64/VC 20

Kurs: Speicherlandschaft

ry Map mit

Wandervorschligen

[]
el PSS T

Bei unserer Wanderung durch die Speicherlandschaft,

treffen wir heute auf die

eicherzellen 646 bis 658.

Sie sind verantwortlich fir die Zeichenfarbe und fiir die
Tastenwiederholung beziehungsweise Tastenwieder-

le Speicherzellen, die wir

heute behandeln, sind fiir all
diejenigen interessant, die ger-
ne Spiele programmieren oder
Bewegung auf den Bildschirm
bringen wollen. Dennneben der
Tastaturverriegelung und Ta-
stenwiederholung beziehungs-
weise Tastenwiederholge-
schwindigkeit werde ich heute
auch die Speicherzellen be-
sprechen, die fiir die Tastatur-
decodierung und Zeichenfar-
ben verantwortlich sind.

Adresse 646 ($286)

Aktuelle Farbe der Zeichen (Vorder-
grundfarbe)

Um ein bestimmtes Zeichen
auf den Bildschirm zu drucken,
muf3 vom Betriebssystem er-
stens der Bildschirmcode des
Zeichens in den Bildschirmspei-
cher und zweitens der Codewert
der gewiinschten Farbe in den
Farbspeicher gebracht werden.

In der Speicherzelle 646 steht
immer der Codewert derjeni-
gen Farbe, die gerade einge-
stellt ist. Immer wenn ein PRINT-
Befehl gegeben wird, holt das
Betriebssystem den Farbwert
aus der Zelle 646 und bringt ihn
in den Farbspeicher, und zwar
an den entsprechenden Platz,
wo gerade gePRINTet werden
soll. Der Codewert in der Zelle
646 kann auf drei Arten einge-
stellt werden:

— Driicken der CTRLTaste
gleichzeitig mit einer der Farb-
tasten | bis 8. Beim C 64 kommen
noch weitere acht Farben dazu
durch Driicken der Commodo-
reTaste anstelle der CTRL-
Taste.

— PRINT-Befehl gefolgt vom
ASCII-Codewert der Farbe in-
nerhalb von Gansefiiben.

— POKEn der Farbcodes 0 bis T
(beim C 64 0 bis 15) direkt in die
Speicherzelle.

Innerhalb eines Programms
ist das POKEn in Zelle 646 wohl
die eleganteste Methode (Ta-
belle 1).

Ausgabe 2/Februar 1986

holgeschwindigkeit.

FARBE CODE ASCII TASTEN FAREBE CODE ASCII TASTEN
schwarz o 144 CTRL+1 orange =] 129 CBM+1
weil 1 5 CTRL+2 braun ? 149 CBM+2
rot 2 28 CTRL+3 hellrot 10 150 CBM+3
lila z 159 CTRL+4 dunkelgrauv 11 151 CBM+4
purpur 4 156 CTRL+S mittelgrau 12 152 CBM+S
griin S 30 CTRL+& hellgrin 13 153 CBM+&
blau & 31 CTRL+7 hellblau 14 154 CBM+7
gelb 8 158 CTRL+8 hellgrau 15 155 CBM+8B

Tasten

Tabelle 1. Tabelle der Farben und ihrer Codes beziehungsweise

Als Beispiel moge dieses klei-
ne Programm dienen:
IOFORX=0TO 7
20 POKE 646, X
30 PRINT "A";

40 NEXT X
50 GOTO 10

Wer mehr iiber Vordergrund-
und Hintergrundfarben erfah-
ren will, der lese den nebenste-
henden Texteinschub »Bunte
Zeichen und bunter Hinter-
grund« auf Seite 147.

Adresse 647 ($287)

Zeichenfarbe unter dem Cursor

Das Blinken des Cursors wird
dadurch erzeugt, daB das Zei-
chen auf der Stelle des Bild-
schirms, auf der er gerade steht
(meistens ist es eine Leerstelle),
dauernd von snormals auf sre-
vers« (oder »invertiert«) und zu-
riick geschaltet wird. Die rever-
se Darstellung benutzt dabeidie
Farbe des Zeichens.

