C 64

Kurs: Von

Basic zu Assembler

Von Basic zu Assembler
eil 2)

Kurze Schleifen sind in Assembler kein
Problem mehr. Deshalb wagen wir
uns nun an die 16-Bit-Schleifen, wobei
uns auch gleich zwei Routinen aus der
Firmware entschleiert werden.

ie letzte Folge hatten wir

beendet mit der Aussicht, in
die einfachen Verzogerungs-
schleifen nun die Wiirze von Auf-
gaben einzubauen. Ein kleines
Basic-Programm, das Sie viel-
leicht verlockt hat, die Entspre-
chung in Assembler zu schrei-
ben, sollte 128 bunte Zeichen auf
den Bildschirm zaubern. Haben
Sie es versucht? Wenn ja, dann
vergleichen Sie Ihr Ergebnis
doch mal mit Listing 1.

In den Zeilen 30, 40 und 160,
170 sehen Sie die Anwendung ei-
nes weiteren Pseudobefehls.
Das .EQ bewirkt, daB eine be-
stimmte Speicherstelle mit ei-
nem Namen versehen werden
kann. Im folgenden braucht man
sich nur noch den Namen zu
merken, der auch am Ende in
der Symboltabelle mit ausgege-
ben wird. Dadurch wird man bis
zu einem gewissen Grad sogar
systemunabhangig. Um bei-
spielsweise dieses Programm
auf einem VC 20 in der Grund-
version laufen zu lassen, muf in
Zeile 30 der SCREEN-Wert auf
$IE00 und in Zeile 40 der
COLORWert auf $9600 gedn-
dert werden.

Bevor Sie durch G 5000 aus
dem Monitor heraus das Pro-
gramm starten, léschen Sie am
besten zuerst den Bildschirm
und fahren den Cursor in eine
mittlere Bildschirmzeile, damit
er dem Ergebnis des Program-
mes nicht ins Gehege kommt.
Das Programm lauft natiirlich
auch auf dem C 128 (im C 128-
Modus). Allerdings werden hier
die Zeichen nur einfarbig, weil
man zum Beschreiben des Bild-

schirmfarbspeichers (mit STA
COLORY) noch die Bank um-
schalten muf, was hier nicht ge-
tan wird.

Sie sehen: Das geht in Assem-
bler erheblich schneller als in
Basic und eben die Geschwin-
digkeit in Assemblerprogram-
men wird es sein, die uns im
2. Beispiel noch ein wenig be-
schaftigen wird. Die Aufgaben-
stellung ist folgende: Ein weier
Ball soll von rechts unten kom-
mend quer iiber den Bildschirm
fliegen nach links oben. Dazu
sollen 2 Firmwareroutinen ver-
wendet werden: Eine zum
Drucken beliebiger Zeichen
und eine andere zum Setzen des
Cursors. Die erste ist das norma-
1le PRINT in Basic, das als Kernel-
Routine BSOUT (manchmal auch
CHROUT genannt) durch As-
semblerprogramme bei $FFD2
ansteuerbar ist. Das auszu-
druckende Zeichen muB vor

dem Aufruf JSR $FFD2 im Akku-
mulator enthalten sein. Die an-
dere Routine dient dem Steuern
des Cursors. Gibt man in die
Speicherstelle 211 ($D3) die ge-
wiinschte Spalte und in 214 ($D6)
die Zeile des Bildschirmes, an

die der Cursor positioniert wer-
den soll, dann lenkt ihn der Auf-
ruf des bei 58640 ($E510) begin-
nenden Maschinenprogrammes
unserer Firmware andiesen Ort.
Alle Randbedingungen wer-
den durch dieses Basic-Pro-
gramm realisiert:
10 §=211:2=214:B=58640:51=40:21=20
20 PRINT CHR${147)CHRS$(5)
30 GOSUB 100:PRINT CHR$(113)
40 FOR I=19 TO O STEP -1
50 GOSUB 100:PRINT CHR$(32)
60 51=81-2:21=21-1
70 GOSUB 100:PRINT CHR$(113)
80 NEXT I
90 PRINT CHR$(154):END
100 POKE S,S1:POKE Z,Z1:5YS B:RETURN
In der Schleife wird immer zu-
erst das zuletzt gedruckte Zei-
chen geldscht (sonst hatten wir
nicht nur einen Ball, sondern ei-
ne Diagonale aus weifen Ballen)
und dann nach dem Weiterset-
zen des Cursors der nachste Ball
gezeichnet. .
Listing 2 zeigt nun das Aquiva-
lent dazu in Assembler.

