwelt
Beispiel 3: Linie
Die Prozedur soll eine Linie iiber den Bildschirm ziehen.

Prozedur ohne Kommunikation
LINIE
Anfang Block
Linie zeichnen
Ende Block

Die Handlung »Linie zeichnen« kann hier sehr einfach mit Hilfe ei-
ner einzeiligen Zahlschleife bewerkstelligt werden. In Comal wird
das so codiert:

9000 PROC linie CLOSED

9010 FOR i# =1 TO 40 DO PRINT CHR$(192),

9020 ENDPROC linie

Die Zahlvariable [# ist eine Integervariable, was in Comal im Ge-
gensatz zu Basic méglich ist und die Geschwindigkeit des Schleifen-
durchlaufs um ein Mehrfaches erhéht.

Diese Variable gilt nur innerhalb der Prozedur, sie ist nur lokal giil-
tig. Dies wird dadurch bewirkt, daB die Prozedur ausdriicklich mit
dem Befehl CLOSED gegeniiber der Aufenwelt abgeschottet wird.
Wenn also woanders im Programm die Variable I # noch einmal auf-
tritt, macht das keine Probleme. Das heift ein Comal-Programm
konnte folgenden Schleifenblock enthalten, also 20mal Linie aufru-
fen, ohne daB Schwierigkeiten entstiinden:

0100 FORi#= 1to 20

0110 linie

0120 ENDFOR i#

In Basic ist dies in so einfacher Weise nicht zu 16sen. Es gibt keinen
Befehl, der eine Subroutine abschliefen und deren Variablen von
der AuBenwelt abschotten konnte. Wir miissen vielmehr selber da-
fiir sorgen, daR Variablen lokal sind. Dies kénnen wir dadurch errei-
chen, daB wir bestimmte Variablennamen fiir Prozeduren reservie-
ren und auBerhalb von Prozeduren grundsatzlich nicht verwenden.
Ich schlage vor, daB wir Variablennamen, die wir in Prozeduren ver-
wenden, mit U beginnen lassen und auBerhalb von Prozeduren kei-
ne Namen, die mit U beginnen, benutzen (»U« steht fiir »Unterpro-
gramme),

In Basic gibt es weiterhin keinen Prozedurrahmen, der die Proze-
dur deutlich von ihrer Umgebung abgrenzen konnte. Wir brauchen
jedoch einen, denn wir wollen ja, daB unsere Programme gut lesbar
sind. Also miissen wir selber einen schaffen.

Den Prozedurkopf wollen wir mit einer REM-Zeile so markieren:

REM PROC: Prozedurname

(Spater werden wir noch eine Klammer fiir Variablen anfligen.)

Als Endemarkierung benutzen wir RETURN. Wir kénnen uns des-
halb damit begniigen, weil wir ja grundsétzlich jeden Baustein, also
auch Unterprogramme, so bauen, daf Sie nur einen Ausgang haben,
und diesen immer am Ende des Bausteins. (Vergleiche Teil I).

Wir kénnen nun eine Basic-Prozedur LINIE analog zum Comal-
Vorbild codieren.

42000 rem proc: linie
42010 for ui=1 to 40:print chr$(192);: next
42020 return

Aufgerufen wird eine solche Prozedur in Basic leider nicht einfach
mit dem Prozedurnamen wie in Comal, sondern viel umsténdlicher
mit »GOSUB Zeilennummer«. Ein Programmblock, der 20 Linien
druckt, wiirde in Basic also so aussehen:

100 fori=1to 20

110 gosub 42000: rem linie

120 next

Da die Schleifenvariable des Hauptprogramms I und die Schlei-
fenvariable der Prozedur UI unterschiedlich sind, kann auch hier
kein Konflikt entstehen. Aber dafiir ist in Basic, wie gesagt, der Pro-
grammierer verantwortlich.

Der Programmierer muf auch fiir mehr Lesbarkeit sorgen. In Co-
mal informiert der Prozedurname sowohl bei der Definition wie beim
Aufruf der Prozedur dariiber, was die Prozedur tut. In Basic miissen
wir diese Information selber beisteuern — durch REM-
Bemerkungen, sowohl im Prozedurkopf (Zeile 42000) als auch da, wo
die Prozedur mit GOSUB aufgerufen wird (Zeile 110).

Und noch eins: Comal sorgt automatisch fiir bessere Lesbarkeit, in-
dem es selbstandig einriickt und Leerzeichen verlangt. Auch hier
muB der Basic-Programmierer selber handeln.

Die Prozedur LINIE fiihrt die gewiinschten Handlungen durch, oh-
ne daf sie Information von der AuB3enwelt benotigte. Das ist jedoch

Ausgabe 2/Februar 1986

Kurs: Strukturiertes Programmieren

C o4

nur selten der Fall — die meisten Befehle kommen ohne Kommunika-
tion mit der AuBenwelt nicht aus.