Genauso, wie sich der Compu-
ter in der Speicherzelle 206 das
Zeichen merkt, mit dem er gera-
de blinkt, um beim Weiterwan-
dern dieses Zeichen in seiner
snormalen« Form auf dem Bild-
schirm zuriickzulassen, merkt er
sich die Farbe dieses Zeichens
in der Speicherzelle 647.

Adresse 648 ($288)

Beginn des Bildschirmspeichers

In dieser Speicherzelle steht
eine Zahl, die als High-Byte dem

Betriebssystem angibt, ab wel-
cher Speicherzelle der Bild-
schirmspeicher beginnt.

Nach einem Kaltstart (nach
dem Einschalten oder nach dem
Driicken der RESETTaste) steht
hier eine 4, das ergibt als An-
fangsadresse 1024 (= 4*256).
Beim VC 20 ohne Erweiterung
steht dort eine 30. Daraus folgt,
daB die Anfangsadresse bei
7680 (= 30*256) liegt,

Der Bildschirmspeicher hat
keinen absolut festen Platz. In-
nerhalb gewisser Grenzen kann
er durch Verdndern des Inhalts
der Speicherzelle 53272 (36869
beim VC 20) verschoben wer-
den. Nahere Informationen fin-
den Sie im 64'er Sonderheft 2/86
#Wie war's mit:...«. Wichtig da-
bei ist, dah nach dem Verschie-
bender Inhalt der Speicherzelle
648 entsprechend geédndert
wird, damit auch das Betriebssy-
stem die Verschiebung beriick-
sichtigt.

Umgekehrt kann aber dem
Betriebssystem durch Andern
der Zahl in der Speicherzelle
648 mitgeteilt werden, daB es
Zeichen in einen Speicherbe-
reich bringen soll, der auBer-
halb des voffiziellen«, durch die
Speicherzelle 53272 (36869) fest-
gelegten Bildschirmspeichers
liegt.

Zwel Beispiele sollen das ver-
deutlichen. Der PRINT-Befehl
macht letztlich nichts anderes,
als viele Zahlen in den
Bildschirm- und den Farbspei-

cher zu POKEn. Wenn nun der
Zeiger in Zelle 648 verschoben
wird, kann man mit einem
PRINT-Befehl eine beliebige
Zeichenkette auferhalb des
Bildschirmspeichers abspei-
chern. Auf die gleiche Weise
kann man beim C 64 Sprites mit
einem PRINT-Befehl abspei-
chern, ohne mit READ viele 1&-
stige DATA-Zeillen lesen zu miis-
sen.

Adresse 649 ($289)

Maximale Linge des Tastaturpuffers

Der Tastaturpuffer belegt, wie
schon besprochen, die Spei-
cherzellen 631 bis 640. Er kann
darin maximal 10 Zeichen zwi-
schenspeichern.

Der Inhalt der Speicherzelle
649 legt fest, wieviel Zellen des
Tastaturpuffers verwendet wer-
den sollen, eine Zahl also, die
normalerweise zwischen 0 und
10 liegen sollte. Die 10 ist {ibri-
gens der Wert, welcher nach
dem Einschalten vom Betriebs-
system in die Zelle 649 gebracht
wird.

Diese Zahl wird immer mit
dem Inhalt der Speicherzelle
198 verglichen, der die aktuelle
Anzahl der Zeichen im Tastatur-
puffer angibt. Ist die Differenz
der beiden Zahlen gleich Null,
dann kénnen keine weiteren Zei-
chen eingegeben werden.

Es ist naheliegend, daf durch
Verandern der Zahl in Zelle 649
die Lange des Tastaturpuffers
verandert werden kann. Der ei-
ne Extremfall ist 0:

POKE 649,0 schaltet die Tastatur
aus. Nichts geht mehr.

Das kann bei Programmen
oder Spielen, die durch falsches
oder zeitlich unpassendes
Driicken von Tasten gestort wer-
den, recht niitzlich sein. Ein-
schalten kann man dann die Ta-
statur nur mit RUN/STOP und
RESTORE.

