
C 64 Kurs: Von Basic zu Assembler

Vbn Basic zu Assembler
Die letzte Folge hatten wir

beendet mit der Aussicht, in
die einfachen Verzögerungs­

schleifen nun die Würze von Auf­
gaben einzubauen. Ein kleines
Basic-Programm, das Sie viel­
leicht verlockt hat, die Entspre­
chung in Assembler zu schrei­
ben, sollte 128 bunte Zeichen auf
den Bildschirm zaubern. Haben
Sie es versucht? Wenn ja, dann
vergleichen Sie Ihr Ergebnis
doch mal mit Listing 1.

In den Zeilen 30, 40 und 160,
170 sehen Sie die Anwendung ei­
nes weiteren Pseudobefehls.
Das .EQ bewirkt, daß eine be­
stimmte Speicherstelle mit ei­
nem Namen versehen werden
kann. Im folgenden braucht man
sich nur noch den Namen zu
merken, der auch am Ende in
der Symboltabelle mit ausgege­
ben wird. Dadurch wird man bis
zu einem gewissen Grad sogar
systemunabhängig. Um bei­
spielsweise dieses Programm
auf einem VC 20 in der Grund­
version laufen zu lassen, muß in
Zeile 30 der SCREEN-Wert auf
$lE00 und in Zeile 40 der
COLOR-Wert auf $9600 geän­
dert werden.

Bevor Sie durch G 5000 aus
dem Monitor heraus das Pro­
gramm starten, löschen Sie am
besten zuerst den Bildschirm
und fahren den Cursor in eine
mittlere Bildschirmzeile, damit
er dem Ergebnis des Program­
mes nicht ins Gehege kommt.
Das Programm läuft natürlich
auch auf dem C 128 (im C 128-
Modus). Allerdings werden hier
die Zeichen nur einfarbig, weil
man zum Beschreiben des Bild-

(Teil 2)
Kurze Schleifen sind in Assembler kein
Problem mehr. Deshalb wagen wir
uns nun an die 16-Bit-Schleifen, wobei
uns auch gleich zwei Routinen aus der
Firmware entschleiert werden.

schirmfarbspeichers (mit STA
COLOR,Y) noch die Bank um­
schalten muß, was hier nicht ge­
tan wird.

Sie sehen: Das geht in Assem­
bler erheblich schneller als in
Basic und eben die Geschwin­
digkeit in Assemblerprogram­
men wird es sein, die uns im
2. Beispiel noch ein wenig be­
schäftigen wird. Die Aufgaben­
stellung ist folgende: Ein weißer
Ball soll von rechts unten kom­
mend quer über den Bildschirm
fliegen nach links oben. Dazu
sollen 2 Firmwareroutinen ver­
wendet werden: Eine zum
Drucken beliebiger Zeichen
und eine andere zum Setzen des
Cursors. Die erste ist das norma­
le PRINT in Basic, das als Kernel-
Routine BSOUT(manchmal auch
CHROUT genannt) durch As­
semblerprogramme bei $FFD2
ansteuerbar ist. Das auszu­
druckende Zeichen muß vor

dem Aufruf JSR $FFD2 im Akku­
mulator enthalten sein. Die an­
dere Routine dient dem Steuern
des Cursors. Gibt man in die
Speicherstelle 211 ($D3) die ge­
wünschte Spalte und in 214 ($D6)
die Zeile des Bildschirmes, an

die der Cursor positioniert wer­
den soll, dann lenkt ihn der Auf­
ruf des bei 58640 ($E510) begin­
nenden Maschinenprogrammes
unserer Firmware an diesen Ort.

Alle Randbedingungen wer­
den durch dieses Basic-Pro-
gramm realisiert:
10 S=211:Z=214:B=58640:Sl=40:Zl=20
20 PRINT CHRS(147)CHR$(5)
30
40
50
60
70

GOSUB lOO:PRINT CHRS(113)
FOR 1=19 TO 0 STEP -1

GOSUB lOO:PRINT CHR$(32)
Sl=Sl-2:Zl=Zl-l
GOSUB lOO:PRINT CHR$(113)

80 NEXT I
90 PRINT CHR$(154):END

100P0KE S,Sl:POKE Z,Zl:SYS B:RETURN
In der Schleife wird immer zu­

erst das zuletzt gedruckte Zei­
chen gelöscht (sonst hätten wir
nicht nur einen Ball, sondern ei­
ne Diagonale aus weißen Bällen)
und dann nach dem Weiterset­
zen des Cursors der nächste Ball
gezeichnet.