T - LI 1,4
2 - .BA 35000
i) = -EQ SCREEN=%#0400: BILDSCHIRMSTART
4@ - .EQ@ COLOR=%$DE01@; FARBRAMSTART
58 —#u% BEISPIEL 1 w#x
&8 =3VERSION B8 MIT EINGFACHEM JOB
7@ —3 ZEICHEN AUF BILDSCHIRM ZEIGEN
aa ot |
I8 =3=———— INITIALISIERUNG ————
ie@ -;
11a - LDY #%7F sDAS IST DEZIMAL 127
128 —;
138 -3 VE ITUNG
148 —;
158 -LABEL TYA
160 - STA SCREEN,Y
178 - STA COLOR,Y
180 -3
19@ —5-———— STEUERUNG -——————————
208 -—;
21a - DEY
228 - DEY
238 - BPFL LABEL
248 -3
258 -3 AL
268 -3
27a - BRE
280 —;
298 - .SY 1,4
iaa - . 8T
Listing 1. Unser Beispiel 1 in Assembler: Bunte Zeichen

1 - T
20 = .BA $5000
] = -EQ SPALTE=#D3
48 = .EQ@ ZEILE=%Dé&
= = .EQ COUNTZ=3%FA
& = .EQ COUNTS=%FB
7@ = -.EQ CSET=#%EGS1@
88 - -EQ BSOUT=$FFD2
9@ —j%us BEISPIEL 2 *#%
10@ —;BILDSCHIRMAUSGABE MIT FIRMWARE-ROUTINEN
118 -
128 =-3—-=-—-—— VORBEREITUNGEN -————
138 -3
i - LDA #$93 sDEZIMAL 147
15@a - JSR BSOUT s BILDSCHIRM LOESCHEN
168 - LDA #£05
17¢ - JSR BSOUT 1 ZEICHENFARBE WEISS
i@ - LDA #£14 sDEZIMAL 28
isa - STA ZEILE
2ea - STA COUNTZ 3 SICHERN
218 -~ LDA #%27 sDEZIMAL 39
228 - STA SPALTE
238 - STA COUNTS 1SICHERN
248 -3
250 —j----— VERARBEITUNG ———————
260 -3
27@ -LABEL LDA COUNTZ
280 - STA ZEILE
298 - LDA COUNTS
3 - STA SPALTE
31 - JSR CSET s CURSDR SETZIEN
328 - LDA #%71 sDEZIIMAL 113
3z - JSR BSOUT ; GRAFIKZEICHEN DRUCKEN
4@ - NOP
358 - LDA COUNTZ
360 - STA ZEILE
370 - LDA COUNTS
88 - STA SPALTE
390 - JSR CSET
408 - LDA #%20 sDEZIMAL 32
41@ - JSR BSOUT s ZEICHEN LOESCHEN
428 -3
43D —j-———= STEUERUNG —-——-——————
448 -3
458 -, DEC COUNTS
458 - DEC COUNTS
478 - DEC COUNTZ
488 - BNE LABEL sHERUNTERZAEHLEN BIS @
498 -3
500 —jee——- ABSCHLUSS —-—————————
s18 -3
520 - LDA #£9A sDEZIMAL 154
538 - JSR BSOUT 3 ZEICHENFARBE HELLBLAU
540 - BRK
550 —;
S&B - .SY 1,4
578 - 5T
Listing 2. Ein schneller Flitzer: Beispiel 2