Auch eine Erhohung der Zahl
in 649 iiber 10 hinaus ist méglich.
Die Zeichen werden halt nur
iiber die dafiir reservierten
Speicherzellen 631 bis 640 hin-
aus in Zellen geschrieben, die
eigentlich eine andere Funktion
haben. Bis zur Speicherzelle 645
geht das normalerweise ohne
Probleme, da die betroffenen
sfremden« Adressen nur direkt
nach dem Einschalten des Com-
puters gebraucht werden.

Probieren Sie es aus, indem
Sie zuerst eine Zeitschleife lau-
fen lassen und in dieser Zeit et-
wa 20 Tasten driicken. Am Ende
der Zeitschleife wird der Inhalt
des Tastaturpuffers ausge-
druckt, und Sie sehen in der Tat
15 der eingegebenen Zeichen:
POKE 649,15
FOR X =0 T0 10000:NEXT X
QWERTYUIOPASDFGHJKL

Auf dem Bildschirm erschei-
nen die Zeichen Q bis G

Wenn Sie die Zahl in 649 noch

54 145

Kurs: Speicherlandschaft '

C 64/VC 20

weiter erhéhen, dringen Sie in
die Zellen 646 und 647 ein und
diese bestimmen bekanntlich
die Zeichenfarbe. Wenn Sie
aber eine unbeabsichtigte und
unkontrollierbare Farbédnde-
rung nicht stért, konnen Sie den
Tastaturpuffer auf 17 Zeichen
vergréfern. Ab 18 Zeichen stiirzt
der Computer ab.

Adresse 650 ($28A)

Flagge fiir Tastenwiederholung

Normalerweise steht in dieser
Speicherzelle eine 0. Das be-
deutet, daB die Funktion der
CursorTasten, der Leertaste
und der INST/DELTaste wie-
derholt wird, solange die ent-
sprechende Taste gedriickt
wird.

Durch Verandern der Zahl in
der Speicherzelle 650 kann die-
se Wiederholfunktion sowohl
auf alle Tasten ausgedehnt oder
fur alle Tasten gesperrt werden.

POKE 650,0 ist der Normalzu-
stand, Wiederholfunktion flr
Cursor-, Leer- und INST/DEL-
Taste.

POKE 650,64 schaltet Wieder-
holfunktion fiir alle Tasten aus
POKE 650,128 erweitert Wie-
derholfunktion auf alle Tasten.

Adresse 651 ($28B)

Zihler fiir Wiederholgeschwindigkeit
der Tasten

Das Betriebssystem verwen-
det diese Speicherzelle als Zah-
ler, der die Geschwindigkeit be-
stimmt, mit der eine Taste wie-
derholt wird, wenn sie langer
gedriickt wird. Voraussetzung
ist die durch Zelle 650 festgeleg-
te Wiederholbarkeit der Taste.

Am Anfang steht in der Zelle
651 die Zahl 6. Sobald eine wie-
derholbare Taste gedrickt
wird, zahlt das Betriebssystem
diese Zahl alle 0,0167 Sekunden
(60mal in der Sekunde) um 1 zu-
riick, bis die Zahl 1 erreicht ist.
Dann erst wird das Zeichen der
gedriickten Taste wieder auf
den Bildschirm gedruckt oder
ihre Funktion wiederholt.

Bei jedem folgenden Lauf
steht in Zelle 661 die Zahl 4. Ent-
sprechend verkiirzt sich der
Zahlvorgang.

Am schnellsten wiirde die
Wiederholung natiirlich mit
dem Wert 1 in der Speicherzelle
651 sein. Von Basic aus mit POKE
651,1 geht das leider nicht.

Im nebenstehenden Textein-
schub sTurboTasten« wird ein
Maschinenprogramm beschrie-
ben, welches dies kann.

Adresse 652 ($28()

Ziihler fiir die Ansprechzeit der Wieder-
holfunktion von Tasten

Diese Speicherzelle wird vom
Betriebssystem als Zahler ver-
wendet, der festlegt, wie lange
eine wiederholbare Taste ge-

146 :Rap

driickt sein muB, bisdie Wieder-
holfunktion einsetzt.