Listing 2 zeigt nun das Äquiva­
lent dazu in Assembler.

ia
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

.BA

.EQ

.EQ

*5000
SCREEN=*0400:BILDSCHIRMSTART
COLOR=*D800;FARBRAMSTART

;••• BEISPIEL 1 •••
;VERSION S MIT EINGFACHEM JOB
;ZEICHEN AUF BILDSCHIRM ZEIGEN

INITIALISIERUNG

LDY #47F

VERARBEITUNG

-LABEL TYA
STA SCREEN,Y
STA COLOR,Y

STEUERUNG

DEY
DEY
BPL LABEL

AUSGANG

BRK

.SY 1,4

.ST

;DAS IST DEZIMAL 127

Listing 1. Unser Beispiel 1 in Assembler: Bunte Zeichen Listing 2. Ein schneller Flitzer: Beispiel 2

10 — .LI 1,4
20 — .BA 15000
30 — .EQ SPALTE=4D3
40 — .EQ ZEILE=4D6
50 — .EQ C0UNTZ=4FA
60 — .EQ C0UNTS=4FB
70 — .EQ CSET=4E510
80 - .EQ BS0UT=4FFD2
90 2 ***
100 -;BILDSCHIRMAUSGABE MIT FIRMWARE-ROUTINEN
110
120 “5---------- • VORBEREITUNGEN ------
130 —5
140 LDA #493 ;DEZIMAL 147
150 JSR BSOUT -.BILDSCHIRM LOESCHEN
160 — LDA #405
170 — JSR BSOUT ;ZEICHENFARBE WEISS
180 — LDA #414 ;DEZIMAL 20
190 — STA ZEILE
200 — STA COUNTZ ;SICHERN
210 — LDA #427 ;DEZIMAL 39
220 — STA SPALTE
230 — STA COUNTS ;SICHERN
240 “5 llCO^ODCTTIIKIC______
260
270 -LABEL LDA COUNTZ
280 — STA ZEILE
290 — LDA COUNTS
300 — STA SPALTE
310 — JSR CSET ;CURSOR SETZEN
320 — LDA #471 ;DEZIMAL 113
330 — JSR BSOUT ;GRAFIKZEICHEN DRUCKEN
340 NOP
350 — LDA COUNTZ
360 — STA ZEILE
370 — LDA COUNTS
380 — STA SPALTE
390 — JSR CSET
400 — LDA #420 ;DEZIMAL 32
410 — JSR BSOUT -.ZEICHEN LOESCHEN
420
430
440 “?

- ÖItUtKUNU -----------------

450 DEC COUNTS
460 — DEC COUNTS
470 — DEC COUNTZ
480 — BNE LABEL ;HERUNTERZAEHLEN BIS 0
490 -;

- APSFH1 I icc---------- ------
510
520 LDA #49A ;DEZIMAL 154
530 — JSR BSOUT ;ZEICHENFARBE HELLBLAU
540 — BRK
550
560 .SY 1 »4
570 — .ST

Ausgabe 2/Februar 1986 151

Kurs: Von Basic zu Assembler C 64

In den Zeilen 30 bis 80 finden
Sie wieder den Pseudobefehl
.EQ. Mit diesem werden außer
den bisher schon besprochenen
Speicherstellen (Zeile, Spalte,
CSET und BSOUT) auch noch
zwei Zähler kreiert: COUNTZ
(Zeilerzähler) und COUNTS
(Spaltenzähler). Was soll das,
werden Sie fragen, warum ver­
wendet man nicht direkt ZEILE
und SPALTE? Die Ursache liegt
darin, daß BSOUT ebenfalls die­
se Speicherstellen benutzt und
daher keine richtige Zählung
mehr stattfinden kann. So zählt
$FA und $FB und jedesmal vor
Aufruf von CSET wird deren In­
halt in ZEILE und SPALTE über­
tragen. Wir brauchen natürlich
nur einen Zähler für diese
Schleife. COUNTS läuft nur ne­
benher und könnte eigentlich
auch in den Schleifenteil »Verar­
beitung« geschrieben werden.
Die Abbruchoperation in Zeile
480 prüft nur COUNTZ. Mehr
Kommentar finden Sie direkt im
Listing.