Ausgabe 2/Februar 1986

F¥4p 101

Kurs: Von Basic zu Assembler

C 64

In den Zeilen 30 bis 80 finden
Sie wieder den Pseudobefehl
.EQ Mit diesem werden auBer
den bisher schon besprochenen
Speicherstellen (Zeile, Spalte,
CSET und BSOUT) auch noch
zwel Zahler kreiert: COUNTZ
(Zeilerzahler) und COUNTS
(Spaltenzdhler). Was soll das,
werden Sie fragen, warum ver-
wendet man nicht direkt ZEILE
und SPALTE? Die Ursache liegt
darin, dafs BSOUT ebenfalls die-
se Speicherstellen benutzt und
daher keine richtige Zahlung
mehr stattfinden kann. So zahlt
$FA und $FB und jedesmal vor
Aufruf von CSET wird deren In-
halt in ZEILE und SPALTE tber-
tragen. Wir brauchen natiirlich
nur einen Zahler fiir diese
Schleife. COUNTS lauft nur ne-
benher und kénnte eigentlich
auch in den Schleifenteil WWerar-
beitung« geschrieben werden.
Die Abbruchoperation in Zeile
480 priift nur COUNTZ. Mehr
Kommentar finden Sie direkt im
Listing.

So, nun starten Sie mal das Pro-
gramm nach dem Assemblieren
aus dem Monitor mit G 5000! Sie
meinen, da passiert ja gar
nichts? Ich kann Ihnen bewei-
sen, daP doch etwas passiert —
nur so immens schnell, daB wir
nichts davon sehen. Verandern
Sie doch mal in Zeile 400 das
#$20 (Leerzeichen) zu #3IC
(Farbe Rot). Daskénnen Sie auch
schnell aus dem Monitor her er-
reichen durch M 5033 — dort fin-
den Sie am Anfang die 20 — und
iiberschreiben durch 1C ((RE-
TURN)). Wenn Sie nun starten,
wird der Ball nicht mehr ge-
16scht, sondern nur rot gefarbt.
Wir erhalten die Diagonale aus
roten Béllen. Es geht also doch!

Wir miissen daher das ganze
etwas verlangsamen. Dazu ist
schon eine Stelle vorgesehen:
In Zeile 340 befindet sich ein
génzlich unmotiviertes NOP-
Kommando. Dorthin packen wir
nun eine Verzégerungsschleife
und es ergibt sich Listing 3.

In die Zeilen 335 bis 345 haben
wir die Version 6, mit dem Y-
Register als Zahler eingefiigt.
Ein erneuter Start nach dem As-
semblieren zeigt uns ein kurzes
weiBes Aufflackern (falls Sie die
Farbe Rot wieder gegen # $20
ausgetauscht haben!). Das war
also immer noch zu schnell! Also
bauen wir noch eine Verzoge-
rungsschleife ein (Zeilen 346 bis
348 in Listing 4).

Nun sehen wir schon ein we-
nig mehr, aber wir konnen uns
vorstellen, daf es reichlich un-
gelenk ware, nun noch eine drit-
te, vierte,... Verzbgerung einzu-
bauen. Es gibt noch einen ande-
ren Weg, namlich einfach zwei
Verzégerungen ineinander zu
verschachteln. Das ist schlieB-
lich in Listing 5 geschehen und
wenn Sie das nach der Assem-
blierung starten, dann gehts

152 3:¥ap

258 -—3----- VERARBEITUNG ---——=--—
260 -3

270 -LABEL LDA COUNTZ
ZsBa - STA ZIEILE
290 - LDA COUNTS
Iaa - STA SPALTE
38 - JS5R CSET
328 - LDA #$71
338 - JSR BSOUT
335 = LDY #3FF
348 -MARKE DEY

345 - BNE MARKE
350 - LDA COUNTZ
&0 - STA ZEILE
37@ - LDA COUNTS
388 - S5TA SPALTE
39a - JSR CSET
400 - LDA #£20
418 - JSR BSOUT
420 -3

43@ —3;-——--— STEUERUNG -—--—

Listing 3. Flitzer mit kleinem Handicap

3CURSOR SETZEN
sDEZIMAL 113

;s GRAF IKZEICHEN DRUCKEN
;s VERZOEGERUNG

sDEZIMAL 32
3 ZEICHEN LOESCHEN

25@ -3-——-— VERARBEITUNG —-
260 -3

278 -LABEL LDA COUNTZ
280 - STA ZEILE
290 - LDA COUNTS
o0 - STA SPALTE
310 - JSR CSET
378 - LDA #$71
330 - JSR BSDUT
335 - LDY #3$FF
348 -MARKE DEY

