
64M 20 Kurs:Speicherlandschaft

Memory Map mit
Wandervorschlägen

Bei unserer Wanderuna durch die Speicherlandschaft,
treffen wir heute auf die Speicherzellen 646 bis 658.

Sie sind verantwortlich für aie Zeichenfarbe und für die
Tastenwiederholuna beziehungsweise Tastenwieder­

holgeschwindigkeit.

Die Speicherzellen, die wir
heute behandeln, sind für all
diejenigen interessant, die ger­

ne Spiele programmieren oder
Bewegung auf den Bildschirm
bringen wollen. Denn neben der
Tastaturverriegelung und Ta­
stenwiederholung beziehungs­
weise Tastenwiederholge­
schwindigkeit werde ich heute
auch die Speicherzellen be­
sprechen, die für die Tastatur­
decodierung und Zeichenfar­
ben verantwortlich sind.

Adresse 646 ($286)
Aktuelle Farbe der Zeichen (Vorder­
grundfarbe)

Um ein bestimmtes Zeichen
auf den Bildschirm zu drucken,
muß vom Betriebssystem er­
stens der Bildschirmcode des
Zeichens in den Bildschirmspei­
cher und zweitens der Codewert
der gewünschten Farbe in den
Farbspeicher gebracht werden.

In der Speicherzelle 646 steht
immer der Codewert derjeni­
gen Farbe, die gerade einge­
stellt ist. Immer wenn ein PRINT-
Befehl gegeben wird, holt das
Betriebssystem den Farbwert
aus der Zelle 646 und bringt ihn
in den Farbspeicher, und zwar
an den entsprechenden Platz,
wo gerade gePRINTet werden
soll. Der Codewert in der Zelle
646 kann auf drei Arten einge­
stellt werden:
— Drücken der CTRL-Taste
gleichzeitig mit einer der Farb­
tasten 1 bis 8. Beim C 64 kommen
noch weitere acht Farben dazu
durch Drücken der Commodo­
re-Taste anstelle der CTRL-
Taste.
— PRINT-Befehl gefolgt vom
ASCII-Codewert der Farbe in­
nerhalb von Gänsefüßen.
— POKEn der Farbcodes 0 bis 7
(beim C 64 0 bis 15) direkt in die
Speicherzelle.

Innerhalb eines Programms
ist das POKEn in Zelle 646 wohl
die eleganteste Methode fTa-
belle 1).

Tabelle 1. Tabelle der Farben und ihrer Codes beziehungsweise
Tasten

FARBE CODE ASCII TASTEN FARBE CODE ASCII TASTEN

schwarz O 144 CTRL+1 orange 8 129 CBM+1
weiß 1 5 CTRL+2 braun 9 149 CBM+2
rot 2 28 CTRL+3 hellrot 10 150 CBM+3
lila 3 159 CTRL+4 dunkel grau 11 151 CBM+4
purpur 4 156 CTRL+5 mi ttelgrau 12 152 CBM+5
grün 5 30 CTRL+6 hel1 grün 13 153 CBM+6
blau 6 31 CTRL+7 hel1b1 au 14 154 CBM+7
gelb 8 158 CTRL+8 hel1 grau 15 155 CBM+8

Als Beispiel möge dieses klei­
ne Programm dienen:
10FCRX = 0TO7
20 POKE 646,X
30PRINT "A";
40 NEXT X
50 GOTO 10

Wer mehr über Vordergrund-
und Hintergrundfarben erfah­
ren will, der lese den nebenste­
henden Texteinschub »Bunte
Zeichen und bunter Hinter­
grund« auf Seite 147.

Adresse 647 ($287)
Zei<henfarbe unter dem Cursor

Das Blinken des Cursors wird
dadurch erzeugt, daß das Zei­
chen auf der Stelle des Bild­
schirms, auf der er gerade steht
(meistens ist es eine Leerstelle),
dauernd von »normal« auf »re-
vers« (oder »invertiert«) und zu­
rück geschaltet wird. Die rever­
se Darstellung benutzt dabei die
Farbe des Zeichens.