So, nun starten Sie mal das Pro­
gramm nach dem Assemblieren
aus dem Monitor mit G 5000! Sie
meinen, da passiert ja gar
nichts? Ich kann Ihnen bewei­
sen, daß doch etwas passiert —
nur so immens schnell, daß wir
nichts davon sehen. Verändern
Sie doch mal in Zeile 400 das
#$20 (Leerzeichen) zu #$lC
(Farbe Rot). Das können Sie auch
schnell aus dem Monitor her er­
reichen durch M 5033 — dort fin­
den Sie am Anfang die 20 — und
überschreiben durch lC ((RE­
TURN)). Wenn Sie nun starten,
wird der Ball nicht mehr ge­
löscht, sondern nur rot gefärbt.
Wir erhalten die Diagonale aus
roten Bällen. Es geht also doch!

Wir müssen daher das ganze
etwas verlangsamen. Dazu ist
schon eine Stelle vorgesehen:
In Zeile 340 befindet sich ein
gänzlich unmotiviertes NOP-
Kommando. Dorthin packen wir
nun eine Verzögerungsschleife
und es ergibt sich Listing 3.

In die Zeilen 335 bis 345 haben
wir die Version 6, mit dem Y-
Register als Zähler eingefügt.
Ein erneuter Start nach dem As­
semblieren zeigt uns ein kurzes
weißes Aufflackern (falls Sie die
Farbe Rot wieder gegen #$20
ausgetauscht haben!). Das war
also immer noch zu schnell! Also
bauen wir noch eine Verzöge­
rungsschleife ein (Zeilen 346 bis
348 in Listing 4).

Nun sehen wir schon ein we­
nig mehr, aber wir können uns
vorstellen, daß es reichlich un­
gelenk wäre, nun noch eine drit­
te, vierte,... Verzögerung einzu­
bauen. Es gibt noch einen ande­
ren Weg, nämlich einfach zwei
Verzögerungen ineinander zu
verschachteln. Das ist schließ­
lich in Listing 5 geschehen und
wenn Sie das nach der Assem­
blierung starten, dann gehts

250 -;---------- VERARBEITUNG -
260
270 -LABEL LDA COUNTZ
280 — STA ZEILE
290 — LDA COUNTS
300 — STA SPALTE
310 — JSR CSET ;CURSOR SETZEN
320 — LDA #471 ;DEZIMAL 113
330 — JSR BSOUT ;GRAFIKZEICHEN DRUCKEN
335 — LDY #4FF ;VERZOEGERUNG
340 -MARKE DEY
345 — BNE MARKE
350 — LDA COUNTZ
360 — STA ZEILE
370 — LDA COUNTS
380 — STA SPALTE
390 — JSR CSET
400 — LDA #120 ;DEZIMAL 32
410 — JSR BSOUT ;ZEICHEN LOESCHEN
420
430 - ------------- STEUERUNG ------------

Listing 3. Flitzer mit kleinem Handicap

Listing 4. Der doppelt zögernde Flitzer

250
260 ~;

VERARBEITUNG --------------

270 -LABEL LDA COUNTZ
280 — STA ZEILE
290 — LDA COUNTS
300 — STA SPALTE
310 — JSR CSET ;CURSOR SETZEN
320 — LDA #471 ;DEZIMAL 113
330 — JSR BSOUT ;GRAFIKZEICHEN DRUCKEN
335
340 -MARKE

LDY
DEY

#4FF ;VERZOEGERUNG

345 — BNE MARKE
346
347 -WEITER

LDY
DEY

#4FF

348 — BNE WEITER
350 — LDA COUNTZ
360 — STA ZEILE
370 — LDA COUNTS
380 — STA SPALTE
390 — JSR CSET
400 — LDA #420 ;DEZIMAL 32
410
420 -5