Prozeduren mit Einwegkommunikation 1:
Information kommt herein
Beispiel 4: Pause
Wenn die Prozedur PAUSE aufgerufen wird, soll das Programm die
angegebene Anzahl Sekunden pausieren.

Prozedur mit Einwegkommunikation: Info kommt herein
PAUSE
Anfang Block
Anzahl Schleifen berechnen
Schleifenanfang
nichts tun
Schleifenende
Ende Block

Die Comal-Prozedur:

9000 PROC pause(sekunden) CLOSED

9010 anzahl'schleifen: = sekunden*1050

9020 FOR i=1 TO anzahl'schleifen DO NULL

9030 ENDPROC pause

Bei Comal (Version 2.01)1auft der Computer ungefahr 1050mal in ei-
ner Sekunde durch eine leere Zahlschleife. Wenn das Programm 4
Sekunden lang pausieren soll, dann muB man ihn anweisen, 4 x
1050mal eine solche Schleife zu durchlaufen.

Wieviel Sekunden die Pause dauern soll, muf der Prozedur natiir-
lich mitgeteilt werden. Dies geschieht durch die Variable SEKUN-
DEN, die dem Prozedurnamen in Klammern folgt. Eine solche Varia-
ble in Klammern schlagt gleichsam ein Loch in die Mauer, welche
die Prozedur umgibt, und schafft einen Eingang, durch den eine In-
formation in das Innere der Prozedur gelangen kann.

Der Variablename SEKUNDEN gilt iibrigens nur innerhalb der
Prozedur, ist also lokal.

Wenn man im Pregramm eine Pause von 4 Sekunden Lénge ben6-
tigt, gibt man folgenden Befehl ein:

pause (4)

Man kann natiirlich statt der Zahl auch einen Variablennamen benut-
zen, zum Beispiel

pause (anzahl'sekunden)

Ja, man kann sogar denselben Variablennamen benutzen wie in der
Prozedurdefinition:

pause (sekunden)

Fiir Comal handelt es sich trotzdem um zwei verschiedene Varia-
blennamen, der eine ist in der AuBenwelt zuhause, der andere gilt
nur lokal, das heifit in der Welt der Prozedur.

In Basic miissen wir da wieder vorsichtig und selber um die »Loka-
litdt« der Prozedurvariablen besorgt sein, indem wir, wie verabre-
det, U vor dem Variablennamen schreiben. Den Prozedurkopf er-
weitern wir jetzt, wie angekiindigt, um eine Klammer fiir Variablen.

43000 rem proc: pause (usek: in)
43010 uanzahl = usek*950
43020 for ui=1 to uanzahl: next
43030 return

In Basic lauft der Commodore 64 nur 950mal in der Sekunde durch
eine leere Zahlschleife — deshalb die Zahl 950 im Basic-Programm.

Das (englische) Wort »IN« vor dem Namen der Variablen USEK soll
andeuten, daf sie einen Wert von auBen erhalt und diesen in die Pro-
zedur hineinnimmt. Nachher werden wir fiir die Gegenrichtung das
Wort »OUT« benutzen. Die Anregung, IN und OUT in dieser Weise zu
benutzen, kommt tibrigens aus der Programmiersprache Ada, die
sich an dieser Stelle noch menschenfreundlicher als Comal gibt.

Wie geben wir nun unseren Pausenbefehl in Basic ein? In Comal
konnten wir den Befehlsnamen schreiben und in Klammern die An-
zahl der Sekunden nennen: PAUSE(4). Der Wert »4« wird von Comal
automatisch der Prozedur tibermittelt. In Basic miissen wir wieder
selber tétig werden und den Wert »4« der Subroutine eigenhéndig
mitteilen. Wir tun dies so:

usek =4: gosub 43000: rem pause

Andieser Stelle wird nun vielleicht auch klar, warum es sinnvoll ist,
im Kopf der Basic-Prozedur »USEK: UN« anzugeben: Dies erinnert
unsdaran, daB wir beim Aufrufder Prozedur nicht vergessen diirfen,
der Variablen USEK: einen Wert zuzuweisen.