Genauso, wie sich der Compu­
ter in der Speicherzelle 206 das
Zeichen merkt, mit dem er gera­
de blinkt, um beim Weiterwan­
dern dieses Zeichen in seiner
»normalen« Form auf dem Bild­
schirmzurückzulassen, merkt er
sich die Farbe dieses Zeichens
in der Speicherzelle 647.

Adresse 648 ($288)
Beginn des Bildschirmspeichers

In dieser Speicherzelle steht
eine Zahl, die als High-Byte dem

Betriebssystem angibt, ab wel­
cher Speicherzelle der Bild­
schirmspeicher beginnt.

Nach einem Kaltstart (nach
dem Einschalten oder nach dem
Drücken der RESET-Taste) steht
hier eine 4, das ergibt als An­
fangsadresse 1024 (= 4*256).
Beim VC 20 ohne Erweiterung
steht dort eine 30. Daraus folgt,
daß die Anfangsadresse bei
7680(= 30*256)liegt.

Der Bildschirmspeicher hat
keinen absolut festen Platz. In­
nerhalb gewisser Grenzen kann
er durch Verändern des Inhalts
der Speicherzelle 53272 (36869
beim VC 20) verschoben wer­
den. Nähere Informationen fin­
den Sie im 64'er Sonderheft 2/86
»Wie wär's mit:...«. Wichtig da­
bei ist, daß nach dem Verschie­
ben der Inhalt der Speicherzelle
648 entsprechend geändert
wird, damit auch das Betriebssy­
stem die Verschiebung berück­
sichtigt.

Umgekehrt kann aber dem
Betriebssystem durch Ändern
der Zahl in der Speicherzelle
648 mitgeteilt werden, daß es
Zeichen in einen Speicherbe­
reich bringen soll, der außer­
halb des »offiziellen«, durch die
Speicherzelle 53272 (36869) fest­
gelegten Bildschirmspeichers
liegt.

Zwei Beispiele sollen das ver­
deutlichen. Der PRINT-Befehl
macht letztlich nichts anderes,
als viele Zahlen in den
Bildschirm- und den Farbspei­

cher zu POKEn. Wenn nun der
Zeiger in Zelle 648 verschoben
wird, kann man mit einem
PRINT-Befehl eine beliebige
Zeichenkette außerhalb des
Bildschirmspeichers abspei­
chern. Auf die gleiche Weise
kann man beim C 64 Sprites mit
einem PRINT-Befehl abspei­
chern, ohne mit READ viele lä­
stige DATA-Zeilen lesen zu müs­
sen.

Adresse 649 ($289)
Maximale Länge des Tastaturpuffers

Der Tastaturpuffer belegt, wie
schon besprochen, die Spei­
cherzellen 631 bis 640. Er kann
darin maximal 10 Zeichen zwi­
schenspeichern.

Der Inhalt der Speicherzelle
649 legt fest, wieviel Zellen des
Tastaturpuffers verwendet wer­
den sollen, eine Zahl also, die
normalerweise zwischen 0 und
10 liegen sollte. Die 10 ist übri­
gens der Wert, welcher nach
dem Einschalten vom Betriebs­
system in die Zelle 649 gebracht
wird.

Diese Zahl wird immer mit
dem Inhalt der Speicherzelle
198 verglichen, der die aktuelle
Anzahl der Zeichen im Tastatur­
puffer angibt. Ist die Differenz
der beiden Zahlen gleich Null,
dann können keine weiteren Zei­
chen eingegeben werden.

Es ist naheliegend, daß durch
Verändern der Zahl in Zelle 649
die Länge des Tastaturpuffers
verändert werden kann. Der ei­
ne Extremfall ist 0:
POKE 649,0 schaltet die Tastatur
aus. Nichts geht mehr.

Das kann bei Programmen
oder Spielen, die durch falsches
oder zeitlich unpassendes
Drücken von Tasten gestört wer­
den, recht nützlich sein. Ein­
schalten kann man dann die Ta­
statur nur mit RUN/STOP und
RESTORE.