JSR BSOUT ;ZEICHEN LOESCHEN

430 STEUERUNG ------------

Listing 5. Der Flitzer ist voll unter Kontrolle

250
260 -;

VERARBEITUNG -----—
270 -LABEL LDA COUNTZ
280 — STA ZEILE
290 — LDA COUNTS
300 — STA SPALTE
310 — JSR CSET ;CURSOR SETZEN
320 — LDA #471 ;DEZIMAL 113
330 — JSR BSOUT ;GRAFIKZEICHEN DRUCKEN
332 — LDY #4FF
334 -MARKE LDX #4FF
336 -WEITER DEX
338 — BNE WEITER
340 — DEY
342 — BNE MARKE
350 — LDA COUNTZ
360 — STA ZEILE
370 — LDA COUNTS
380 — STA SPALTE
390 — JSR CSET
400 — LDA #420 ;DEZIMAL 32
410 — JSR BSOUT ;ZEICHEN LOESCHEN
420
430 - ------------- STEUERlJNG----------- _____

hübsch langsam. Immerhin wird
die innere Schleife 255 x 255mal
durchlaufen. Jedesmal nämlich,
wenn wir X bis 0 heruntergezählt
haben, wird Y dekrementiert
und X wieder mit #$FF bela­
den. Das geht so lange, bis auch
Y auf Null heruntergezählt wur­
de. Wenn Sie in Zeile 332 statt
#$FF einen kleineren Startwert
eingeben (geht wieder ganz gut
vom Monitor aus), läuft der Ball
schneller. Damit haben Sie die
Geschwindigkeit völlig im Griff.

Außerdem haben wir auf die­
se Weise die einfachen 8-Bit-
Schleifen verlassen, denn diese

Verzögerung ist schon eine 16-
Bit-Schleife. Auf die und auf die
im Listing 2 verwendeten Firm­
wareroutinen kommen wir nun
zu sprechen.

4. 16-Bit-Schleifen

Sehen wir uns zunächst einmal
in Basic an, was wir da gemacht
haben. Es dreht sich um etwas
uns sehr bekanntes: Zwei inein­
ander geschachtelte Schleifen.
Am genauesten entspricht wohl
diese Programmsequenz unse­
rer 16-Bit-Verzögerung:

100 Y=255
110 X=255
120 X=X-1
130 IF X .. 0 THEN 120
140 Y=Y-1
150 IF Y .. 0 THEN 110

Gebräuchlicher wäre aller­
dings diese Version:

100 FOR Y=255 T0 0 STEP-1
110 FOR X=255 T0 0 STEP-1
120 NEXT X
130 NEXT Y

Dagegen halten wir unsere
Verzögerungsschleife aus dem
letzten Assemblerprogramm (Li­
sting 5):

LDY #$FF
LABEL LDX #$FF
MARKE DEX

BNE MARKE
DEY
BNE LABEL

Diese Schleife zählt das X-Re-
gister so oft eine ganze Page (mi­
nus 1, alsojeweils 255mal) durch,
wie es das Y-Register angibt,
hier also 255mal. Insgesamt fin­
den daher 255*255 = 65025
Durchläufe statt. Um ganze Pa­
ges, also 256 Zählungen zu errei­
chen, lädt man ins X-Register
einfach 0 ein. Der DEX-Befehl
sorgt dann noch vor der BNE-
Prüfung für einen Unterlauf auf
$FF.