Anmerkung: Zur guten Lesbarkeit von Comal-Programmen tragt
auch die Moglichkeit bei, lange Variablennamen zu benutzen (sie
kénnen bis zu 78 Zeichen lang sein!). Basic kann Variablennamen nur
bis zur Ldnge von 2 Zeichen verstehen. ZEIT und ZETTEL zum Bei-
spiel kann es nicht unterscheiden, denn beide beginnen mit ZE.
Trotzdem sind wir nicht auf zwei Zeichen beschrankt, lingere Na-
men werden akzeptiert, nur miissen wir, wie immer bei Basic, selber

160 F¥ap

denken und deshalb aufpassen, daB keine unserer Variablen in den
ersten beiden Zeichen iibereinstimmen. Und auf noch etwas miissen
wir achten: Ein Variablenname darf kein Basic-Befehlswort enthal-
ten; der Name KORREKT zum Beispiel erzeugt einen Syntaxfehler,
weil er QR enthalt. Man kann Basic iiberlisten, indem man den Na-
men so schreibt: KO RREKT,; er tragt dann immer noch zur besseren
Verstandlichkeit des Programms bei, und der Computer macht keine
Zicken. Es gibt noch einen Trick, um Basic zu iiberlisten. Schreiben
Sie »KOx, tippen Sie dann irgendein Grafikzeichen ein, zum Beispiel
Shift-O, und anschliefend »RREKT«. Wenn Sie die Zeile wieder listen,
ist das Crafikzeichen unsichtbar, obwohl es noch immer vorhanden
ist und das»O« vom »R« trennt. Aber Vorsicht: Wenn Sie (zum Beispiel
nach einer Verdnderung der Zeile) noch einmal RETURN driicken,
verschwindet das Grafikzeichen wieder, und Basic hat Sie iiberlistet!

Prozeduren mit Einwegkommunikation 2: Information geht hinaus
Beispiel 5: Zufallswort

Wenn der Befehl ZUFALLSWORT'ERZEUGEN eingegeben wird,
soll ein Wort hergestellt werden, das aus zufillig ausgewahlten Buch-
staben besteht. Die Wortldnge soll (ebenfalls zufallig) zwischen 1 und
10 Zeichen betragen. Das Wort soll in der Variablen TEXT$ gespei-
chert und an die AuBenwelt gegeben werden. Worter, die entstehen
kénnten: LM, LVBFPSNL, KEKN, YN ,RGUY, etc. (Man benutzt derarti-
ge Befehle manchmal, um Sortierprogramme zu testen.)

Prozedur mit Einwegkommunikation: Info geht hinaus
ZUFALLSWORT'ERZEUGEN
Anfang Block
Variable initialisieren
Wortlange bestimmen
Wort erzeugen
Ende Block

Die Comal-Prozedur:

9000 PROC zufallswort'erzeugen(REF text$) CLOSED
9010 text$:=""

9020 wortlaenge: = RND(1,10)

9030 FORi# =1 TO wortlaenge

9040 ascii=RND(65,90)

9050 text$ =text$ + CHR$(ascii)

9060 ENDFOR i#

9070 ENDPROC zufallswort'erzeugen

(Ubrigens 148t Comal uns hier eigentlich im Stich. Was wir brauch-
ten, wire ein Prozedurtyp, der nur Information hinausléBt. Den aber
gibt's nicht. Aber es gibt einen, der Information herein- und wieder
hinauslaBt. Den haben wir hier ersatzweise benutzt. Wir ignorieren
halt die hereinkommende Information. Das Fenster fiir den Informa-
tionsgegenverkehr wird durch den Zusatz REF geéffnet, der also be-
wirkt, daB iiber die Variable TEXT$ Information nicht nur herein-
kommt, sondern auch wieder hinausgeht.)

Aufgerufen wird die Prozedur, wie bekannt (die Klammer enthalt
die Variable WORTS$, die auBerhalb der Prozedur gilt und nach dem
Aufruf das erzeugte Zufallswort aufnimmt):

zufallswort'erzeugen(wort$)

Nach dem Aufruf enthélt die Variable WORTS$ also das erzeugte
Zufallswort, zum Beispiel KEKN, so daB Sie nun also sagen konnten:
PRINT WORTS.

Die Basic-Prozedur sieht so aus:

30000 rem proc: zufallswort erzeugen (utext$: out)
30010 utext$=""

30020 ulaenge = int(rnd(1)*10 + 1)

30030 for iu=1 to ulaenge

30040 ua = int(rnd(1)*(90-65) + 65)

30050 utext$ = utext$ + chr$(ua)

30060 next

30070 return

Den Befehl ZUFALLSWORT'ERZEUGEN ruft man so im Basic-

Programm auf:
gosub 30000:wo rt$ = utext§:

Das heift nach der Riickkehr aus der Subroutine miissen Sie der
Variablen WO RT$ den in der Prozedur hergestellten Inhalt, das er-
zeugte Zufallswort, mit eigener Hand zuweisen. Erst dann kénnen Sie
sagen: PRINT WO RT$.

Bisher wurden Prozeduren ohne Kommunikation sowie mit Einweg-
kommunikation (nur Eingabe oder nur Ausgabe) beschrieben. Na-
tirlich gibt es auch Prozeduren mit Zweiwegkommunikation, also mit
Ein- und Ausgabe. Auch die Zahl der Variablen ist prinzipiell nicht
beschrankt. Doch dariiber mehr in der iibernichsten Ausgabe.
(Burkhard Leuschner/gk)

Ausgabe 2/Februar 1986