345 - BNE MARKE
346 - LDY #$FF
347 -WEITER DEY

348 - BNE WEITER
358 - LDA COUNTZ
360 - STA ZEILE
378 - LDA COUNTS
38 - STA SPALTE
398 - JSR CSET
o0 - LDA #520
418 - JSR BSOUT
4z -

430 —;-———— STEUERUNG ———--

Listing 4. Der doppelt zogernde Flitzer

3 CURSOR SETZEN
sDEZIMAL 113

3 BRAF IKZEICHEN DRUCKEN
3 VERZOEGERUNG

sDEZIMAL 32
5 ZEICHEN LOESCHEN

25@ —;--——— VERARBEITUNG ——————
260 -3

270 -LABEL LDA COUNTZ
280 - STA ZEILE
290 - LDA COUNTS
o8 - STA SPALTE
31 - JSR CSET
320 - LDA #$71
330 - JSR BSOUT
332 - LDY #3FF
334 —MARKE LDX #$FF
336 -WEITER DEX

328 - BNE WEITER
340 - DEY

342 - BNE MARKE
50 — LDA COUNTZ
360 - STA ZEILE
370 - LDA COUNTS
88 - STA SPALTE
398 - JSR CSET
400 - LDA #320
418 - JSR BSOUT
428 -;

430 —3;-———— STEUERUNG —————————

Listing 5. Der Flitzer ist voll unter Kontrolle

;CURSOR SETZEN
sDEZIMAL 113
3 GRAF IKZEICHEN DRUCKEN

sDEZIMAL 32
; ZEICHEN LOESCHEN

hiibsch langsam. Immerhin wird
die innere Schleife 255 x 255mal
durchlaufen. Jedesmal namlich,
wenn wir X bis 0 heruntergezahlt
haben, wird Y dekrementiert
und X wieder mit #$FF bela-
den. Das geht so lange, bis auch
Y auf Null heruntergezahlt wur-
de. Wenn Sie in Zeile 332 statt
#$FF einen kleineren Startwert
eingeben (geht wieder ganz gut
vom Monitor aus), lauft der Ball
schneller. Damit haben Sie die
Geschwindigkeit vollig im Griff.

AuBerdem haben wir auf die-
se Weise die einfachen 8-Bit-
Schleifen verlassen, denn diese

Verzbgerung ist schon eine 16-
Bit-Schleife. Auf die und auf die
im Listing 2 verwendeten Firm-
wareroutinen kommen wir nun
Zu sprechen.

4. 16-Bit-Schleifen

Sehen wir uns zunéchst einmal
in Basic an, was wir da gemacht
haben. Es dreht sich um etwas
uns sehr bekanntes: Zwei inein-
ander geschachtelte Schleifen.
Am genauesten entspricht wohl
diese Programmsequenz unse-
rer 16-Bit-Verzégerung:

100 Y=255
110 X=255
120 X=X-1
13D IF X ..
140 Y=¥-1
150IF ¥ ..

0 THEN 120

0 THEN 110

Gebrauchlicher ware aller-
dings diese Version:

100 FOR Y=255 TO 0 STEP-1

110 FOR X=255 TO 0 STEP-1

120 MNEXT X

130 NEXT Y

Dagegen halten wir unsere
Verzogerungsschleife aus dem
letzten Assemblerprogramm (Li-
sting 5):

1DY #$FF
LABEL LDX # $FF
MARKE DEX

BNE MARKE

DEY

BNE LABEL

Diese Schleife zahlt das X-Re-
gister so oft eine ganze Page (mi-
nus 1, also jeweils 255mal) durch,
wie es das Y-Register angibt,
hier also 255mal. Insgesamt fin-
den daher 255%255 = 65025
Durchlaufe statt. Um ganze Pa-
ges, also 256 Zahlungen zu errei-
chen, 14dt man ins X-Register
einfach 0 ein. Der DEX-Befehl
sorgt dann noch vor der BNE-
Priifung fiir einen Unterlauf auf
$FF.