Deutlich wird Ihnen sicher,
daß wir — im Gegensatz zur ein­
fachen Schleife — hier einen
Multiplikationseffekt zu beach­
ten haben. Die Anzahl der
Durchläufe setzt sich zusammen
aus:
Y-Startwert * X-Startwert

Das ist auch ganz akzeptabel,
solange man die gewünschte
Durchlaufzahl aus zwei Faktoren
zusammensetzen kann. Soll ein
Job beispielsweise 1000mal aus­
geführt werden, dann gibt es
mehrere Möglichkeiten, denn
1000 = 8 * 125

= 4 * 250
=10 * 100

Wir könnten dann unsere Job-
Schleife schreiben:

LDY #$04
LABEL LDX #$FA
MARKE Job-Befehle

DEX
BNE MARKE
DEY
BNE LABEL

Abgesehen davon, daß es
doch ein wenig aufwendig ist —
besonders bei einer nicht fest­
gelegten Anzahl von Durchläu­
fen — jedesmal eine Aufspal­
tung in zwei Faktoren vorzuneh­
men: Was tun wir bei Primzah­
len? 997 Jobs beispielsweise las­
sen sich in solch einer Doppel­
schleife nicht bearbeiten (997 ist
eine Primzahl, das bedeutet,
diese Zahl ist nicht in Faktoren
zerlegbar).

Im Prinzip gibt es für solche
Fälle zwei Lösungen:

152 3^ Ausgabe 2/Februar 1986

Kurs: Von Basic zu Assembler C 64

— Entweder stellt man fest, daß
es gleichgültig ist, ob nun — um
bei unseren Beispielen zu blei­
ben - 1000, 1024 oder 997
Durchläufe stattfinden. Es ist
häufig der Fall, daß dadurch
nicht mehr Schaden angerichtet
wird als der zusätzliche Zeitbe­
darf für 27 Durchläufe (bei 1024
anstelle von 997). In diesem Fall
legt man den Anfangswert der
inneren Schleife einfach grund­
sätzlich auf 0 fest (arbeitet also
genau eine Page darin ab) und
variiert nach Bedarf den Start­
wert der äußeren Schleife (dort
wird nun also 4 eingetragen).
— Oder aber — wenn’s genau
drauf ankommt — wir müssen
zwei Schleifen einrichten: Für
die ganzen Pages eine Doppel­
schleife und für den Rest eine
einfache. Genau das geschieht
in einer sehr nützlichen Routine
unserer Firmware, der BLTUC-
(oder auch Blockverschiebe-)
Routine, auf deren Verstehen wir
bis zur nächsten Folge hinarbei­
ten werden. Sie können ja schon
mal mittels SMON in den Spei­
cher sehen: Von $A3BF bis A3FA
ist dieses Programm zu finden.

Bevor wir uns an diese schwie­
rigeren Sachen wagen, wollen
wir uns aber noch ein wenig mit
Fragen der Schleifenstruktur
befassen. Zunächst kann nur re­
lativ selten auf die beiden Index­
register als Zähler zurückgegrif­
fen werden. Man muß meistens
zwei Speicherstellen dazu ver­
wenden. Außerdem kann man
natürlich ebensogut in den
Schleifen aufwärts zählen. Das
soll im folgenden Beispiel bei­
des geschehen, wo wir den Bild­
schirminhalt invertieren wollen.
Das geschieht einfach durch
Setzen des Bit 7 des Codes in je­
der Bildschirmspeicherstelle
(wir machen das durch EOR
$80). Das hat den Vorzug, daß ein
zweiter Durchlauf des Program­
mes wieder den Ausgangszu­
stand des Bildschirmes herstellt.
Zuerst sollen Sie eine etwas
schwerfällige, aber überschau­
bare Form des Programmes
kennenlernen (Listing 6):

Initialisierung:
4000 LDA #800 Die Bildschirmadresse wird
4002 STA SFA in den Vektor $FA/FB geschrieben.
4004 LDA #804 Index auf Null.
4006 STA SFB
4008 LDY #S00

Job:
400A LDA (SFA),Y Code ln Akku
400C EOR #$80 invertieren und
400E STA (SFA),Y zurückschreiben.

Steuerung:
4010 INC $FA LSB hochzählen
4012 BNE S400A und welter Job ausführen, bis ein Über­

lauf von 255 auf 0 stattfindet.
4014 INC SFB dann MSB erhöhen
4016 LDA SFB und prüfen, ob
4018 CMP #S08 Endadresse erreicht ist.
401A BNE $400A Falls noch nicht, erneut zur

Ausgang:
Jobschlelfe

401C BRK Sonst Ende mit Registeranzeige.