Am Anfang steht in der Zelle
652 die Zahl 16. Diese Zahl wird
alle 0,0167 Sekunden um | redu-
ziert, bis die Zahl 0 erreicht ist.
Dann wird das Zeichen der Ta-
ste auf den Bildschirm gebracht
oder ihre Funktion wiederholt.
AnschlieBend wird die Zahl 4 in
die Speicherzelle 651 geschrie-
ben (siehe dort), wahrend die
Zelle 652 so lange auf 0 stehen
bleibt, bis eine andere Taste ge-
driickt wird. Wie diese anfangli-
che Verzégerung reduziert wer-
den kann, steht im Texteinschub
swTurboTastenx«.

Adresse 653 ($28D)

Tastencode der SHIFT-CTRL- und
Commodore-Taste

In der Speicherzelle 203 ste-
hen die Codes aller Tasten, die
gedriickt werden, aufer die der
drei Steuertasten SHIFT, CTRL
und Commodore (oftauch CBM-,
Logo- oder C=-Taste genannt).
Diese drei Ausnahmen haben
ihr eigenes Code-Register, eben
653.

Der Grund dafiir liegt in der
Bedeutung der drei Tasten. Sie
konnen ja bekanntlich verschie-
dene Zeichensitze einschalten:
— SHIFT schaltet das Zeichen
vorne rechts auf einer Taste ein
— C= schaltet das Zeichen vor-
ne links auf einer Taste ein
— CTRL schaltet die Farben
vorn auf den Zahlentasten ein
— SHIFT + C = schaltet von dem
normalen Zeichensatz auf die
Grof3-/ Kleinschreibung um.

Ich habe diese Zusammen-
hange auch bei der Behandlung
der Speicherzellen 245/246 er-
wahnt.

Die Codezahlen selbst sind
auchinder Tabelle 1 der Memo-
1y Map in Ausgabe 11/85 auf Sei-
te 146 enthalten. Der Vollstandig-
keit halber sind sie hier noch
einmal angegeben:

SHIFT 1
C= 2
CTRL 4
SHIFT und C= 3
SHIFT und CTRL 5
C= und CTRL 6

SHIFT und C= und CTRL 7

Mit dem folgenden kleinen
Programm und mit ein wenig
Fingerfertigkeit konnen Sie die-
se Codewerte nachvollziehen:
10 PRINT PEEK(653)

20 GOTO 10

Eine interessante Anwendung
habe ich im Texteinschub »Ab-
frage der Tastencodes oder 476

Funktionstastens in Ausgabe
11/85 auf Seite 147 gegeben.

Adresse 654 ($28E)

Tastencode der zuletzt gedriickten
SHIFT-, CTRL- oder (=-Taste

Diese Speicherzelle wird zu-
sammen mit der Zelle 653 ver-
wendet, um zu verhindern, daf
ein schlechter Tastendruck als
mehrfaches Driicken derselben
Taste gedeutet wird. Im Fach-
deutsch nennt man das»Entprel-
len« einer Taste oder eines Kon-
taktes. Die Funktion ist ver-
gleichbar mit der der Zelle 197
gegeniiber der Zelle 203 fiir alle
anderen Tasten.

Adresse 655 bis 656
($28F bis $290)

Vektor auf die Routine der Tastencode-
Tabellen

Das Betriebssystem hat eine
Routine ab Adresse 60232 (60380
beim VC 20), auf die der Vektor
in B55/656 zeigt. Sie liest den Co-
dewert der SHIFT-, CTRL- und
C=Taste in der Speicherzelle
653 aus und verandert entspre-
chend den Vektor der Zellen
245/246 (sieche Memory Map
Teil 13, Ausgabe 12/85), so daB
er auf die richtige Codetabelle
zeigt.

Esgibt Anwenderprogramme,
die diesen Vektor so verbiegen,
daB die Decodierung der Ta-
sten umgangen und durch eine
andere, selbstgebaute Routine
ersetzt wird. So kann zum Bei-
spiel das Driicken einer be-
stimmten Taste umgemiinzt wer-
den.

Adresse 657 ($291)

Flagge fiir Verriegelung der Zeichensatz-
Umschaltung

Durch gleichzeitiges Driicken
der SHIFT und der Commodo-
reTaste wird bekanntlich der
Zeichensatz 1 (Grobuchstaben
und Crafik-Zeichen) umgeschal-
tet auf den Zeichensatz 2 (GroB-
und Kleinbuchstaben), ein zwei-
tes Driicken der beiden Tasten
schaltet den Zeichensatz zuriick.