Deutlich wird Ihnen sicher,
daB wir — im Gegensatz zur ein-
fachen Schleife — hier einen
Multiplikationseffekt zu beach-
ten haben. Die Anzahl der
Durchlédufe setzt sich zusammen
aus:

Y-Startwert * X-Startwert

Das ist auch ganz akzeptabel,
solange man die gewiinschte
Durchlaufzahl aus zwei Faktoren
zusammensetzen kann. Soll ein
Job beispielsweise 1000mal aus-
gefiihrt werden, dann gibt es
mehrere Mdéglichkeiten, denn

1000 = 8 % 125
= 4 %250
=10 % 100

Wir kénnten dann unsere Job-
Schleife schreiben:
LDY # 304
LDX # $FA
Job-Befehle
DEX
BNE MARKE
DEY
BNE LABEL

LABEL
MARKE

Abgesehen davon, daB es
doch ein wenig aufwendig ist —
besonders bei einer nicht fest-
gelegten Anzahl von Durchlau-
fen — jedesmal eine Aufspal-
tung in zwei Faktoren vorzuneh-
men: Was tun wir bei Primzah-
len? 997 Jobs beispielsweise las-
sen sich in solch einer Doppel-
schleife nicht bearbeiten (997 ist
eine Primzahl, das bedeutet,
diese Zahl ist nicht in Faktoren
zerlegbar).

I Prinzip gibt es fiir solche
Falle zwei Losungen:

Ausgabe 2/Februar 1986

Kurs: Von Basic zu Assembler

C 64

— Entweder stellt man fest, daf
es gleichgiiltig ist, ob nun — um
beil unseren Beispielen zu blei-
ben — 1000, 1024 oder 997
Durchlaufe stattfinden. Es ist
haufig der Fall, daB dadurch
nicht mehr Schaden angerichtet
wird als der zusitzliche Zeitbe-
darf fiir 27 Durchlaufe (bei 1024
anstelle von 997). In diesem Fall
legt man den Anfangswert der
inneren Schleife einfach grund-
satzlich auf 0 fest (arbeitet also
genau eine Page darin ab) und
variiert nach Bedarf den Start-
wert der duBeren Schileife (dort
wird nun also 4 eingetragen).
— Oder aber — wenn's genau
drauf ankommt — wir miissen
zwel Schleifen einrichten: Fiir
die ganzen Pages eine Doppel-
schleife und fir den Rest eine
einfache. Genau das geschieht
in einer sehr niitzlichen Routine
unserer Firmware, der BLTUC-
(oder auch Blockverschiebe-)
Routine, auf deren Verstehen wir
bis zur nédchsten Folge hinarbei-
ten werden. Sie kénnen ja schon
mal mittels SMON in den Spei-
cher sehen: Von $A3BF bis ASFA
ist dieses Programm zu finden.
Bevor wir uns an diese schwie-
rigeren Sachen wagen, wollen
wir uns aber noch ein wenig mit
Fragen der Schleifenstruktur
befassen. Zunachst kann nur re-
lativ selten auf die beiden Index-
register als Zahler zuriickgegrif-
fen werden. Man muf} meistens
zwel Speicherstellen dazu ver-
wenden. AuBerdem kann man
natiirlich ebensogut in den
Schleifen aufwarts zdhlen. Das
soll im folgenden Beispiel bei-
des geschehen, wo wir den Bild-
schirminhalt invertieren wollen.
Das geschieht einfach durch
Setzen des Bit T des Codes in je-
der Bildschirmspeicherstelle
(wir machen das durch EOR
$80). Dashatden Vorzug, daB ein
zweiter Durchlauf des Program-
mes wieder den Ausgangszu-
stand des Bildschirmes herstellt.
Zuerst sollen Sie eine etwas
schwerfallige, aber tiberschau-
bare Form des Programmes
kennenlernen (Listing 6):

Hier wurden — auf hdchst
plumpe Weise — vier ganze Pa-
ges bearbeitet. Eine andere L&-
sung ware es, anstelle von $FA in
der Zeile 4010 das Y-Register zu
erhéhen (mittels INY). Es wiirde
dann sowohl als Index als auch

tine verwendet wird, soll Thnen
noch eine weitere Moglichkeit
vorgestellt werden, die im
SMON und neuerdings auch von
F. Miiller (siehe oben) gezeigt
worden ist. Da geht's recht trick-
reich zu.