Auch eine Erhöhung der Zahl
in 649 über 10 hinaus ist möglich.
Die Zeichen werden halt nur
über die dafür reservierten
Speicherzellen 631 bis 640 hin­
aus in Zellen geschrieben, die
eigentlich eine andere Funktion
haben. Bis zur Speicherzelle 645
geht das normalerweise ohne
Probleme, da die betroffenen
»fremden« Adressen nur direkt
nach dem Einschalten des Com­
puters gebraucht werden.

Probieren Sie es aus, indem
Sie zuerst eine Zeitschleife lau­
fen lassen und in dieser Zeit et­
wa 20Tasten drücken. Am Ende
der Zeitschleife wird der Inhalt
des Tastaturpuffers ausge­
druckt, und Sie sehen in der Tat
15 der eingegebenen Zeichen:
povp R4Q 16
FORX = 0T0 10000:NEXT X
QWERTYUIOPASDFGHJKL

Auf dem Bildschirm erschei­
nen die Zeichen Q bis G.

Wenn Sie die Zahl in 649 noch

Ausgabe 2/Februar 1986 i^ 145

Kurs: Speicherlandschaft C 64M 20

weiter erhöhen, dringen Sie in
die Zellen 646 und 647 ein und
diese bestimmen bekanntlich
die Zeichenfarbe. Wenn Sie
aber eine unbeabsichtigte und
unkontrollierbare Farbände­
rung nicht stört, können Sie den
Tastaturpuffer auf 17 Zeichen
vergrößern. Ab 18 Zeichen stürzt
der Computer ab.

Adresse 650 ($28A)
Flagge für Tastenwiederholung

Normalerweise steht in dieser
Speicherzelle eine 0. Das be­
deutet, daß die Funktion der
Cursor-Tasten, der Leertaste
und der INST/DEL-Taste wie­
derholt wird, solange die ent­
sprechende Taste gedrückt
wird.

Durch Verändern der Zahl in
der Speicherzelle 650 kann die­
se Wiederholfunktion sowohl
auf alle Tasten ausgedehnt oder
für alle Tasten gesperrt werden.

POKE 650,0 ist der Normalzu­
stand, Wiederholfunktion für
Cursor-, Leer- und INST/DEL-
Taste.

POKE 650,64 schaltet Wieder­
holfunktion für alle Tasten aus
POKE 650,128 erweitert Wie­
derholfunktion auf alle Tasten.

Adresse 651 ($28B)
Zähler für Wiederholgeschwindigkeit
der Tasten

Das Betriebssystem verwen­
det diese Speicherzelle als Zäh­
ler, der die Geschwindigkeit be­
stimmt, mit der eine Taste wie­
derholt wird, wenn sie länger
gedrückt wird. Voraussetzung
ist die durch Zelle 650 festgeleg­
te Wiederholbarkeit der Taste.

Am Anfang steht in der Zelle
651 die Zahl 6. Sobald eine wie­
derholbare Taste gedrückt
wird, zählt das Betriebssystem
diese Zahl alle 0,0167 Sekunden
(60mal in der Sekunde) um 1 zu­
rück, bis die Zahl 1 erreicht ist.
Dann erst wird das Zeichender
gedrückten Taste wieder auf
den Bildschirm gedruckt oder
ihre Funktion wiederholt.

Bei jedem folgenden Lauf
steht in Zelle 651 die Zahl 4. Ent­
sprechend verkürzt sich der
Zählvorgang.

Am schnellsten würde die
Wiederholung natürlich mit
dem Wert 1 in der Speicherzelle
651 sein. Von Basic aus mit POKE
651,1 geht das leider nicht.

Im nebenstehenden Textein­
schub »Turbo-Tasten« wird ein
Maschinenprogramm beschrie­
ben, welches dies kann.

Adresse 652 ($28C)
Zähler für die Ansprechzeit der Wieder­
holfunktion von Tasten

Diese Speicherzelle wird vom
Betriebssystem als Zähler ver­
wendet, der festlegt, wie lange
eine wiederholbare Taste ge­

drückt sein muß, bis die Wieder­
holfunktion einsetzt.