Diese Umschaltung wird ver-
riegelt, wenninder Speicherzel-
le 657 eine 128 steht. Eine 0 146t
die Umschaltung zu.

Dieser Effekt kann auf zwei,
beim C 64 sogar auf drei Arten
erzielt werden:

[0 Umschaltung des Zeichensat-
zes zulassen

— POKE 657,0

— PRINT CHR$(9)

— CTRL und I (nur C 64)

[0 Umschaltung des Zeichensat-
zes verriegeln

— POKE 657,128

— PRINT CHR$(8)

— CTRL und H (nur C 64)

Adresse 658 ($292)

Flagge fiir Scrollen

Die Flagge in dieser Speicher-
zelle legt fest, ob eine weitere
echte Zeile zu einer logischen
Zeile hinzugefiigt wird, sobald
der Cursor iiber das 40ste Zei-
chen der Zeile (22ste Zeichen
beim VC 20) hinauslauft.

Steht in 658 eine 0, dann wer-
den alle Zeilen hochgeschoben
(man nennt das sscrollen«), um
der neuen Zeile Platz zu ma-
chen.

Wenn in der Zeile irgendein
Wert gréBer als Null steht, unter-
bleibt dieses Scrollen. Die Flag-
ge wird immer dann auf den ho-
heren Wert gesetzt, wenn Zei-
chen im Tastaturpuffer (631 bis
640) stehen und darauf warten,
am Ende des Programms ausge-
druckt beziehungsweise ausge-
fiihrt zu werden. Diese Verriege-
lung wird deshalb eingesetzt,
weil im Tastaturpuffer Zeichen
wie zum Beispiel Cursor-Bewe-
gungen stehen koénnen.

Von Basic aus kann diese Spei-
cherzelle nicht beeinfluft wer-
den.

Das nachste Mal kommen die
Speicherzellen 659 bis 673 zur
Sprache, die fast ausschlieflich
fiir die Steuerung der RS232-
Schnittstelle angewendet wer-
den — ein Thema, welches lei-
der in der Literatur immer noch
zu kurz kommt.

(Dr.H.Hauck/ah)

Fehlerteufelchen

Eprom-Brenner, Ausgabe
1/86, Seite 149
Beim dort abgebildeten

Schaltplan haben die Trenn-
striche zwischen den Pins 37
bis 40 beim IC2 (6821) einen
nicht vorgesehenen Kontakt
zur rechts und links vorbei-
fiihrenden Leiterbahn. Den
in der Stiickliste auf Seite 151
angegebenen Spannungs-
wandler TDK 05 CE 0072
kann man zum Preis von zirka
acht Mark bei folgender
Adresse erhalten. AuPer-
dem kann man [hnen dort
auch nahere Auskiinfte zum
Aufbau der Platine geben.

M. Frank, Wotanstr. 9, 8000
Miinchen, Tel. 089/1782546

Ausgabe 2/Februar 1986

C 64/VC 20

Kurs: Speicherlandschaft

Texteinschub #1
Bunte Zeichen und bunter Hintergrund

1) Bunte Zeichen

Wie Zeichen und Buchstaben in bunten Farben auf den Bild-
schirm gedruckt werden, lemnt jeder Hobby-Programmierer
schon bei den ersten Gehversuchen — dasselbe innerhalb eines
Programms zu erreichen, dauert sicher schon etwas ldnger.

Bel der Diskussion der Speicherzelle 646 habe ich drei Metho-
den dafiir erwahnt. Ich habe auch gesagt, daB ich die Methode,
den Farbcodewert in die Speicherzelle 646 zu POKER, fiir die ele-
ganteste halte. Deswegen verwendet das folgende Demonstra-
tions-Programm dieses Verfahren, um den Bildschirm mit einer
bunten Reihe der Zahl 1 zu fiillen.