Listing 6. Invertieren des Bildschirms

Hier wurden — auf höchst
plumpe Weise — vier ganze Pa­
ges bearbeitet. Eine andere Lö­
sung wäre es, anstelle von $FA in
der Zeile 4010 das Y-Register zu
erhöhen (mittels INY). Es würde
dann sowohl als Index als auch

Initialisieren
4000 LDA #$00 LSB Bildschirm
4002 STA $FA in Vektor und
4004 TAY Index = 0.
4005 LDA «04 MSB in Vektor
4007 STA 8FB schreiben und
4009 TAX Zähler für die pages auf 4.

Job:
400A LDA (SFA),Y Dasselbe wie
400C EOR #880 wir es vorhin
400E

Steuerteil:
STA ($FA),Y hatten.

4010 INY Index (Zähler)+1
4011 BNE S400A wenn noch kein Oberlauf, erneut Job aus­

führen.
4015 DEX sonst page-Zähler herunterzählen.
4016 BNE $400A Wenn noch nicht 0, dann wieder Jobbear-

beltung.
Ausgang:

4018 BRK sonst wieder Ende mit Registeranzeige.

Listing 7. Verbesserte Form von Listing 6

als Zähler dienen. (In unserer
Version hatte esja nur eine Alibi­
funktion für die spezielle Art der
Adressierung der Bildschirm­
speicherzellen). Eleganter kann
das Problem gelöst werden mit
einer Technik, die Florian Mül­
ler in seinem Artikel »Effektives
Programmieren in Assembler«
(64'er Sonderheft 8, 1985, S.22)
vorstellt. Dabei werden $FA und
$FB nicht mehr als Zähler ver­
wendet, sondern dem Y-Regi-
ster kommt wieder die Doppel­
funktion zu als Index und als Zäh­
ler der inneren Schleife. Das X-
Register ist Zähler der äußeren
Schleife. In der inneren wird Y
hoch-, in der äußeren Schleife X
heruntergezählt. Das Ergebnis
davon ist: Das Programm wird
kürzer und auch schneller (Li­
sting 7).

Es stört uns immer noch
manchmal, daß wir — statt nur
bis $07E7 (denn das ist dezimal
2023) — bis $07FF invertieren.
Bevor wir in der nächsten Folge
die oben erwähnte Variante er­
gründen, die in der BLTUC-Rou-

tine verwendet wird, soll Ihnen
noch eine weitere Möglichkeit
vorgestellt werden, die im
SMON und neuerdings auch von
F. Müller (siehe oben) gezeigt
worden ist. Da gehfs recht trick­
reich zu.

Wieder wird pro forma das In­
dexregister Y initialisiert wegen
der speziellen Art der Adressie­
rung (Listing 8).

Initlalisieren:
4000
4002
4004
4006
4008

LDA
STA
LDA
STA
LDY

#S00 Bildschirmstart
SFA in Vektor SFA/FB
#S04
$FB
#$00

Job:
400A
400C
400E

Steuerung:
4010
4012
4014
4016
4018

LDA (SFA),Y
EOR #880

Das kennen wir
nun schon.

STA ($FA),Y

INC
BNE
INC
LDA
CMP

SFA
4016
$FB
$FA
#SE8

LDA SFB

SBC #S07

BCC 400A

Erhöhen des LSB
Wenn kein Oberlauf, erfolgt ein Sprung.
Sonst auch Erhöhen des MSB.
Das LSB wird nun
verglichen mit dem MSB der Endadresse +
1. Dabei findet die Resultatanzeige in
den Flaggen (N,Z,C) statt.
Nun wird das MSB der Adresse ln den Akku
geladen und
das MSB der Endadresse subtrahiert. Die
Carryflaggge ist gesetzt, wenn die Adres­
se ln SFA/FB gleich der Endadresse+1
(S07E8) geworden ist.
Solange das noch nicht der Fall ist, wird
zum Job zurückverzweigt.

BRK Sonst aber Ende mit Registeranzeige.

401A

401C

401E

Ausgang:
4020

Listing 8. Die trickreichste Version

Natürlich wird diese Doppel­
schleife durch die ständigen
Rechnungen im Steuerteil rela­
tiv langsam, weshalb es doch
lohnt, auch andere Wege zu un­
tersuchen.