Am Anfang steht in der Zelle
652 die Zahl 16. Diese Zahl wird
alle 0,0167 Sekunden um 1 redu­
ziert, bis die Zahl 0 erreicht ist.
Dann wird das Zeichen der Ta­
ste auf den Bildschirm gebracht
oder ihre Funktion wiederholt.
Anschließend wird die Zahl 4 in
die Speicherzelle 651 geschrie­
ben (siehe dort), während die
Zelle 652 so lange auf 0 stehen
bleibt, bis eine andere Taste ge­
drückt wird. Wie diese anfängli­
che Verzögerung reduziert wer­
den kann, steht im Texteinschub
»Turbo-Tasten«.

Adresse 653 ($28D)
Tastencode der SHIFT-,CTRL- und
Commodore-Taste

In der Speicherzelle 203 ste­
hen die Codes aller Tasten, die
gedrückt werden, außer die der
drei Steuertasten SHIFT, CTRL
und Commodore (oft auch CBM-,
Logo- oder C=-Taste genannt).
Diese drei Ausnahmen haben
ihr eigenes Code-Register, eben
653.

Der Grund dafür liegt in der
Bedeutung der drei Tasten. Sie
können ja bekanntlich verschie­
dene Zeichensätze einschalten:
— SHIFT schaltet das Zeichen
vorne rechts auf einer Taste ein
— C= schaltet das Zeichen vor­
ne links auf einer Taste ein
— CTRL schaltet die Farben
vorn auf den Zahlentasten ein
— SHIFT + C= schaltetvondem
normalen Zeichensatz auf die
Groß-/ Kleinschreibung um.

Ich habe diese Zusammen­
hänge auch bei der Behandlung
der Speicherzellen 245/246 er­
wähnt.

Die Codezahlen selbst sind
auch in der Tabelle 1 der Memo­
ry Map in Ausgabe 11/85 aufSei-
te 146enthalten. DerVollständig-
keit halber sind sie hier noch
einmal angegeben:

SHIFT 1
C= 2

CTRL 4

SHIFTundC= 3

SHIFT und CTRL 5

C= undCTRL 6

SHlFTundC= undCTRL 7

Mit dem folgenden kleinen
Programm und mit ein wenig
Fingerfertigkeit können Sie die­
se Codewerte nachvollziehen:
10 PRINT PEEK(653)
20 GOTO 10

Eine interessante Anwendung
habe ich im Texteinschub »Ab­
frage der Tastencodes oder 476

Funktionstasten« in Ausgabe
11/85 auf Seite 147 gegeben.

Adresse 654 ($28E)
Tastencode der zuletzt gedrückten
SHIFT-, CTRL- oder C=-Taste

Diese Speicherzelle wird zu­
sammen mit der Zelle 653 ver­
wendet, um zu verhindern, daß
ein schlechter Tastendruck als
mehrfaches Drücken derselben
Taste gedeutet wird. Im Fach­
deutsch nennt man das »Entprel-
len« einer Taste oder eines Kon­
taktes. Die Funktion ist ver­
gleichbar mit der der Zelle 197
gegenüber der Zelle 203 für alle
anderen Tasten.

Adresse 655 bis 656
($28F bis $290)

Vektor auf die Routine der Tastencode-
Tabellen

Das Betriebssystem hat eine
Routine ab Adresse 60232 (60380
beim VC 20), auf die der Vektor
in 655/656 zeigt. Sie liest den Co­
dewert der SHIFT-, CTRL- und
C = -Taste in der Speicherzelle
653 aus und verändert entspre­
chend den Vektor der Zellen
245/246 (siehe Memory Map
Teil 13, Ausgabe 12/85), so daß
er auf die richtige Codetabelle
zeigt.

Es gibt Anwenderprogramme,
die diesen Vektor so verbiegen,
daß die Decodierung der Ta­
sten umgangen und durch eine
andere, selbstgebaute Routine
ersetzt wird. So kann zum Bei­
spiel das Drücken einer be­
stimmten Taste umgemünzt wer­
den.

Adresse 657 ($291)
Flagge für Verriegelung der Zeichensatz-
Umschaltung

Durch gleichzeitiges Drücken
der SHIFT- und der Commodo­
re-Taste wird bekanntlich der
Zeichensatz 1 (Großbuchstaben
und Grafik-Zeichen) umgeschal­
tet auf den Zeichensatz 2 (Groß-
und Kleinbuchstaben), ein zwei­
tes Drücken der beiden Tasten
schaltet den Zeichensatz zurück.