10 PRINT CHR$(147)

20 POKE 53281,1

30 FOR J=0TO 1000

40 POKE 646,INT(RND(1)*14 + 2)
50 PRINT "1,

60 NEXT J

VC 20-Besitzer miissen die Zeilen 20, 30 und 40 uméndern in:
20 POKE 36879,233

30 FOR J=0TO 505

40 POKE 646,INT(RND(1)*6 + 2)
Erklarung:

Zeile 10 1oscht den Bildschirm, Zeile 20 erzeugt einen weifen
Hintergrund und eine hellblaue Umrahmung. Zeile 30 z&hlt vom
ersten bis zum letzten Platz auf dem Bildschirm. Zeile 40 erzeugt
fiir jedes Zeichen auf dem Bildschirm eine neue Farbe. Zeile 50
schlieBlich druckt, durch das Semikolon gesteuert, die Zahl 1 hin-
tereinander und zwar in den Farben, die in Zeile 40 zufallig ausge-
wiirfelt wurden.

RND(1)*14 erzeugt eine Zufallszahl zwischen 0,1 und 13,99. Der
Befehl INT davor macht daraus eine ganze Zahl zwischen 0 und
13. Um aber die Codezahl 1 fiir Weif zu vermeiden, addieren wir
noch 2 dazu, so daB wir Farbcodes zwischen 2 und 15 erhalten.
Beim VC 20 ist das alles auf die Farben 2 bis 7 beschrankt.

Das Ergebnis ist wie gesagt ein Bildschirm voller Einser, deren
Farben bunt wie ein Regenbogen abwechseln.

2) Bunter Hintergrund

Bunte Zeichen stellen also kein Problem dar. Wie steht es aber
mit einem bunten Hintergrund? Den kénnen wir zwar auch veran-
dern (POKEn der Speicherzelle 53281 beziehungsweise 36879
beim VC 20), aber es bleibt immer nur »eintdnige.

Vom Commodore-Autor Jim Butterfield kenne ich nun eine Me-
thode, die auch einen vielfarbigen Hintergrund bietet.

Butterfield geht dabei von einer lustigen Uberlegung aus. Wir
wissen zum Beispiel, daB der néchtliche Sternenhimmel aus hel-
len Punkten besteht, die vor einem schwarzen Hintergrund leuch-
ten. Ohne dieses Wissen konnten wir aber ebenso gutannehmen,
daB der Himmel — also der Hintergrund — im hellsten Weif er-
strahlt, aber durch einen schwarzen Vorhang (Vordergrund) mit
vielen kleinen Lochern abgedunkelt ist.

Das folgende Demo-Programm benutzt diese Denkweise.
100 PRINT CHR$(147)

110 POKE 532811

120 FOR J=0 TO 1000

130 POKE 1024 +],160

140 POKE 55296 + J INT(RND(1)*14 + 2)

150 NEXT]

160 FOR K=0 TO 1000

170 POKE 1024 +K,177

180 NEXT K

Fiir den VC 20 (chne Erweiterung) sieht das Programm so aus:
100 PRINT CHR$(147)

110 POKE 36879,233

120 FOR J=0 to 505

130 POKE 7680+],160

140 POKE 38400+] INT(RND(1)*6 + 2)

150 NEXT J

160 FOR K=0 TO 505

170 POKE 7680+K,177

180 NEXT K

Die ersten drei Zeilen sind mit denen des ersten Demonstra-
tions-Programms identisch.

Zeile 130 und 140 setzen auf jeden Platz des Bildschirms zuerst
ein invertiertes Leerzeichen (Bildschirmcode 160) und zwar in ei-
ner der vielen méglichen Farben, per Zufallsgenerator in Zeile
140 ausgewahlt.

Leerzeichen mit Farbe? Zugegeben, ein Leerzeichen hat nor-
malerweise keine Farbe, man sieht es nicht. Das invertierte Leer-
zeichen hat aber eine Farbe. Sie kennen es vom Cursor, dessen
Blinken dadurch erzeugt wird, daB das Leerzeichen zwischen
normal und invertiert umgeschaltet wird (siche auch die Be-
schreibung der Speicherzelle 647). Auf diese Weise besteht jetzt
der Bildschirm aus einer Vielzahl von bunten Quadraten. Das ist
der Vorhang von Jim Butterfield, der vor dem hellen weifen Hin-
tergrund héangt.