Initialisieren
4000 LDA # $00 LSB Bildschirm
4002 STA $FA in Vektor und
4004 TAY Index = 0.
4005 LDA #04 MSB in Vektor
4007 STA $FB schreiben und
4009 TAX Zéhler filr die pages auf 4.
Job:
4004 LDA ($FA),Y Dasselbe wie
400C EOR #$80 wir es vorhin
400E STA ($FA),Y hatten.
Steuerteil:
4010 INY Index (Z&hler)+l
4011 BNE $400A wenn noeh kein Uberlauf, erneut Job aus-
fithren.
4015 DEX sonst page-Zihler herunterzihlen.
4016 BNE $400A Wenn noch nicht 0, dann wieder Jobbear-
beitung.
Ausgang:
4018 BRK sonst wieder Ende mit Registeranzeige.
Listing 7. Verbesserte Form von Listing 6

als Zahler dienen. (In unserer
Version hatte esja nur eine Alibi-
funktion fiir die spezielle Artder
Adressierung der Bildschirm-
speicherzellen). Eleganter kann

Wieder wird pro forma das In-
dexregister Y initialisiert wegen
der speziellen Art der Adressie-
rung (Listing 8).

finden. Die eine davon ($FFD2)
ist mittlerweile schon vielen
recht gelaufig. Sie dient dazu,
ein im Akku enthaltenes Zei-
chen an ein vorher definiertes
Gerat auszugeben. Der Unter-
schied zwischen beiden Routi-
nen ist, daf CHROUT (also
$FFD2) sich im sogenannten
Kernel-Bereich befindet, die an-
dere (PLOTK $ES10) aber nicht.
Was ist denn nun das besondere
am Kernel-Bereich? Es handelt
sich um eine Tabelle von 39 JMP-
Befehlen, fiir die Commodore
garantiert, da® sie in allen Com-
puterversionen an der gleichen
Stelle liegt und gleiche Funktio-
nen beinhaltet. Sollten Sie also
im Besitz eines VC 20 oder eines
C 128 sein: Sie kinnen die glei-
che Einsprungadresse fiir
CHROUT benutzen wie ein
C 64-Programmierer. Zwar ent-
halt beispielsweise die Kernel-
Sprungleiste des C 128 wesent-
lich mehr Maglichkeiten als die
des VC 20, aber alle im VC 20
giiltigen Einspriinge behalten
auch hier ihre Bedeutung. Lei-
der existiert diese Moglichkeit
des Kernel nur fiir relativ weni-
ge Verwendungszwecke. Wer
beispielsweise FlieBkomma-
operationen in Assembler zu
programmieren hat, sucht oft
ziemlich verzweifelt im ROM ei-
nes neuen Computers nach den
dazu passenden Firmware-Rou-
tinen.

Alle Kernel-Routinen verlan-

Das kennen wir
nun schon.

ErhShen des LSB

Wenn kein Uberlauf, erfolgt ein Sprung.
Sonst auch Erhdhen des MSB.

Das LSB wird nun

verglichen mit dem MSB der Endadresse +
1. Dabel findet die Resultatanzeige in
den Flaggen (N,2,C) statt.

Nun wird das MSB der Adresse in den Akku
geladen und

das MSB der Endadresse subtrahiert. Die
Carryflaggge ist gesetzt, wenn dle Adres-
se in $FA/FB gleich der Endadresse+l
($07E8) geworden ist.

das Problem geldst werden mit
einer Technik, die Florian Miil- Initialisieren:
ler in seinem Artikel »Effektives 4000 LDA #$00 Bildschirmstart
Programmieren in Assembler« 4002 STA $FA in Vektor $FA/FB
(64'er Sonderheft 8, 1985, 5.22) 4004 LDA #304
vorstellt, Dabei werden $FA und 4006 STA $FB
$FB nicht mehr als Zahler ver- 4008 LDY #3$00
wendet, sondern dem Y-Regi-
ster kommt wieder die Doppel- | Job:
funktion zu als Index und als Zah- 4004 LDA (SEA),Y
ler der inneren Schleife. Das X- 4006 HOR 350
Register ist Zahler der auBeren | 400 STh (BRL) 1
Schleife. In der inneren wird Y | S*esne:
hoch-, in der duReren Schleife X 4012 ;:; iopia
heruntergezahlt. Das Ergebnis 4014 ING $FB
davon ist: Das Programm wird 4016 IDA $FA
kiirzer und auch schneller (Li- 4018 CMP #3E8
sting 7).
Es stort uns immer noch
manchmal, daf3 wir — statt nur 4014 LDA $FB
bis $07E7 (denn das ist dezimal
2023) — bis $0TFF invertieren. 4o1c SBC #$07
Bevor wir in der nachsten Folge
die oben erwadhnte Variante er-
griinden, die in der BLTUC-Rou-
401E BCC 400A
Die Bildschirmadresse wird Ausgang:
in den Vektor $FA/FB geschrieben. 4020 BRK
fndexanb¥uts, Listing 8. Die trickreichste Version