Diese Umschaltung wird ver­
riegelt, wenn in der Speicherzel­
le 657 eine 128 steht. Eine 0 läßt
die Umschaltung zu.

Dieser Effekt kann auf zwei,
beim C 64 sogar auf drei Arten
erzielt werden:

□ Umschaltung des Zeichensat­
zes zulassen
- POKE 657,0
- PRINT CHR$(9)
- CTRL und I (nur C 64)
□ Umschaltung des Zeichensat­
zes verriegeln
- POKE 657,128
- PRINT CHR$(8)
- CTRL und H (nur C 64)

Adresse 658 ($292)
Flagge für Scrollen

Die Flagge in dieser Speicher­
zelle legt fest, ob eine weitere
echte Zeile zu einer logischen
Zeile hinzugefügt wird, sobald
der Cursor über das 40ste Zei­
chen der Zeile (22ste Zeichen
beim VC 20) hinausläuft.

Steht in 658 eine 0, dann wer­
den alle Zeilen hochgeschoben
(man nennt das »scrollen«), um
der neuen Zeile Platz zu ma­
chen.

Wenn in der Zeile irgendein
Wert größer als Null steht, unter­
bleibt dieses Scrollen. Die Flag­
ge wird immer dann auf den hö­
heren Wert gesetzt, wenn Zei­
chen im Tastaturpuffer (631 bis
640) stehen und darauf warten,
am Ende des Programms ausge­
druckt beziehungsweise ausge-
führtzuwerden. DieseVerriege-
lung wird deshalb eingesetzt,
weil im Tastaturpuffer Zeichen
wie zum Beispiel Cursor-Bewe­
gungen stehen können.

Von Basic aus kann diese Spei­
cherzelle nicht beeinflußt wer­
den.

Das nächste Mal kommen die
Speicherzellen 659 bis 673 zur
Sprache, die fast ausschließlich
für die Steuerung der RS232-
Schnittstelle angewendet wer­
den — ein Thema, welches lei­
der in der Literatur immer noch
zu kurz kommt.

(Dr.H.Hauck/ah)

Fehlerteufelchen
Eprom-Brenner, Ausgabe
1/86, Seite 149
Beim dort abgebildeten
Schaltplan haben die Trenn­
striche zwischen den Pins 37
bis 40 beim IC2 (6821) einen
nicht vorgesehenen Kontakt
zur rechts und links vorbei­
führenden Leiterbahn. Den
in der Stückliste auf Seite 151
angegebenen Spannungs­
wandler TDK 05 CE 0072
kann man zum Preis von zirka
acht Mark bei folgender
Adresse erhalten. Außer­
dem kann man Ihnen dort
auch nähere Auskünfte zum
Aufbau der Platine geben.
M. Frank, Wotanstr. 9, 8000
München, Tel. 089/1782546

146 a^3;> Ausgabe 2/Februar 1986

C 64M 20 Kurs: Speicherlandschaft

Texteinschub #1
Bunte Zeichen und bunter Hintergrund

1) Bunte Zeichen
Wie Zeichen und Buchstaben in bunten Farben auf den Bild­

schirm gedruckt werden, lernt jeder Hobby-Programmierer
schon bei den ersten Gehversuchen — dasselbe innerhalb eines
Programms zu erreichen, dauert sicher schon etwas länger.

Bei der Diskussion der Speicherzelle 646 habe ich drei Metho­
den dafür erwähnt. Ich habe auch gesagt, daß ich die Methode,
den Farbcodewert in die Speicherzelle 646zu POKEn, für die ele­
ganteste halte. Deswegen verwendet das folgende Demonstra­
tions-Programm dieses Verfahren, um den Bildschirm mit einer
bunten Reihe der Zahl 1 zu füllen.
10 PRINT CHR$(147)
20 POKE 53281,1
30FORJ = OTO 1000
40 POKE 646,INT(RND(l)*14 + 2)
50 PRINT "1";
60 NEXTJ
VC 20-Besitzer müssen die Zeilen 20, 30 und 40 umändern in:
20 POKE 36879,233
30FGRJ = 0TO505
40 POKE 646,INT(RND(l)*6 + 2)
Erklärung:

Zeile 10 löscht den Bildschirm, Zeile 20 erzeugt einen weißen
Hintergrund und eine hellblaue Umrahmung. Zeile 30 zählt vom
ersten bis zum letzten Platz auf dem Bildschirm. Zeile 40 erzeugt
für jedes Zeichen auf dem Bildschirm eine neue Farbe. Zeile 50
schließlich druckt, durch das Semikolon gesteuert, die Zahl 1 hin­
tereinander und zwar in den Farben, die in Zeile 40 zufällig ausge­
würfelt wurden.

RND(l)*14 erzeugt eine Zufallszahl zwischen 0,1 und 13,99. Der
Befehl INT davor macht daraus eine ganze Zahl zwischen 0 und
13. Um aber die Codezahl 1 für Weiß zu vermeiden, addieren wir
noch 2 dazu, so daß wir Farbcodes zwischen 2 und 15 erhalten.
Beim VC 20 ist das alles auf die Farben 2 bis 7 beschränkt.

Das Ergebnis ist wie gesagt ein Bildschirm voller Einser, deren
Farben bunt wie ein Regenbogen abwechseln.
2) Bunter Hintergrund

Bunte Zeichen stellen also kein Problem dar. Wie steht es aber
mit einem bunten Hintergrund? Den können wir zwar auch verän­
dern (POKEn der Speicherzelle 53281 beziehungsweise 36879
beim VC 20), aber es bleibt immer nur »eintönig«.
Vom Commodore-Autor Jim Butterfield kenne ich nun eine Me­
thode, die auch einen vielfarbigen Hintergrund bietet.

Butterfield geht dabei von einer lustigen Überlegung aus. Wir
wissen zum Beispiel, daß der nächtliche Sternenhimmel aus hel­
len Punkten besteht, die vor einem schwarzen Hintergrund leuch­
ten. Ohne dieses Wissen könnten wir aber ebenso gut annehmen,
daß der Himmel — also der Hintergrund — im hellsten Weiß er­
strahlt, aber durch einen schwarzen Vorhang (Vordergrund) mit
vielen kleinen Löchern abgedunkelt ist.
Das folgende Demo-Programm benutzt diese Denkweise.
100 PRINT CHR$(147)
110 POKE 53281,1
120FORJ = OTO 1000
130 POKE 1024+J,160
140 POKE 55296 + J,INT(RND(l)*14 + 2)
150 NEXT J
160FORK = OTO 1000
170 POKE 1024 + K,177
180 NEXT K
Für den VC 20 (ohne Erweiterung) sieht das Programm so aus:
100 PRINT CHR$(147)
110 POKE 36879,233
120FORJ = 0to505
130 POKE 7680+J,160
140 POKE 38400+J,INT(RND(l)*6+2)
150 NEXT J
160FORK = 0TO505
170 POKE 7680 + K,177
180 NEXT K

Die ersten drei Zeilen sind mit denen des ersten Demonstra­
tions-Programms identisch.

Zeile 130 und 140 setzen auf jeden Platz des Bildschirms zuerst
ein invertiertes Leerzeichen (Bildschirmcode 160) und zwar in ei­
ner der vielen möglichen Farben, per Zufallsgenerator in Zeile
140 ausgewählt.

Leerzeichen mit Farbe? Zugegeben, ein Leerzeichen hat nor­
malerweise keine Farbe, man sieht es nicht. Das invertierte Leer­
zeichen hat aber eine Farbe. Sie kennen es vom Cursor, dessen
Blinken dadurch erzeugt wird, daß das Leerzeichen zwischen
normal und invertiert umgeschaltet wird (siehe auch die Be­
schreibung der Speicherzelle 647).Auf diese Weise besteht jetzt
der Bildschirm aus einer Vielzahl von bunten Quadraten. Das ist
der Vorhang von Jim Butterfield, der vor dem hellen weißen Hin­
tergrund hängt.