Ab Zeile 160 werden alle Plitze des Bildschirms mit der inver-
tierten 1 (Bildschirmcode 177) gefiillt. Diese invertierten Zeichen
sind in der Farbe des Hintergrundes geschrieben, eben weib.
Dadurch entsteht der Eindruck, als ware der Hintergrund bunt
und die Zeichenfarbe weif.

Der Eindruck verstarkt sich noch, wenn wir die 1 iiber den Bild-
schirm wandern lassen. Das erreichen wir durch Andern der fol-
genden Zeilen:

170 POKE 1024 + K,160
175 POKE 1025+ K 177

Durch geschicktes Ausbauen der Zeile 140 kénnen Sie einen
vielfarbigen Bildschirm-Hintergrund in Zeilen oder Blécken er-
zielen, ein weites Gebiet fiir bunte Grafik.

Texteinschub # 2 Turbo-Tasten

Das Trio der Speicherzellen 650, 651 und 652 ist zustdndig fiir
die Steuerung der sogenannten Wiederholfunktion der Tasten.
Darunter verstehen wir die Eigenschaft der Tastatur, das Zeichen
oder die Funktion einer Taste so lange zu wiederholen, bis die
Taste losgelassen wird. Normalerweise haben diese Funktion
nur die Leertaste, die CursorTasten und die INST/DELTaste.

Die Zahl in Speicherzelle 650 entscheidet, welche Tasten wie-
derholbar sind.

Schalten Sie bitte mit POKE 650,128 alle Tasten auf swiederhol-
bar« um.

Wenn Sie jetzt eine Taste driicken und sie festhalten, werden
Sie folgendes beobachten kénnen.

Nachdem das erste Zeichen auf dem Bildschirm erschienenist,
vergeht eine kurze Zeit, erst dann wird es mit einer gleichblei-
benden Geschwindigkeit immer wieder ausgedruckt.

Fiir die anféngliche Verzégerung ist die Speicherzelle 652, fiir
die Geschwindigkeit der nachfolgenden Wiederholungen die
Speicherzelle 651 zustéindig.

Viele Spieler und Anwender haben sich sicher schon oft ge-
wiinscht, sowohl die Reaktionszeit als auch die Geschwindigkeit
der Wiederholfunktion beschleunigen zu kénnen. Leider geht es
in Basic nicht, weil die Zahlen in den Zellen 651 und 652 60mal in
der Sekunde auf ihren urspriinglichen Wert zuriickgesetzt wer-
den.

Aber in Maschinensprache geht es sehr wohl, und zwar mit der
sogenannten Interrupt-Methode. Uber sie und ihre Wirkungswei-
se ist schon ausfiihrlich berichtet worden: von Boris Schneider in
Ausgabe 3/85 (Der glaserne VC 20) und von Heimo Ponnath in
den Ausgaben 7/85 und 8/85 (Assemblerkurs). Ich werde hier
nur innerhalb der Beschreibung des folgenden Kochrezeptes
darauf eingehen.

Das Kochrezept zur Veranderung der Inhalte von 651 und 652
stammt von Dan Carmichael aus seinem Aufsatz »Speeding Up
The VIC« in Ausgabe 10/83 der COMPUTE!'s Gazette.

Wir schreiben es als Maschinenprogramm in Form von DATA-
Zeilen in den Bandpuffer ab Adresse 828, wo es geschiitzt residie-
ren karin, solange keine Kassettenoperationen durchgefiihrt wer-
den. Das Ladeprogramm in Basic steht in Listing 1.

Fiir den VC 20 lautet die vorletzte Zahl 191 statt 49.

In Listing 2 ist das Programm disassembliert dargestellt.
Beim VC 20 lautet der Sprungbefehl in Zelle 851 JMP 60095.

Fiir Anhanger der hexadezimalen Darstellung gebe ich das
Programm als HEX-Ausdruck in Listing 3 wieder.

Fiir den VC 20 lautet die letzte Zeile anders:

,0353 4C BF EA JMP EABF

Mit dem Befehl SEI werden jegliche Programmunterbrechun-
gen gesperrt. Anschliefend kommt das Zahlenpaar 73 und 3 in
die Speicherzellen 788/789, wo es in Low/High-Byte Darstellung
die Adresse 841 (73+ 256*3=2841) darstellt.