5. Zwei Firmware-
Routinen

Kommen wir nun — wie ver­
sprochen — noch auf die beiden
vorhin verwendeten Routinen
zurück, die sich im oberen ROM-
Bereich unseres Computers be-

finden. Die eine davon ($FFD2)
ist mittlerweile schon vielen
recht geläufig. Sie dient dazu,
ein im Akku enthaltenes Zei­
chen an ein vorher definiertes
Gerät auszugeben. Der Unter­
schied zwischen beiden Routi-
nen ist, daß CHROUT (also
$FFD2) sich im sogenannten
Kernel-Bereich befindet, die an­
dere (PLOTK $E510) aber nicht.
Was ist denn nun das besondere
am Kernel-Bereich? Es handelt
sich um eine Tabelle von 39 JMP-
Befehlen, für die Commodore
garantiert, daß sie in allen Com­
puterversionen an der gleichen
Stelle liegt und gleiche Funktio­
nen beinhaltet. Sollten Sie also
im Besitz eines VC 20 oder eines
C 128 sein: Sie können die glei­
che Einsprungadresse für
CHROUT benutzen wie ein
C 64-Programmierer. Zwar ent­
hält beispielsweise die Kernel-
Sprungleiste des C 128 wesent­
lich mehr Möglichkeiten als die
des VC 20, aber alle im VC 20
gültigen Einsprünge behalten
auch hier ihre Bedeutung. Lei­
der existiert diese Möglichkeit
des Kernel nur für relativ weni­
ge Verwendungszwecke. Wer
beispielsweise Fließkomma­
operationen in Assembler zu
programmieren hat, sucht oft
ziemlich verzweifelt im ROM ei­
nes neuen Computers nach den
dazu passenden Firmware-Rou­
tinen.

Alle Kernel-Routinen verlan­

gen eine festgelegte Bearbei­
tungsweise:
a) Vorbereitungen treffen
b) Routinenaufruf
c) Fehlerabfrage und -behand-
lung

Damit hätten wir die Vorrede
hinter uns und können uns dem
CHROUT-Programm zuwenden,
das wir an dieser Stelle in seiner
eingeschränkten Funktion be­
trachten, nämlich zur Ausgabe
des Akku-Inhaltes auf dem Bild­
schirm. Falls Sie eine detaillierte
Schilderung weiterer Anwen­
dungsmöglichkeiten suchen

154 ^a? Ausgabe 2/Februar 1986

C 64 Kurs: Von Basic zu Assembler

sollten: Im Assembler-Kurs (64'er
Sonderheft, Ausgabe 8/85, Seite
33 und ab Seite 39) finden Sie
beispielsweise die Ausgabe auf
den Drucker.

Name CHROUT (auch BSOUT)
Zweck Ausgabe eines

Zeichens
Adresse $FFD2, 65490
Vorbereitungen
Parameter

(CHKOUT,OPEN)

Elngabeort Akku
Elng.Format ASCII
Ausgabeort spezifiziertes

Gerät
Ausg.format -
Fehler 0
Stapelbedarf 8
Register Akku

CHROUT ist nun freundlicher­
weise so geschaffen worden,
daß von den Vorbereitungen le­
diglich das Zeichen in den Akku

Name PLOTK
Zweck
Adresse
Vorbereitungen
Parameter
Fehler

zu bringen übrigbleibt, falls man
nur die Bildschirmausgabe
wünscht. CHROUT ist zwar ein
enorm vielseitiger, aber leider
auch etwas langsamer Geselle.
Das liegt daran, daß CHROUT
gewissermaßen als die eierle­
gende Wollmilchsau konstruiert
wurde, also fast alles kann. Da­
mit sind aber endlos viele Prü­
fungen und Abfragen verbun­
den, die man sich durch Ver­
wenden anderer Routinen — die
lernen Sie noch kennen — erspa­
ren kann.