Code in Akku
invertieren und
zurtickschreiben.

LSB hochzéhlen

und weiter Job ausfilhren, bis ein Uber-
lauf von 255 auf 0 stattfindet.

dann M5B erhohen

und priifen, ob

Endadresse erreicht ist.

Falls noch nicht, erneut zur
Jobschleife

Sonst Ende mit Registeranzeige.

Initialisierung:
4000 LDA #$00
4002 STA $FA
4004 LDA # $04
4006 STA §FB
4008 LOY #$00
Job:
4004 LDA ($FA),Y
400C EOR # $80
400E STA ($F),Y
Steuerung:
4010 INC $FA
4012 BNE $400A
4014 INC FFB
4016 LDA $FB
4018 CMP # 308
4014 BNE $400A
husgang:
401C BRK
Listing 6. Invertieren des Bildschirms

Solange das noch nicht der Fall ist, wird
zum Job zuriickverzweigt.

Sonst aber Ende mit Registeranzeige.

Natiirlich wird diese Doppel-
schleife durch die standigen
Rechnungen im Steuerteil rela-
tiv langsam, weshalb es doch
lohnt, auch andere Wege zu un-
tersuchen.

5. Zwei Firmware-
Routinen

Kommen wir nun — wie ver-
sprochen — noch auf die beiden
vorhin verwendeten Routinen
zuriick, die sich im oberen ROM-
Bereich unseres Computers be-

154 '2:¥4p

gen eine festgelegte Bearbei-
tungsweise:
a) Vorbereitungen treffen
b) Routinenaufruf
c) Fehlerabfrage und -behand-
lung

Damit hétten wir die Vorrede
hinter uns und kénnen uns dem
CHROUT-Programm zuwenden,
das wir an dieser Stelle in seiner
eingeschrankten Funktion be-
trachten, namlich zur Ausgabe
des Akku-Inhaltes auf dem Bild-
schirm. Falls Sie eine detaillierte
Schilderung weiterer Anwen-
dungsmoglichkeiten suchen

Ausgabe 2/Februar 1986

C 64

Kurs: Von Basic zu Assembler

sollten: Im Assembler-Kurs (64'er
Sonderheft, Ausgabe 8/85, Seite
33 und ab Seite 39) finden Sie
beispielsweise die Ausgabe auf
den Drucker.

Name CHROUT (auch BSOUT)

Zweck Ausgabe eines
Zeichens

Adresse $FFD2, 65490

Vorbereitungen (CHKOUT,OPEN)

Parameter

Eingabeort Akku

Eing.Format ASCII

Ausgabeort spezifiziertes
Gerdt

Ausg. format =

Fehler 0

Stapelbedarf 8

Register Akku

CHROUT ist nun freundlicher-
weise so geschaffen worden,
daf von den Vorbereitungen le-
diglich das Zeichen in den Akku

zu bringen iibrigbleibt, falls man
nur die Bildschirmausgabe
wiinscht. CHROUT ist zwar ein
enorm vielseitiger, aber leider
auch etwas langsamer Geselle.
Das liegt daran, daR CHROUT
gewissermaBen als die eierle-
gende Wollmilchsau konstruiert
wurde, also fast alles kann. Da-
mit sind aber endlos viele Prii-
fungen und Abfragen verbun-
den, die man sich durch Ver-
wenden anderer Routinen — die
lernen Sie noch kennen — erspa-
ren kann.