In 788/789 steht normalerweise ein Vektor auf die Adresse
59953 (60095 beim VC 20), von der aus die Aufgaben der »norma-
len« Unterbrechungsroutine gesteuert werden. Wir sverbiegen«

Ausgabe 2/Februar 1986

Ly 147

Kurs: Speicherlandschaft

C 64/VC 20

also den Vektor so, daB er auf die Speicherzelle 841 zeigt.

Die schon genannte Unterbrechungsroutine, die 60mal pro Se-
kunde alles unterbricht, um die STOPTaste abzufragen, die Uhr
weiterzuschalten und so weiter, springt jetzt nicht auf 59953, son-
dern zuerst nach 841.

Ab 84] steht jedoch der zweite Teil unseres Maschinenpro-
gramms, das die eingangs gewiinschte 1 beziehungsweise Onach
651 und 652 schreibt. Das erfolgt jetzt laufend, ein Effekt, der uns
in Basic verwehrt ist. Danach allerdings kommt ein letzter Sprung-
befehl, der dort weitermacht, wo die Unterbrechungsroutine ur-
spriinglich hatte fortfahren sollen, ndmlich in 59953 (60095).

Jetzt fehlt nur noch die Beschreibung, wie sich das alles aus-
wirkt. Ich nehme an, Sie haben immer noch mit POKE 650,128 die
gesamte Tastatur auf Wiederholfunktion geschaltet, wenn nicht,
holen Sie es bitte nach. Laden Sie das Basic-Programm von Li-
sting 1 und starten Sie es mit RUN. Jetzt steht es in den Speicher-
zellen 828 bis 853 und kann mit SYS 828 gestartet werden.

Wenn Sie jetzt wieder eine Taste langer gedriickt halten, flitzt
das entsprechende Zeichen wie ein Turbo-Auto iiber den Bild-
schirm. Der Cursor ist mit den Augen fast nicht mehr zu verfolgen.
Es geht alles so schnell, daB Sie Miihe haben, nur ein einzelnes
Zeichen auf den Bildschirm zu bringen. Wenn Sie das wollen: Mit
RUN/STOP und RESTORE stellen Sie den urspringlichen Zu-
stand wieder her.

Das kleine Maschinenprogramm 148t sich in jedes Spiel oder
Anwendungsprogramm nutzbringend einbauen.

BZB SEI

B2 LDA #73
B31 STA 788
B34 LDA #3

B34 STA 789
B3 CLI

B840 RTS

B41 LDA #1

B4Z STA &51
844 LDA #0

848 STA &52
851 JMF 59953 Sprung auf Speicherzelle 59953 zum Weiterlauf
der normalen Interrupt-Routine

setzt die Interrupt Enable Flagge
ladt Akku mit der Zahl 73
achreibt die 73 in Zelle 788

ladt Akku mit der Zahl 3

schreibt die I in die Zelle 789
léscht die Interrupt Enable Flagge
Ende des Unterprogramms

ladt Akku mit der Zahl 1

schreibt die 1 in Zelle &51

ladt Akku mit der O

schreibt die © in die Zelle &52

Listing 2. Disassembler-Listing von Listing 1

GOORE FOR Aeale T BOS Listing 1. DATA-Lader zur

6010 READ R i
6020 FOKE A,E Anderung der Tastenwieder-

6030 NEXT:END holgeschwindigkeit

46040 DATA 120,169,73,141,20,3,169,3,
6050 DATA 141,21,3,88,96,169,1,141,139
6060 DATA 2,169,0,141,140,2,76,49,234

,033C 78 SEI
,033D A9 49 LDA #49
L,OIZIF 8D 14 03 STA 0314
,0342 A9 03 LDA #03
,0344 8D 15 03 STA 0315
,0347 S8 CLI
,0348 60 RTS
,0349 A9 01 LDA #01
,0Z4B 8D BR 02 STA O28E
,O0Z4E A9 00 LDA #00

,0350 8D BC 02 G&TA 028C
,0383 4C 31 EA JMFP EA3IL

Listing 3. Disassembler-Listing mit Hexdump von Listing 1

Ausgabe 2/Februar 1986