Nun zur zweiten Adresse
$E510, der PLOTK-Routine. Dies
ist nur eine der möglichen Ein­
sprungadressen dazu. Es han­
delt sich nicht um eine Kernel-
Routine: Prompt findet sich auch
in dem dazugehörigen Pro­
gramm an einer anderen Ein­
sprungstelle ein Unterschied

Cursor setzen
$E510, 58640
Zeile ln 214, Spalte in 211
übergaben spielen hier keine Rolle.
spielen nur bei Kernel-Routinen eine Rolle.

bei verschiedenen C 64-ROMs,
der uns aber nicht zu kümmern
braucht.

Diese letzte Angabe werden
Sie nicht bei allen beschriebe­
nen Routinen finden. Manchmal
ist der Irrweg, dem man durch
das ROM zu folgen hat, so kom­
plex, daß ich Ihnen empfehle,

Tabelle. Fehlernummern und ihre Bedeutung. Die Nummern
findet man nach Aufruf von Kernel-Routinen bei gesetztem
Carry im Akku.

Nr. text Bedeutung

0 BREAK Während des Programmes wurde die
RUN^TOP-Taste gedrückt

1 TOOMANYFILES Man kann maxinal 10 offene Files ein­
richten

2 FILE OPEN Ein bereits geöffneter File wird noch­
mal geöffnet

3 FILE NOT OPEN Auf einen noch nicht geöffneten Flle
sollte zugegriffen werden

4 FILE NOT FOUND Der geforderte File ist nicht verfüg­
bar

5 DEVICE NOT PRESENT Das angesprochene Gerät zeigt keine
Reaktion

6 NOT INPUT FILE Aus einem Schreibfile kann nicht gele­
sen werden

7 NOT OUTPUT FILE In einem Lesefile kann nicht geschrie­
ben werden

8 MISSING FILE NAME Bei Operationen, die einen Filenamen
erfordern, fehlt dieser

9 ILLEGAL DEVICE
NUMBER

Das versuchte Kommando ist beim ange­
sprochenen Gerät nicht möglich

selbst mal per SMON (Trace-
Kommandos) durchs Labyrinth
zu gehen.

In der nächsten Folge sollen
Sie dann die BLTUC-Routine als
Beispiel für eine 16-Bit-Schleife
aus unserer Firmware kennen-
und benutzenlernen.

(Heimo Ponnath/gk)

Stapelbedarf 2
Register Akku, X, Y
Weitere Speicherstellen, die durch die Routine beschrieben werden
können: 209, 210, 213, 217 (alle als Dezimalzahlen).

Die bringt’s wieder!
• Wir zeigen nicht nur, was die neuen Benutzer­

oberflächen wie CEM, WINDOW und CSX können
Klaus Schachtschneider erklärt auch, wie man
Windows und Pull Down-Menüs auf dem C64
simuliert

• Frank Kampow greift wieder tief in seine BASIC-
Trickkiste und unterzieht außerdem Superscript
und Superbase für den C128 einem ersten Test

• Dirk Jansen als Sieger unserer Programmier-
Olympiade stellt seine preisgekrönte PRINT USINC-
Routine vor

• Ralph Hornig & Co bieten unter Tips & Tricks zu C
eine Graphik-Bibliothek

• Cerd Pfalz liefert unter dem Stichwort „Opernfüh­
rer" eine leicht modifizierbare, vielseitige SUPER-
BASE-Datenbank

• Rainer Severin erklärt in „HackeFs Nachtschicht"
das Hacker-Chinesisch

• Thomas Tai stellt im DATA WELT-Spieltip den
neuen Hit „Little Computer People" vor

• Jürgen Steigers hat wieder einen tollen Bastelgag
auf Lager

• und zwei Tests: Jürgen Kausmann mit dem Pana-
sonic-Drucker der KX-Reihe und Rolf Brückmann
mit dem C64 als Oszillograph

Außerdem natürlich wieder aktuelle News & Trends, offene Interviews, brandheiße Tips & Tricks (z. B. zu
dBase),jede Menge Drum & Dran und vieles mehr.

Die neue DATA WELT gibt's ab 20.1.1986 am Kiosk

DATA WELT 2/86
Ausgabe 2/Februar 1986 ^J? 155