Nun zur zweiten Adresse
$E510, der PLOTK-Routine. Dies
ist nur eine der mdglichen Ein-
sprungadressen dazu. Es han-
delt sich nicht um eine Kernel-
Routine: Prompt findet sich auch
in dem dazugehérigen Pro-
gramm an einer anderen Ein-
sprungstelle ein Unterschied

bei verschiedenen C 64-ROMs,
der ungs aber nicht zu kiimmern
braucht.

Diese letzte Angabe werden
Sie nicht bei allen beschriebe-
nen Routinen finden. Manchmal
ist der Irrweg, dem man durch
das ROM zu folgen hat, so kom-
plex, daB ich Thnen empfehle,

selbst mal per SMON (Trace-
Kommandos) durchs Labyrinth
Zu gehen.

In der nachsten Folge sollen
Sie dann die BLTUC-Routine als
Beispiel fiir eine 16-Bit-Schleife
aus unserer Firmware kennen-
und benutzenlernen.

(Heimo Ponnath/gk)

Name PLOTK
Zweck
Adresse
Vorbereitungen
Parameter
Fehler
Stapelbedarf =
Register

Cursor setzen

$E510, 58640

Zeile in 214, Spalte in 211

{bergaben spielen hier keine Rolle.
spielen nur bei Kernel-Routinen eine Rolle.

Akku, X, ¥
Weitere Speicherstellen, die durch die Routine beschrieben werden
kénnen: 209, 210, 213, 217 (alle als Dezimalzahlen).

Nr. Text

Bedeutung

0 BREAK
1 TOO MANY FILES

2 FILE OPEN

3 FILE NOT OPEN

4 FILE NOT FOUND

5 DEVICE NOT PRESENT
6 NOT INPUT FILE

7 NOT OUTPUT FILE

8 MISSING FILE NAME

9 ILLEGAL DEVICE
NUMBER

Carry im Akku.

Tabelle. Fehlernummern und ihre Bedeutung. Die Nummern
findet man nach Aufruf von Kernel-Routinen bei gesetztem

Wihrend des Programmes wurde die
RUN/STOP-Taste gedriickt

Man kann maximal 10 offene Files ein-
riehten

Ein bereits gedffneter File wird noch-
mal geéffnet

Auf einen noch nicht gedffneten File
sollte zugegriffen werden

Der geforderte File ist nicht verfiig-
bar

Das angesprochene Gerét zeigt keine
Reaktion

Aus einem Schreibfile kann nicht gele-
sen werden

In einem Lesefile kann nicht geschrie-
ben werden

Bei Operationen, die einen Filenamen
erfordern, fehlt dieser

Das versuchte Kommando ist beim ange-
sprochenen Gerdt nicht méglich

Die bringt

@® Wir zeigen nicht nur, was die neuen Benutzer-
oberflachen wie GEM, WINDOW und GSX kbnnen -
Klaus Schachtschneider erklart auch, wie man
Windows und Pull Down-MenUs auf dem C64

simuliert

® Frank Kampow greift wieder tief in seine BASIC-
Trickkiste und unterzieht auBerdem Superscript
und Superbase fur den C128 einem ersten Test

@ Dirk Jansen als Sieger unserer Programmier-
Olympiade stellt seine preisgekronte PRINT USING-

Routine vor

@ Ralph Hornig & Co bieten unter Tips & Tricks zu C
eine Graphik-Bibliothek

's wieder!

® Cerd Pfalz liefert unter dem Stichwort ,Opernfuh-
rer’ eine leicht modifizierbare, vielseitige SUPER-

BASE-Datenbank

@ Rainer Severin erklart in ,Hackers Nachtschicht”

das Hacker-Chinesisch

® Thomas Tai stellt im DATA WELT-Spieltip den
neuen Hit ,Little Computer People” vor

@ Jurgen Steigers hat wieder einen tollen Bastelgag

auf Lager

® und zwei Tests: JUrgen Kausmann mit dem Pana-
sonic-Drucker der KX-Reihe und Rolf Brickmann
mit dem C64 als Oszillograph

AuBerdem natUrlich wieder aktuelle News & Trends, offene Interviews, brandheiBe Tips & Tricks (z.B. zu
dBase), jede Menge Drum & Dran und vieles mehr.

Die neue DATA WELT gibt’'s ab 20.1.1986 am Kiosk

DATA WELT 2/86

Ausgabe 2/Februar 1986

J5dp 185