Ab Zeile 160 werden alle Plätze des Bildschirms mit der inver­
tierten 1 (Bildschirmcode 177) gefüllt. Diese invertierten Zeichen
sind in der Farbe des Hintergrundes geschrieben, eben weiß.
Dadurch entsteht der Eindruck, als wäre der Hintergrund bunt
und die Zeichenfarbe weiß.

Der Eindruck verstärkt sich noch, wenn wir die lüber den Bild­
schirm wandern lassen. Das erreichen wir durch Ändern der fol­
genden Zeilen:
170 POKE 1024 + K,160
175 POKE 1025 + K,177

Durch geschicktes Ausbauen der Zeile 140 können Sie einen
vielfarbigen Bildschirm-Hintergrund in Zeilen oder Blöcken er­
zielen, ein weites Gebiet für bunte Grafik.

Texteinschub #2 Turbo-Tasten
Das Trio der Speicherzellen 650, 651 und 652 ist zuständig für

die Steuerung der sogenannten Wiederholfunktion der Tasten.
Darunter verstehen wir die Eigenschaft der Tastatur, das Zeichen
oder die Funktion einer Taste so lange zu wiederholen, bis die
Taste losgelassen wird. Normalerweise haben diese Funktion
nur die Leertaste, die Cursor-Tasten und die INST/DEL-Taste.

Die Zahl in Speicherzelle 650 entscheidet, welche Tasten wie­
derholbar sind.

Schalten Sie bitte mit POKE 650,128 alle Tasten auf »wiederhol­
bar« um.

Wenn Sie jetzt eine Taste drücken und sie festhalten, werden
Sie folgendes beobachten können.

Nachdem das erste Zeichen auf dem Bildschirm erschienen ist,
vergeht eine kurze Zeit, erst dann wird es mit einer gleichblei­
benden Geschwindigkeit immer wieder ausgedruckt.

Für die anfängliche Verzögerung ist die Speicherzelle 652, für
die Geschwindigkeit der nachfolgenden Wiederholungen die
Speicherzelle 651 zuständig.

Viele Spieler und Anwender haben sich sicher schon oft ge­
wünscht, sowohl die Reaktionszeit als auch die Geschwindigkeit
der Wiederholfunktion beschleunigen zu können. Leider geht es
in Basic nicht, weil die Zahlen in den Zellen 651 und 652 60mal in
der Sekunde auf ihren ursprünglichen Wert zurückgesetzt wer­
den.

Aber in Maschinensprache geht es sehr wohl, und zwar mit der
sogenannten Interrupt-Methode. Über sie und ihre Wirkungswei­
se ist schon ausführlich berichtet worden: von Boris Schneider in
Ausgabe 3/85 (Der gläserne VC 20) und von Heimo Ponnath in
den Ausgaben 7/85 und 8/85 (Assemblerkurs). Ich werde hier
nur innerhalb der Beschreibung des folgenden Kochrezeptes
darauf eingehen.

Das Kochrezept zur Veränderung der Inhalte von 651 und 652
stammt von Dan Carmichael aus seinem Aufsatz »Speeding Up
The VIC« in Ausgabe 10/83 der COMPUTE!'s Gazette.

Wir schreiben es als Maschinenprogramm in Form von DATA-
Zeilen in den Bandpuffer ab Adresse 828, wo es geschützt residie­
ren karin, solange keine Kassettenoperationen durchgeführt wer­
den. Das Ladeprogramm in Basic steht in Listing 1.
Für den VC 20 lautet die vorletzte Zahl 191 statt 49.

In Listing 2 ist das Programm disassembliert dargestellt.
Beim VC 20 lautet der Sprungbefehl in Zelle 851JMP 60095.

Für Anhänger der hexadezimalen Darstellung gebe ich das
Programm als HEX-Ausdruck in Listing 3 wieder.

Für den VC 20 lautet die letzte Zeile anders:
,0353 4C BF EA JMP EABF

Mit dem Befehl SEI werden jegliche Programmunterbrechun­
gen gesperrt. Anschließend kommt das Zahlenpaar 73 und 3 in
die Speicherzellen 788/789, wo es in Low/High-Byte Darstellung
die Adresse 841 (73 + 256*3 = 841) darstellt.

In 788/789 steht normalerweise ein Vektor auf die Adresse
59953 (60095 beim VC 20), von der aus die Aufgaben der »norma­
len« Unterbrechungsroutine gesteuert werden. Wir »verbiegen«

Ausgabe 2/Februar 1986 £1^3? 147

Kurs: Speicherlandschaft C 64M 20

also den Vektor so, daß er auf die Speicherzelle 841 zeigt.
Die schon genannte Unterbrechungsroutine, die 60mal pro Se­

kunde alles unterbricht, um die STOP-Taste abzufragen, die Uhr
weiterzuschalten und so weiter, springt jetzt nicht auf 59953, son­
dern zuerst nach 841.

Ab 841 steht jedoch der zweite Teil unseres Maschinenpro­
gramms, das die eingangs gewünschte 1 beziehungsweise 0 nach
651 und 652 schreibt. Das erfolgt jetzt laufend, ein Effekt, der uns
in Basic verwehrt ist. Danach allerdings kommt ein letzter Sprung­
befehl, der dort weitermacht, wo die Unterbrechungsroutine ur­
sprünglich hätte fortfahren sollen, nämlich in 59953 (60095).

Jetzt fehlt nur noch die Beschreibung, wie sich das alles aus­
wirkt. Ich nehme an, Sie haben immer noch mit POKE 650,128 die
gesamte Tastatur auf Wiederholfunktion geschaltet, wenn nicht,
holen Sie es bitte nach. Laden Sie das Basic-Programm von Li­
sting 1 und starten Sie es mit RUN. Jetzt steht es in den Speicher­
zellen 828 bis 853 und kann mit SYS 828 gestartet werden.

Wenn Sie jetzt wieder eine Taste länger gedrückt halten, flitzt
das entsprechende Zeichen wie ein Turbo-Auto über den Bild­
schirm. Der Cursor ist mit den Augen fast nicht mehr zu verfolgen.
Es geht alles so schnell, daß Sie Mühe haben, nur ein einzelnes
Zeichen auf den Bildschirm zu bringen. Wenn Sie das wollen: Mit
RUN/STOP und RESTORE stellen Sie den ursprünglichen Zu­
stand wieder her.

Das kleine Maschinenprogramm läßt sich in jedes Spiel oder
Anwendungsprogramm nutzbringend einbauen.

6000
6010
6020
6030

FOR A=828 TO 853
READ B
POKE A,B
NEXT:END

Listing I. DATA-Lader zur
Änderung der Tastenwieder­
holgeschwindigkeit

6040 DATA 120,169,73, 141,20,3,169,3,
6050 DATA 141,21,3,88 ,96,169,1,141,139
6060 DATA 2,169,0,141 , 1'40,2,76,49,234

828
829
831

SEI
LDA #73
STA 788

setzt die Interrupt Enable Flagge
lädt Akku mit der Zahl 73
schreibt die 73 in Zelle 788

834 LDA #3 lädt Akku mit der Zahl 3
836 STA 789 schreibt die 3 in die Zelle 789
839 CLI löscht die Interrupt Enable Flagge
840 RTS Ende des Unterprogramms
841 LDA «1 lädt Akku mit der Zahl 1
843 STA 651 schreibt die 1 in Zelle 651
846 LDA #0 lädt Akku mit der 0
848
851

STA 652
JMP 5995

schreibt die 0 in die Zelle 652
3 Sprung auf Speicherzelle 59953 zum Weiterlauf

der normalen Interrupt-Routine

Listing 2. Disassembler-Listing von Listing 1

Listing 3. Disassembler-Listing mit Hexdump von Listing 1

, 033C 78 SEI
, 033D A9 49 LDA #49
, 033F 8D 14 03 STA 0314
, 0342 A9 03 LDA #03
, 0344 8D 15 03 STA 0315
,0347 58 CLI
, 0348 60 RTS
, 0349 A9 01 LDA #01
,034B 8D 8B 02 STA 028B
, 034E A9 00 LDA #00
, 0350 8D 8C 02 STA 028C
, 0353 4C 31 EA JMP EA31

148 ^“a? Ausgabe 2/Februar 1986

